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Abstract
In recent years, coordinated variations in brain morphology (e.g. volume, thickness, surface area)
have been employed as a measure of structural association between brain regions to infer large-
scale structural correlation networks (SCN). However, it remains unclear how morphometric
correlations relate to functional connectivity between brain regions. Resting-state networks (RSN),
derived from coordinated variations in neural activity at rest, have been shown to reflect
connectivity between functionally related regions as well as, to some extent, anatomical
connectivity between brain regions. Therefore, it is intriguing to investigate similarities between
SCN and RSN to help identify how morphometric correlations relate to connections defined by
resting-state connectivity. We investigated the similarities in connectivity patterns and small-
world organization between SCN, derived from correlations of regional gray matter volume across
individuals, and RSN in 36 healthy individuals. The results showed a significant similarity
between SCN and RSN (60% for positive connections and 40% for negative connections) that
might be explained by shared experience-related functional connectivity underlying both SCN and
RSN. Conversely, the small-world parameters of the networks were significantly different,
suggesting that SCN topological parameters cannot be regarded as a substitute for topological
organization in resting-state networks. While our data suggest that using structural correlation
networks can be useful in understanding alterations in structural associations in various brain
disorders, it should be noted that a portion of the observed alterations might be explained by
factors other than those reflecting resting-state connectivity.
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INTRODUCTION
Coordinated variations in brain morphology (e.g. volume, thickness, surface area) have been
recently employed as a measure of structural association between brain regions to infer
large-scale structural correlation networks (SCN) (Bassett et al., 2008; Bernhardt et al.,
2011; Chen et al., 2008, 2011; Fan et al., 2011; Guye et al., 2010; He et al., 2007, 2008,
2009a; He and Evans, 2010; Hosseini et al., 2012a, 2012b; Lerch et al., 2006; Lv et al.,
2010; Raj et al., 2010; Sanabria-Diaz et al., 2010; Sun et al., 2012; Wu et al., 2012; Zhou et
al., 2011). Alterations in the arrangements of these networks have been associated with
normal aging (Chen et al., 2011; Sun et al., 2012; Wu et al., 2012), multiple sclerosis (He et
al., 2009a), Alzheimer’s disease (He et al., 2008; Zhou et al., 2011), schizophrenia (Bassett
et al., 2008) and epilepsy (Bernhardt et al., 2011; Raj et al., 2010). However, it remains
unclear how morphometric correlations relate to actual anatomical and/or functional
connectivity between brain regions.

These morphometric correlations might reflect anatomical connectivity, as axonally
connected regions are believed to be influenced by common developmental, trophic and
maturational effects (Bernhardt et al., 2011; Cheverud, 1984; Wright et al., 1999; Zhang et
al., 2000). This idea is supported by a number of studies that suggest consistencies between
networks constructed from morphometric correlations of cortical volume, thickness, and
surface area data with those constructed from white matter tract-based data (Bernhardt et al.,
2008; He et al., 2007; Lerch et al., 2006; Sanabria-Diaz et al., 2010). Further evidence is
provided by a recent study that reported 40% similarity between cortical thickness
correlations and diffusion tensor imaging (DTI)-derived anatomical networks (Gong et al.,
2012).

Alternatively, morphometric correlations might also be influenced by functional
connectivity as functional specialization, through practice, skill acquisition and training, can
cause changes in underlying anatomy (experience-related plasticity) (Duan et al., 2012;
Gaser and Schlaug, 2003a; Halwani et al., 2011; Maguire et al., 2000, 2006; Rykhlevskaia et
al., 2008; Sluming et al., 2002). This possibility is supported by neuroimaging evidence
showing, for example, increased gray matter volume in motor, auditory and visual-spatial
brain regions in professional musicians in response to long-term skill acquisition (Gaser and
Schlaug, 2003a, 2003b), enhanced integration of striatal network in chess experts (Duan et
al., 2012), increased gray matter density in Broca’s area in orchestra musicians (Sluming et
al., 2002), and increased hippocampal gray matter volume in taxi drivers (Maguire et al.,
2000, 2006; Woollett and Maguire, 2011).

