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Abstract
Markov State Models (MSMs) provide an automated framework to investigate the dynamical
properties of high-dimensional molecular simulations. These models can provide a human-
comprehensible picture of the underlying process, and have been successfully used to study
protein folding, protein aggregation, protein ligand binding, and other biophysical systems. The
MSM requires the construction of a discrete state-space such that two points are in the same state
if they can interconvert rapidly. In the following, we suggest an improved method, which utilizes
second order Independent Components Analysis (also known as time-structure based Independent
Components Analysis, or tICA), to construct the state-space. We apply this method to simulations
of NTL9 (provided by Lindorff-Larsen et al. Science 2011), and show that the MSM is an
improvement over previously built models using conventional distance metrics. Additionally, the
resulting model provides insight into the role of non-native contacts by revealing many slow
timescales associated with compact, non-native states.

Introduction
Molecular simulation can provide atomic-level insight into problems in protein folding,1–3

protein aggregation,4 protein-ligand binding,5 and many other biophysical systems of
interest. Recent technological advances, in the form of distributed computing
(Folding@home)6 and specialized hardware (Anton),7 have allowed for simulations to study
folding events on the timecales of 10 ms and 100 μs, respectively. The result of such a
large-scale simulation, however, is a high-dimensional time series that is difficult to
understand. Constructing a human-comprehensible picture of such a dataset is non-trivial,
and analysis generally benefits from dimensionality reduction to focus on the important
features in the data.

Many techniques have been used in the past for removing unimportant degrees of freedom.
For example, in the protein folding field, many choose to project the high-dimensional data
onto a few order parameters and analyze the data in this lower-dimensional space.8–10 These
analyses can be effective, but come with the underlying assumption that all other degrees of
freedom are irrelevant. If this is not the case, then the results will be incorrect, for instance
by placing two pieces of data at the same point of the projection when they are actually

*To whom correspondence should be addressed pande@stanford.edu.

Supporting Information Available A more detailed proof of the tICA solution is presented in the Supplementary Information (SI) as
well as insight into how we picked tunable parameters for the tICA method applied to MSM construction. This material is available
free of charge via the Internet at http://pubs.acs.org/.

NIH Public Access
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2014 April 09.

Published in final edited form as:
J Chem Theory Comput. 2013 April 9; 9(4): 2000–2009. doi:10.1021/ct300878a.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pubs.acs.org/


separated by a kinetic barrier.11,12 A more robust approach to this type of scheme would be
to select projections that best represent the data in an algorithmic manner, as this would
eliminate most human biasing.

Principal Components Analysis (PCA) is an automated method that attempts to find the
linear combinations of input coordinates that best explain the variance in the data.13 Using
PCA, one can find orthogonal degrees of freedom that account for the highest amount of
variance and then remove degrees of freedom that do not account for much variance in the
data. This strategy can be useful in protein folding, for example, since the folding process is
a large-scale motion.14–16 However, to accurately estimate kinetic properties of the system
using PCA, we must assume that the kinetically slow directions correspond to high variance
directions. This need not be the case, and so PCA may not be effective in analyzing subtler
motions.

There have also been other automated dimensionality reduction methods applied to protein
folding, such as ISOMAP17 (and its relative SciMAP18), Diffusion Maps,19 and Sketch-
Map20 that attempt to construct a lower-dimensional, Euclidean space for the data. These
methods all require a distance metric that is calculated in the high-dimensional space. In the
limit of infinite data, these methods only require the distance metric to determine “kinetic-
relatedness” (i.e. whether two conformations can interconvert rapidly) at short distances.
Because of this, most structural metrics will perform quite well and the result will be a
reduced representation that preserves the kinetics in the high-dimensional space. For most
problems, however, we are not in this data-rich regime; in fact, we are typically in the data-
poor regime. As a result, the quality of the lower-dimensional representation will depend on
the distance metric’s ability to determine kinetic-relatedness between any two conformations
that may not be structurally close. This dependence does not mean the methods are unable to
build low-dimensional representations of the high-dimensional space, but the methods are
limited by the distance metric they employ. Additionally, these methods tend to be
computationally difficult, and so do not lend themselves to large datasets, such as those we
frequently encounter in the protein folding community.

Another class of techniques, such as the Markov State Model (MSM), use dimensionality
reduction in the form of clustering methods. These methods transform the high-dimensional
space into a discrete set of states by grouping points that are close in the high-dimensional
space. An MSM uses this state decomposition and calculates rates of interconversion
between all states.21–26 The quality of an MSM is dependent on the state decomposition, so
it is very important to construct a state space that accurately captures the kinetics of the
underlying system. To do this, however, we require that each state only contains
conformations that can interconvert rapidly.

Recent work has improved the MSM building process in many ways, such as using a
milestoning approach25 or a maximum likelihood estimator for the transition matrix.27 In
addition, there have been recent improvements in the process of defining a state space; one
such improvement is the utilization of better clustering algorithms. For example, the K-
Centers algorithm has worked well in the past, but more advanced methods like hybrid K-
Medoids or Ward’s method have shown a marked improvement.27–31 However, each
clustering method requires a distance metric that can estimate wether two conformations can
interconvert rapidly. Historically, RMSD in the atomic positions has been used with some
success in addition to new metrics based on alternative representations of the protein
conformation22,32,33 or metrics that use a dimensionality reduction technique like PCA.34

Since most metrics defined on protein conformations are merely assumed to estimate the
interconversion time between them, we believed we could improve the clustering scheme if
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we designed a metric with this assumption in mind. Moreover, the problem with using a
geometric distance for clustering is that we may be ignoring important degrees of freedom
that do not decorrelate quickly. With this motivation, we believed the best distance metric
would be one that is designed so that orthogonal degrees of freedom decorrelate quickly.

In the following, we utilize a projection-based distance metric motivated by kinetics, second
order Independent Component Analysis.35–37 Briefly, this method specifically picks degrees
of freedom that decorrelate slowly. In this manner, we can remove degrees of freedom that
actually do decorrelate quickly. We then project the high-dimensional data onto these slow
degrees of freedom and cluster the data in this lower-dimensional space. We show that
applying this method to simulations of NTL9, generously shared by Lindorff-Larsen et al.,38

constructed an improved MSM as well as provided additional insight into the folding
process of NTL9.

Methods
Second Order Independent Component Analysis

Our goal is to find linear combinations of coordinates in the input data such that we can
project onto only a few of them without losing important kinetic information. Since other
projection methods simply assume that orthogonal degrees of freedom are kinetically
irrelevant, we would like to design projections so that this is the case.

The method we have used was first introduced as a solution to the Blind Source Separation
problem, which attempts to find a set of independent source signals that can explain a
multidimensional dataset.35 The details of the original problem can be found in Molgedey
and Schuster35 as well as more recent reviews,36 but we will not discuss them here. This
analysis has been successfully been applied in many fields, and has many titles (e.g. time-
structure based Independent Components Analysis [tICA]37 and second order Independent
Components Analysis35,36); we refer to the method as tICA.

The problem is generally stated as finding maximally independent components in the data.
However, we outline one possible proof below (the details can be found in the SI section
entitled “Detailed Proof of the Solutions to the tICA Problem”) that shows that the solution
of the tICA problem also corresponds to finding the slowest degrees of freedom, as
monitored by their autocorrelation functions. We note that this proof is analogous to a
classical proof of the solution to the PCA problem (as given by Jolliffe13). To the authors’
knowledge, this formulation has not been produced before, but we note that the result is not
new.36 We believe that the proof aids in understanding the motivation of the method as well
as the properties of the solutions.

Given a multidimensional dataset, our goal is to find the linear combinations of the input
coordinates that maximize the autocorrelation function of that projection, while constraining
each linear combination to be uncorrelated to the previous ones. We do this in a series of
maximizations, at each step finding a new tICA component (tIC) that is the slowest subject
to being uncorrelated to all the previously found tICs.