Resting-state networks (RSN) (Biswal et al., 1995, 2012), derived from coordinated
variations in neural activity at rest, have been shown to reflect connectivity between
functionally related regions (Biswal et al., 2010; Greicius et al., 2009). Recent data show
that resting-state functional connectivity not only reflects functional connectivity mediated
by indirect anatomical connections and experience-related functional plasticity, but also
represents, to some extent, the underlying anatomical connectivity between brain regions
(Damoiseaux and Greicius, 2009; Honey et al., 2009; Luo et al., 2012; Skudlarski et al.,
2008; van den Heuvel et al., 2009a). The gold standard for extracting anatomical
connectivity involves invasive retrograde/anterograde tract tracing that cannot be done in the
living human (Bernhardt et al., 2011). However, a significant agreement has been
demonstrated between a majority of common resting-state connections and known
anatomical fiber tracts in monkeys (Mantini et al., 2011; Shen et al., 2012). Thus, it is
intriguing to investigate similarities between SCN and RSN to help identify how
morphometric correlations relate to functional connections defined by resting-state
connectivity.
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In the present report, we aimed to identify the similarities between SCN, derived from
correlations of regional gray matter volume across individuals and RSN in healthy adults.
SCN was represented by a set of nodes that correspond to brain regions and a set of edges
(connections) that correspond to statistical correlations in gray matter volume between brain
regions, across individuals (Hosseini et al., 2012b; He et al., 2007). RSNs were represented
by the same set of nodes while their edges were quantified by computing the statistical
correlation between time series of different brain regions (Bassett et al., 2012; Buckner et
al., 2009; He et al., 2009b; Liao et al., 2010; Tian et al., 2011; van der Heuvel et al., 2009a;
Wang et al., 2009a, 2009b). Thresholding the obtained correlation matrices at an absolute
threshold results in networks with different numbers of nodes and connections that might
influence the network measures and limit interpretation of comparison findings (van Wijk et
al., 2010). Therefore, many recent studies involving brain networks binarize the correlation
matrices at fixed network densities (number of existing edges to the number of possible
edges in the network) and compare the binary networks across a range of densities
(Alexander-Bloch et al., 2013; Bassett et al., 2012; Bernhardt et al., 2011; Bruno et al.,
2012; Fan et al., 2011; He et al., 2009a; Hosseini et al., 2012a, 2012b; Sanabria-Diaz et al.,
2010; Wang et al., 2010; Wu et al., 2012).

Similarities between two networks can be assessed by either comparing the similarity of
their connections or by comparing their organizational properties. The most direct way of
comparing connections in networks with the same size is to find their distances. The
distances between two binary networks are usually calculated using the Hamming distance
(Shd), which measures the number of addition/deletion operations required to make two
networks the same (van Wijk et al., 2010). While Hamming distance gives an accurate
estimate of similarity between network connections, it overestimates the similarity if the
networks are sparse (Fig. 1). Therefore, we also used a normalized distance metric (Snorm)
that accounts for large baseline correlations between networks (Costa et al., 2007).

We also compared the organizational properties of SCN and RSN to assess their similarities
in terms of information processing potential. Previous studies have shown that SCNs and
RSNs follow small-world architecture in healthy individuals (Bassett et al., 2008, 2012; He
et al., 2009a; Fan et al., 2011; Hosseini et al., 2012a, 2012b, 2013; Wu et al., 2012), an
architecture that provides optimal balance between local and global information processing
in the network (Amaral et al., 2000; Bassett and Bullmore, 2006; Latora and Marchiori,
2001; Watts and Strogatz, 1998). Therefore, we compared the organizational properties of
SCN and RSN by directly measuring their small-world characteristics at the global level as
well as their connectedness properties at the regional level.

A recent study by Alexander-Bloch and colleagues (2013) examined the convergence of
SCN constructed from cortical thickness data and RSN in healthy individuals and reported a
significant correlation between the two networks (Alexander-Bloch et al., 2013). However,
they constructed SCN for cortical thickness data and did not include the subcortical regions.
In the present study, we used regional volume data to construct SCN since they contain
information regarding both thickness and surface area and thus reflect a summary effect of
interaction between brain regions. Using regional volume data also allowed us to compare
SCN and RSN networks that includes both cortical and subcortical regions. In addition, the
current study expands the previous findings by comparing the similarities and small-world
indices between SCN and RSN across a large range of density thresholds. Finally, we tested
the reproducibility of our findings by comparing RSN and SCN networks of the same
subjects across two time points.

We expected a degree of similarity between SCN and RSN that might be explained by the
shared influence of both anatomical connectivity and experience-related plasticity. We also

Hosseini and Kesler Page 3

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



expected a higher small-world index in RSN compared to SCN since functional networks
require rapid transitions and reconfigurations and would allow higher rates of information
processing.