Let  be a multidimensional, discrete time-series where each snapshot is a column
vector, of dimension d, corresponding to an arbitrary, vectorized representation of a protein
conformation. For example, each snapshot could be a set of dihedral angles of a peptide.
(Though to account for periodicity, one must represent each angle, ϕ, as two coordinates:
cosϕ and sinϕ).39 In the above notation, Xt is a snapshot of the protein at time t and Nf is the
total number of frames in the dataset. We note also, that for notational convenience we will
think of the dataset as a single very long trajectory. However, the results are easily
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generalized to multiple trajectories by calculating the average correlations over all snapshots
and all trajectories.

For convenience, we will use bra-ket notation to denote inner and outer products. Therefore
we write Xt as |Xt⟩. As with conventional PCA, we need to remove the mean of our data,
and so we do all calculations with . Before we begin, recall that the
definition of the autocorrelation function of a one-dimensional time-series (e.g. rt) is given
by:

(1)

The autocorrelation is a function of the parameter Δt, which we refer to as the correlation
lag time. Slower degrees of freedom are those whose autocorrelation functions approach
zero slowly. This means that given some Δt, the slowest degrees of freedom will have the
largest autocorrelation value. Specifically, if we pick a relevant correlation lag time (we will
discuss how to select this parameter in the results section), then the goal is to find a
projection vector, |α0⟩, to maximize the following objective function (f):

(2)

This objective function is the autocorrelation function of the projection of |δXt⟩ onto |α0⟩,
which is simply the inner product: ⟨α0|δXt⟩. Since the inner product is symmetric, we can
simplify this expression in terms of outer products:

(3)

We can now see that the outer products are the same as the time-lag correlation matrix and
covariance matrices:

(4)

(5)

We note that as with any statistical technique applied to real data, we are limited by the
number of samples we have in the trajectory. In particular, because of the correlation lag
time, there are only Nf – Δt samples for the time-lag correlation matrix, whereas there are Nf
samples for the covariance matrix. If Δt is small relative to Nf then the quality of the sample
time-lag correlation matrix will be similar to the quality of the covariance matrix.

Using the above notation we can rewrite the objective function from Eq. (2) as:

(6)

We now need to constrain our optimization so that we can find solutions |α0⟩. In
conventional PCA, the PCs are constrained to have unit length. This would look like ⣨α0|
α0⟩ = 1 in our tICA problem. We instead constrain our tIC’s to have unit variance: ⟨α0|∑|
α0⣩ = 1. Since our goal is to calculate distances along these projections, we wish to make
them unitless. If we did not do this, then projections that happen to have high variance
would dominate the distance calculation, when we actually want slow projections to
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dominate. It is possible, however, that different normalizations may improve the distance
calculation further, and this will be a topic of future research. (For example, one might
consider weighting the solutions by their “slowness” so that the slowest degrees of freedom
contribute the most to the distance calculation.)

Conveniently, this constraint allows us to simplify the objective function and construct an
optimization problem that is analogous to the PCA problem:

(7)

subject to:

From here, we note that there are many ways to solve this problem. For instance, the
procedure would be analogous to a proof for the variational principle in quantum mechanics,
which attempts to find the eigenfunction, |Ψ⟩ that minimizes its energy:

Additionally, we can make an argument analogous to that used by Jolliffe13 to find the
solution to the PCA problem, which we outline below. Briefly, the proof proceeds by
maximizing the objective function in Eq. (7), followed by finding the next optimal solution
(|α1⟩) subject to it being uncorrelated with |α0⟩. We solve each step using the method of
Lagrange Multipliers. The first solution, |α0⟩, is shown to be a solution to the generalized
eigenvalue problem given in Eq. (8).

(8)

We now find another projection that maximizes our objective function while being
uncorrelated with |α0⟩. This produces another optimization problem with two constraints:

(9)

subject to:

This can again be solved with Lagrange Multipliers and it can be shown that the solution,
α1, is a solution to the same generalized eigenvalue problem in Eq. (8).

(10)

These steps can be repeated and we find that the d solutions to the tICA problem are the d
eigenvectors of the same generalized eigenvalue problem. Further we can relate f(|αi⟩) to the
ith eigenvalue:
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(11)

This means that if we order the eigensolutions by their eigenvalues, such that λ0 > λ1 > … >
λd–1, then |α0⟩ is the slowest tIC, |α1⟩ is the next slowest, etc. This result provides an
algorithm for computing the N ≤ d slowest degrees of freedom from a multidimensional
time series.

1. Compute C(Δt) and ∑ from the data

2. Since the computed C(Δt) may not be exactly symmetric, we add the transpose and
divide by two for an estimate of the symmetric C(Δt) (see note below)

3. Solve C(Δt)|α⟩ = λ∑|α⟩

4. Pick N vectors by selecting the eigenvectors with the top N eigenvalues

In general, the time-lag correlation matrix is symmetric as long as the underlying system is
reversible in time. However, the sample time-lag covariance matrix may or may not be
symmetric. The simplest solution is to symmetrize the matrix by adding its transpose. This
procedure amounts to including each trajectory twice in the dataset: once forward and once
backward. Unfortunately, if the trajectories are not begun at the true equilibrium
distribution, then the resulting calculation may be biased. This is related to the problem
encountered when symmetrizing a counts matrix during the MSM construction process.40

As the dataset generated by Lindorff-Larsen et al.38 consists of four long trajectories, the
bias is negligible in this work. However, for future analysis of datasets that contain many
short trajectories, for example Folding@home datasets, we may need to develop a more
robust way of calculating a symmetric estimate of the time-lag correlation matrix.

MSM Construction
MSMs are defined as a set of states and rates of transition between those states. The method
is incredibly powerful, and has been used successfully in many systems. Part of the power is
the ability to automate the construction process; since this removes any bias the scientist
may have. This has become possible with the help of new software packages.27,41,42

Briefly, the construction process has three steps:

1. Cluster the data by K-Centers, K-Medoids, Hierarchical Methods, or any
appropriate clustering method, and assign all conformations to a state. This step
transforms Xt → s(t) where s(t) is an integer corresponding to the assigned state at
time t.

2. Given a lag time, τ, a transition between state i and state j would occur if at some
time t, s(t) = i and s(t + τ) = j. We count all such transitions between all pairs of
states in the dataset. The result of this is a counts matrix, C, where Cij is the
number of transitions between states i and j in the dataset.

3. From the counts matrix, estimate the transition probability matrix, T, whose
elements, Tij, correspond to the probability of transferring form state i to state j in
one lag time. We used a Maximum Likelihood Estimator (MLE) described in
Beauchamp et al.27
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There have been many recent improvements working toward making the MSM construction
process more automatic and robust, including new methods for defining state spaces using
milestoning,25 as well as new methods for calculating the transition probability matrix from
the raw counts.27 Additionally, recent improvements in the form of new metrics that can
better determine whether two conformations can interconvert rapidly have shown that an
MSM can be improved by using a different distance metric to build a better state space.32,33

To construct an MSM using the tICA method, we calculate the top N eigenvectors
corresponding to the slowest N components (tICs). The goal is then to define a distance
metric that calculates distance only along these components. If |A⟩ corresponds to a protein
conformation, first we define an d ×N projection matrix, P, whose columns are the N
slowest tICs, such that PT |A⟩ is given by:

(12)

This new vector is the reduced representation of the conformation |A⟩ corresponding to
projecting onto the top N tICs. We can now define the distance between two conformations |
A⟩ and |B⟩ as:

(13)

where ∥ · ∥2 denotes the N-dimensional Euclidean norm. In words, we are projecting each
conformation onto the N slowest degrees of freedom, and calculating the Euclidean distance
between points in this reduced space.