MATERIALS AND METHODS
Participants

We enrolled 36 healthy adults (age 20 – 39 years old, mean age 28.4) in the study (Table 1).
Participants were excluded for any history of medical, neurologic or psychiatric conditions
or MRI contraindications. The Stanford University Institutional Review Board approved the
study. This study was conducted according to the principles expressed in the Declaration of
Helsinki. All participants provided written informed consent.

MRI data acquisition
MRI scanning was performed on a GE Discovery MR750 3.0 Tesla whole body scanner (GE
Medical Systems, Milwaukee, WI). High-resolution T1-weighted images were acquired with
3D spoiled gradient recall pulse sequence using the following parameters: TR = 8.5ms, TE =
3.396, TI = 400 ms, flip angle = 15°, FOV = 220 mm, number of excitation =1, acquisition
matrix = 256 × 192, slice thickness = 1.6. Totally, 124 contiguous coronal slices were
obtained with in-plane resolution of 0.859 mm × 0.859 mm. Resting-state functional MRI
data was acquired, in the same session, while participants rested in the scanner with their
eyes closed using a T2* weighted gradient echo spiral pulse sequence: relaxation time =
2000 msec, echo time = 30 msec, flip angle = 80° and 1 interleave, field of view = 220 mm,
slice thickness = 4 mm, spacing = 1 mm, matrix = 64×64, in-plane resolution = 3.125.
Number of data frames collected was 216 with a total scan time of 7:12 min. An automated
high-order shimming method based on spiral acquisitions was employed to reduce field
heterogeneity (Glover and Lai, 1998).

Image preprocessing
Anatomical image preprocessing was performed using Statistical Parametric Mapping 8
(SPM8; Wellcome Department of Cognitive Neurology, London, UK) (Friston, 2007) as
described in detail in our previous publications (Hosseini et al., 2012a, 2012b). The
anatomical images were segmented into gray matter (GM), white matter, and cerebrospinal
fluid images based on the ICBM Tissue Probabilistic Maps (http://www.loni.ucla.edu/
ICBM/ICBMTissueProb.html). A study-specific a priori probability map of GM was created
from the modulated spatially normalized segmented GM images using the Template-O-
Matic (TOM8) toolbox (Wilke et al., 2008). Custom priors were then affine-registered to the
standard Montreal Neurological Institute space. Voxel-based morphometry (VBM) analysis
was performed using the VBM8 toolbox for SPM8 (http://dbm.neuro.uni-jena.de/vbm),
which involved 1) segmentation of MR images into GM tissue segments, 2) non-linearly
warping the tissue segments to the GM study-specific customized template model
(Ashburner and Friston, 2005), and 3) modulation of the normalized images to ensure that
relative volumes of GM were preserved following the spatial normalization procedure.
Sample homogeneity was examined to identify any outliers in the study population. Images
were visually inspected for correct spatial normalization, and the VBM toolbox was used to
semi-automatically check for inhomogeneities. Images were also inspected for artifacts and
structural abnormalities. No images required exclusion.

It should be noted that cortical volume is the product of cortical thickness and surface area.
While each of these measures reflects distinct genetic, developmental and biological
processes, the volume measure conflates all of these effects. On the other hand, VBM-based
measure of gray matter volume may be contaminated by registration bias and partial volume
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effects (Bookstein 2001, Ashburner and Friston 2001). However, previous studies on
volumetric covariance networks, including our own, have shown that the obtained network
parameters are highly consistent with those derived using thickness covariance networks
(Bassett et al., 2008; Hosseini et al., 2012a, 2012b; Fan et al., 2011; Wu et al., 2012).