Although the tICA method can be applied to any vector representation of the protein
conformation, we used a contact map approach where each conformation was represented as
a list of all pairwise residue distances. The distances were calculated as the minimum
distance between any two heavy atoms of the corresponding residues. We then used the
distance metric defined in Eq. (13) to cluster a subset of the dataset using the K-Centers
algorithm to produce k generators. The conformations not used in clustering were then
assigned to the closest generator using the same metric. All MSM construction was
performed using the MSMBuilder package.27

We note that the residue-residue distance representation has redundant information in the

coordinates as there are  coordinates (we only include pairs that are at least
three residues apart) but only 3N – 6 degrees of freedom in the system. Since we are limited
to linear combinations of these coordinates, we will see different results by using different
representations of the protein. We believe, however, that there is likely a kernel version of
this method that can achieve solutions that are non-linear in the input coordinates just as
kernel-PCA can produce non-linear solutions to the PCA problem. We leave this description
for future work, but believe it would be a useful extension to the tICA method.

Results and Discussion
tICA Builds an Improved Markov State Model Over Conventional Metrics

In MSM construction, there are a few tunable parameters that produce different models.
These include the number of states constructed (k) and the lag time (τ) used to count
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transitions (see Methods: MSM Construction). It has been theoretically shown that
increasing the number of states and the lag time will produce an MSM with the least
discretization error.26,43,44 However, there is a competing source of statistical error since
increasing the number of states will reduce the number of samples of each state to state
transition. Additionally, increasing the lag time will decrease the temporal resolution of the
resulting MSM. For these reasons, we typically choose the number of states and lag time to
be as small as possible while still reproducing the kinetics from the raw trajectory data. This
approach allows us to balance the discretization and statistical errors to provide the most
accurate MSM.

The tICA method adds two more parameters: the correlation lag time (Δt), which is used in
building C(Δt) and the number of tICs (N) to project onto. To optimize these values, we built
many MSMs using K-Centers clustering with the tICA distance metric. To assess which
values were optimal, we calculated implied timescales at many lag times. The ith implied
timescale (ti) is given by Eq. (14).

(14)

where τ is the lag time, and λi is the ith eigenvalue of the transition probability matrix. Since
the timescales are always underestimated relative to their true values, we can compare two
MSMs by realizing that the slower timescales are indicative of a smaller discretization
error.44 This comparison is only fair, however, when the timescales correspond to the same
eigenvector, which is likely only to be the case for the slowest timescale since it is typically
attributable to the folding eigenvector.

We found that using six tICs produced an MSM that could adequately reproduce the folding
timescale in the raw data (as determined by the RMSD autocorrelation function). In fact,
using too many tICs tended to make the model too fast. This fact demonstrates the utility of
the tICA metric to remove quickly decorrelating degrees of freedom that can add noise into
the clustering protocol. The optimal correlation lag time was found to be 200 ns in NTL9.
However, using a value between 100 ns and 500 ns produced similar MSMs, suggesting that
the method is robust to choices of the correlation lag time. Preliminarily, we have observed
that the optimal correlation lag time in a few other protein systems was 200 ns. We note,
however, that for other applications (or even other proteins) this optimal value may be
different. (See SI section: “Selection of Tunable Parameters for tICA” for a more detailed
explanation of the parameter choices as well as a discussion of the robustness of the tICA
method.)

As compared to a previous model built using the RMSD metric,29 the tICA MSM used an
order of magnitude fewer states, but reproduced the raw data with the same efficacy. We
calculated the RMSD to the native state (PDB ID: 2HBA, residues 1-39) autocorrelation
function and found the MSM reproduced the raw data’s autocorrelation function (Fig. 1).
The tICA MSM’s timescale distribution was qualitatively different from the previous model.
The result was a greater separation of timescales in the sub-millisecond regime (Fig. 1).
Interestingly, the tICA MSM was constructed with the K-Centers algorithm, which has its
own limitations when applied to protein folding.27 We applied the Hybrid K-Medoids
clustering algorithm;27 however, it did not change the implied timescales drastically. We
hypothesize that the problems with K-Centers have a reduced impact in lower-dimensional
spaces.

We also compared the tICA MSM to models built with the same number of states but using
conventional PCA or a Euclidean norm on all residue-residue distances (contact map). We
found that the tICA MSM produced a slower folding timescale than the PCA MSM and the
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contact map MSM (Fig. 2), as well as provided greater resolution in the sub-microsecond
regime.

Slow Timescales in NTL9 Correspond to Register-Shifted States
In the tICA MSM, the slowest timescale (~ 18μs) corresponded to a relaxation between
folded and unfolded states, while the second and third slowest timescales corresponded to
two different register-shifted states (Fig. 3). This is a known phenomenon, and register-
shifted conformations have been reported in MSMs of many protein studies.29,33,45 In our
MSM, the first register shift occurred in strand one (residues 1-6) and was previously
observed in the RMSD MSM reported in Beauchamp et al.29. This state had an equilibrium
population of approximately 0.5% (5 · kT). All energies are free energies in units of kT
relative to the native state in the MSM. The second register shifted state occurred in strand
three (residues 35-39), and was not observed previously; it had an equilibrium population of
~ 0·1% (6·6 · kT). Additionally, the fifth slowest timescale (~ 620ns) corresponded to the
register shift in strand one described above equilibrating with a state with a different register
shift in strand three.

Interestingly, but perhaps unsurprisingly, each register shifted state had a corresponding
shift in the hydrophobic core contacts. For example, in the strand one shift, the entire strand
was flipped as compared to the native state causing the hydrophobic residues normally in the
core to be solvent exposed. The strand three shift produced a register shift in the core
packing, in which PHE-29 packed where LEU-30 was packed in the native state (Fig. 4).

All three of the observed register-shifted states had hydrophobic cores that remained intact.
The strand two shift traded two buried hydrophobic residues for two other hydrophobic
residues (Fig. 4) and the strand three shift resulted in different hydrophobic contacts without
removing any. These results indicate that register-shifted states may only occur when there
is a corresponding shift in the hydrophobic packing that is still favorable. Other states would
not be nearly as stable since they would either disrupt the core by removing a hydrophobic
residue or placing a polar residue within it.

These register-shifted states shed light on the role of non-native interactions in protein
folding, which has been a topic of major debate in the field.3,46–51 Together with recent
results,29,33 these findings show that non-native interactions are relevant in many protein
systems and potentially important to the protein folding process.

The tICA Metric Reveals Non-Native Beta Sheet Structures in NTL9
The sixth slowest timescale (~590 ns) corresponded to formation of non-native beta sheet
structures. These configurations are particularly interesting because they occur in residues
that are helical in the native state (Fig. 5). This state had an equilibrium population of less
than 0.1% (7 · kT).

Other non-native beta sheets occurred in the loop region between strands one and two. The
fourth slowest timescale (~ 800 ns) corresponded to conversion between the folded state and
an extended beta sheet between strands one and two, whereas in the native state, this loop
was folded down to allow the hydrophobic core to pack behind strands one and two. This
state had an equilibrium population of ~ 1·5% (4 · kT).

The tICA Metric Reveals a New, Partially Packed State in NTL9
In addition to the slow timescales, a high equilibrium flux eigenvector was revealed in the
tICA MSM. Equilibrium flux is given by Eq. (15).29
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(15)

where ϕn is the flux of eigenvector n, and ϕn is the right eigenvector of the transition
probability matrix. For a more detailed explanation, see Beauchamp et al.,29 but briefly, an
eigenvector’s flux represents the total population leaving all states due to the eigenvector.
Intuitively, low flux eigenvectors may not be as relevant as they only correspond to small
shifts of population.

The tICA metric revealed a second high-flux eigenvector (the first being the folding
eigenvector) with an associated timescale of ~300 ns (Fig. 7). This eigenvector corresponded
to a near-native state that had the correct secondary structure, but was missing key backbone
hydrogen bonds in the core region. The result was a configuration with key hydrophobic
residues that are not completely packed. This state had an equilibrium population of ~ 3·5%
(3·1 · kT).