There are various nodal definition methods in brain network analysis. While the results
might be affected by the choice of parcellation scheme, recent evidence indicates that the
results of between-network comparison remain intact regardless of the applied parcellation
scheme (Zalesky et al., 2010). We generated 90 cortical and subcortical regions of interest
(ROIs), excluding the cerebellum, from the Automated Anatomical Labeling (AAL) atlas
using the WFU PickAtlas Toolbox (Tzourio-Mazoyer et al., 2002). AAL does not offer a
parcellation where individual regions are comparable in size (or area) and may thus blur
connectional patterns of smaller subregions within the bigger ROIs (Zalesky et al., 2010).
However, most of the previous graph analysis studies of structural and functional correlation
networks have successfully employed this parcellation scheme (Achard and Bullmore, 2007;
Achard et al., 2006; Bassett et al., 2012; Fan et al., 2011; He et al., 2009b; Hosseini et al.,
2012a, 2012b; Lynall et al., 2010; Meunier et al., 2009; Sanz-Arigita et al., 2010; Supekar et
al., 2008, 2009; Wang et al., 2009b; Wu et al., 2012; Zhang et al., 2011). We used AAL to
keep our results consistent with the current studies. These AAL ROIs were resliced to the
same dimension as that of tissue segmented images obtained from the VBM preprocessing
step. The ROIs were subsequently used to mask the individual modulated, normalized GM
images and extract the average volume within each ROI using the REX toolbox (http://
web.mit.edu/swg/software.htm). A linear regression analysis was performed at every ROI to
remove the effects of total brain volume. The residuals of this regression were then
substituted for the raw ROI volume values (Bernhardt et al., 2011; Fan et al., 2011; He et al.,
2007; Hosseini et al., 2012a, 2012b) and are referred to as corrected regional gray matter
volumes (RGV), hereafter.

Functional MRI preprocessing was also performed using SPM8 as described in our previous
publications (Kesler et al., 2009, 2011). In summary, images were first realigned to correct
for head motion. The realigned images were then coregistered and normalized using the
segmented anatomical volume. Images were visually assessed for correct spatial
normalization. We utilized the same AAL atlas (90 regions representing cortical and
subcortical structures in both hemispheres) as mentioned in the previous section. The ROIs
were identical to those used in previous graph analysis studies of the functional connectome
(Achard and Bullmore, 2007; Achard et al., 2006; Bassett et al., 2012; He et al., 2009b;
Lynall et al., 2010; Meunier et al., 2009; Sanz-Arigita et al., 2010; Supekar et al., 2008,
2009; Wang et al., 2009b; Zhang et al., 2011). Further processing of the functional volumes
was performed using the Functional Connectivity Toolbox (http://web.mit.edu/swg/
software.html) (Whitfield-Gabrieli and Nieto-Castanon, 2012) as described in our previous
publication (Bruno et al., 2012). First, data were band pass filtered to 0.008 Hz – 0.09 Hz.
Then, the CompCor method was used to reduce physiological and other noise artifacts
(Behzadi et al., 2007). This method involves extracting signal from white matter and
cerebrospinal fluid (CSF) regions using principal component analysis and then regressing
these signals out of the total fMRI signal. The individual motion parameters (output from
realignment) were also used as covariates. Recently, Schwartz and McGonigle (2011)
compared organization of functional brain networks with and without correction for global
signal and showed that deconvolution of white matter, CSF and motion (without removing
global signal) resulted in the most robust within-subject reproducibility of global network
parameters. In addition, compared to methods that rely on global signal regression, the
CompCor noise reduction method allows for interpretation of anticorrelations as there is no
regression of the global signal (Whitfield-Gabrieli and Nieto-Castanon, 2012). Finally,
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temporal correlations between all possible pairs of regions were computed based on the
corrected fMRI signal resulting in a 90×90 correlation matrix rf for each participant.

Network construction
SCN was constructed at the group level. A 90 × 90 association matrix Rs was generated by
performing Pearson correlation coefficient between the corrected RGV across subjects
(Bernhardt et al., 2011; Chen et al., 2008, 2011; Fan et al., 2011; He et al., 2007, 2009a;
Hosseini et al., 2012a, 2012b). An alternative measure for inferring connectivity is partial
correlation that attempts to remove the effect of indirect paths (Smith et al., 2011). However,
partial correlation is not suitable for studies with a sample size smaller than the number of
ROIs (Zalesky et al., 2012).

Previous studies have shown that the structural and functional correlation networks are
estimable with tens of subjects and the small-world results are consistent with those obtained
using larger sample size (Bruno et al., 2012; Fan et al., 2011; Hosseini et al., 2012a, 2012b;
van den Heuvel et al., 2009b). However, in order to demonstrate the reproducibility of the
results with larger sample size, we combined the current data with the prospective resting
state and structural data of the same set of subjects (scanned approximately six weeks after
the first acquisition). Half of the subjects underwent an active online cognitive training
during this period. Since we are comparing the SCN and RSN networks for the same
subjects, combining the longitudinal data is helpful as confirmatory analysis. However, the
correlation results may have been slightly inflated by the use of longitudinal data. Therefore
these results are provided as supplementary to our main analysis. To test the reproducibility
of the results, we performed an additional analysis and compared the similarity indices for
networks constructed at each time point, separately. To this purpose, the same similarity
analyses were performed on networks constructed from the second time point data. Then,
Spearman correlation was used to examine the correlation between similarity indices
(obtained at the same range of network densities) across time points.