New States in the tICA MSM are Visited in High Flux Pathways
We constructed a 20 state macrostate MSM from our micro state MSM by implementing the
PCCA+ algorithm derived by Deuflhard and Weber.52 From this macrostate model we
wished to determine the folding pathways for NTL9. The two lowest free energy states
corresponded to the completely folded, and completely unfolded states. We used these states
as the source and sink states for calculating the net flux through our model as well as the
highest flux pathways through our model by applying Transition Path Theory.53–55

From our analysis, 25% of the total reactive flux transferred directly from the unfolded state
to the folded state. The remaining flux was split between three paths; the first of which was
directed through the partially packed state, which accounted for 17% of the total flux. We
also observed two pathways that either first formed strand 1-3 (33%) or strand 1-2 (20%),
which are consistent with results from previous studies.38,56 Additionally, for the strand 1-3
pathway, roughly a quarter of the flux travelled through the partially packed state, whereas
the strand 1-2 pathway had roughly half of its flux travel through the partially packed state.
The partially packed state was not described in previous studies of WT NTL956 or in the
original analysis of this dataset.38 Interestingly, the mutant used in this study is the K12M
mutant of NTL9, which allows the protein to fold faster (1.5 ms vs. 20 μs). The methionine
in question is one of the hydrophobic contacts that is not formed in the partially packed
state.

Pfold Depends on the Location of the Register Shift
The Pfold is the probability that a conformation will fold before it unfolds. This value can be
used to gain insight into the underlying system, as a large Pfold corresponds to a state that is
kinetically close to the folded state, while a small Pfold corresponds to a state that is
kinetically closer to the unfolded state. For the two states that had register shifts in strand
one, we found they had Pfold’s close to zero, which means those conformations are highly
likely to unfold before reaching the native state. The other register shifted state had a shift in
strand three, but interestingly it’s Pfold was approximately 0.6, meaning those conformations
are likely to fold before unfolding. In fact there was a folding pathway that accounted for
1.6% of the total flux through the MSM that traveled through the the strand three register
shift.

This qualitative difference is expected since the register shift in strand three only
corresponds to four non-native, backbone hydrogen bonds. The shifts in strand one,

Schwantes and Pande Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



however, contain at least eight non-native, backbone hydrogen bonds, so it will be easier to
reverse the register shift in strand three without completely unfolding.

Previous, General Results are Consistent with the tICA MSM
Our results generally agree with the findings of Lindorff-Larsen et al.,38 who made two
general conclusions. The first was that the unfolded ensemble in protein folding is
characterized by compact states with numerous contacts formed. This is consistent with the
compact, yet non-native states we observed, including register shifted states and non-
specific beta sheets. Furthermore, we found that one of the register-shifted states is visited
on-route to the native state, though we note that this pathway accounts for very little of the
reaction flux (~ 1·6%).

Lindorff-Larsen and co-workers also concluded that of their set of small proteins, only two
folded along more than one pathway (NuG2 and NTL9). The pathways from our analysis
provide a heterogenous picture consistent with that description. The tICA MSM, however, is
also able to resolve a partially packed state that we observed in pathways accounting for ~
40% of the total reaction flux.

Conclusions
There are many practical limitations that one may encounter when constructing an MSM.
For example, increasing the number of states or the lag time used will typically produce a
model with slower kinetics, which may be necessary to reproduce the raw data. However,
larger state decompositions increase the statistical error in calculating transition
probabilities, and larger lag times produce models with poor temporal resolution. Towards
this end, we have shown that designing a better distance metric can build models with fewer
states while using inferior clustering algorithms (K-Centers).

The result of these improvements is an enhanced picture of the folding of NTL9. We find
that there are many compact unfolded states characterized by a large number of non-native
contacts. Specifically, there are many register shifted states, as well as non-native beta sheet
configurations that exist in the unfolded ensemble. We believe that the relevance of these
non-native states has been underestimated because our analysis has been limited. However,
our improvements suggest that kinetically motivated metrics will provide a tool to find new
intermediates that previous analyses did not observe.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Top: The tICA metric yielded an MSM with a much larger separation of timescales in the
100 ns to 1μs time range. These timescales were associated with new, compact states in the
folding dynamics of NTL9. Bottom: One way of validating an MSM is to calculate
autocorrelation functions from the model and compare them to the autocorrelation function
calculated directly from the trajectories. The RMSD autocorrelation function of the MSM
(red) matched the RMSD autocorrelation function of all four trajectories. The red shading
represents one standard deviation in the autocorrelation function calculated from the MSM.
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Figure 2.
The tICA method (upper left) produced an MSM with slower timescales than the
conventional PCA (lower left) as well as the contact map (lower right) approach. This
improvement was due to the ability of the tICA method to remove quickly decorrelating
degrees of freedom that add noise to the distance calculation. Additionally, the tICA MSM
produces the folding timescale as well as the RMSD model built by Beauchamp et al.29 The
tICA MSM produced a qualitatively different timescale distribution from the RMSD method
with many timescales corresponding to undiscovered states. We note that Beauchamp et al.
used Ward’s Method for clustering, which was limited to only a subset of the data. The
authors only analyzed the trajectories subsampled by 50 ns, which is why there is no data for
lag times below 50 ns.
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Figure 3.
The native state of NTL9 has three beta strands (upper left). Note that strand two is the left-
most strand, strand one is the center strand, and strand three is the right-most strand. There
were three register shifted states observed in this simulation. The first occurred in strand one
(lower right), and was observed in previous studies.29 This strand one shift could also occur
with a shift in strand three’s location (upper right). Finally, strand three could shift with
strand one in the correct orientation (lower left). The latter two were not observed in
previous analysis.
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Figure 4.
The register shifted states not only formed non-native hydrogen bonds, but they also made
non-native hydrophobic contacts. The register shift in strand two caused hydrophobic
residues that were natively packed (top left) in the core to become solvent exposed (top
right). The register shifts in strand three caused a “register-shift” in the core packing (lower
right), in that PHE-29 (red) was packed where LEU-30 (blue) was in the native state (lower
left).
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Figure 5.
NTL9 was observed to partially fold to one of many non-native beta sheet structures. These
are particularly interesting because the non-native strand is helical in the native state. The
native state is shown in the upper left, while two non-native beta sheet structures are shown
on the right and bottom. The yellow portion, which is helical in the native state, forms a
sheet with residues 1-6 (blue), and less often with residues 17-21 (red).
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Figure 6.
NTL9 was also observed to fold to a configuration that has an extended sheet between
strands one and two (right). This extension does not allow the hydrophobic core to pack as it
does in the native state (left).
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Figure 7.
NTL9 also folded to a near-native state (right) that had the same secondary structure as the
native state (left) but was missing several core contacts. This was correlated with a few
backbone hydrogen bonds in the core region of the protein (colored orange, yellow, and
purple) that were not formed in the partially packed state.
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Figure 8.
In the tICA MSM, 25% of all reactive flux transferred from the unfolded to folded states in
one step. The remaining flux was primarily split between three paths. The first path, which
accounted for 17% of the flux, visited a partially packed intermediate between the unfolded
and folded states. The second and third paths corresponded to forming strand 1-3 (33%) or
strand 1-2 (20%) first. When forming strand 1-3 first, a third of the reactive flux proceeded
through the partially packed intermediate, while when forming strand 1-2 first, half of the
flux proceeded through this intermediate. Additionally, The register shifts that occurred in
strand one (R1 and R1,3) had Pfold’s close to zero, whereas the shift in strand three (R3) had a
Pfold ~0·6. In fact, the strand three register shift was visited by 1.6% of the reactive flux
from the TPT ~ analysis. We note that the width of the solid arrows above indicate their
relative fluxes in the MSM.
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