Unlike SCNs that are constructed at the group-level, RSNs are computed at the individual-
level. In order to directly compare the SCN and RSNs, the individual correlation matrices
obtained from functional connectivity analysis (rf) were first converted to z-score matrices
using Fisher’s r-to-z transformation. We then averaged the z-scores across individuals to
obtain a group-level z-score matrix Zf. Finally we converted the mean z-scores back to
correlation values to obtain a group-level functional association matrix Rf. The resultant
group-level association matrices (Rs and Rf) were used for further constructing SCN and
RSN.

The obtained association matrices comprise a set of correlation values ranging from −1 to 1.
The majority of previous studies involving structural and functional correlation networks
only considered positive correlations as a measure of connectivity (Achard et al., 2006;
Bernhardt et al., 2011; Bruno et al., 2012; Fan et al., 2011; He et al., 2007, 2008; Hosseini et
al., 2012a, 2012b; Wang et al., 2009a). In this study, we constructed the networks for both
positive and negative correlation ranges separately. Specifically, the diagonal elements of
the Rs and Rf were first set to zero. Then, to obtain networks of positive correlations (Rs-pos
and Rf-pos), all the negative correlations in Rs and Rf were set to zero. Conversely, to obtain
negative correlation networks (Rs-pos and Rf-pos), only negative correlations in Rs and Rf
were retained and the absolute values of the remaining negative weights were considered for
network construction. All the comparisons between SCN and RSN were performed for
positive (SCNpos vs. RSNpos) and negative (SCNneg vs. RSNneg) correlations separately.
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Thresholding procedure
As noted above, using an absolute threshold can limit network comparisons. Therefore, we
derived binary adjacency matrices As-pos, As-neg, Af-pos, Af-neg by thresholding the
association matrices Rs-pos, Rs-neg, Rf-pos, Rf-neg at a range of network densities, respectively
(Bernhardt et al., 2011; Bruno et al., 2012; Fan et al., 2011; He et al., 2008; Hosseini et al.,
2012b). The obtained adjacency matrices represented binary undirected graphs Gs-pos,
Gs-neg, Gf-pos, Gf-neg in which regions i and j were connected if gij was equal to 1. The
obtained graphs had a network degree of E equal to the number of edges, and a network
density (cost) of D =E / [N × (N−1) / 2] representing the ratio of existing edges relative to all
possible edges. We thresholded the networks across a range of network densities (0.01: 0.02:
Dmax). The upper bound Dmax was determined as min [max (Ds), max (Df)], where Ds and
Df represent the density of the thresholded structural and functional networks, respectively.
Dmax was 0.65 (0.14) for comparing positive (negative) connections.

Small-world parameters
The small-worldness of a complex network, as described in the introduction, has two key
metrics: the clustering coefficient C and the characteristic path length L of the network. The
clustering coefficient of a node is a measure of the number of edges that exist between its
nearest neighbors. The clustering coefficient of a network is thus the average of clustering
coefficients across nodes and is a measure of network segregation. The characteristic path
length of a network is the average shortest path length between all pairs of nodes in the
network and is the most commonly used measure of network integration (Rubinov and
Sporns, 2010). To evaluate the topology of the brain network, these parameters must be
compared to the corresponding mean values of a benchmark random graph (Maslov and
Sneppen, 2002; Milo et al., 2002). The benchmarking random networks were constructed
using a rewiring algorithm that preserves the topology of the graphs; i.e. random graphs with
the same number of nodes, total edges and degree distribution as the network of interest
(Milo et al., 2002; Maslov and Sneppen, 2002; Hosseini et al., 2012b). The small-worldness
index of a network is obtained as SW = [C / Crand] / [L / Lrand] where Crand and Lrand are the
mean clustering coefficient and the characteristic path length of the m = 20 random
networks (Bassett and Bullmore, 2006; Hosseini et al., 2012b). In a small-world network,
the clustering coefficient is significantly higher than that of random networks (C / Crand ratio
greater than 1) while the characteristic path length is comparable to random networks (L /
Lrand ratio close to 1).

The small-world parameters were quantified using the code provided in the Brain
Connectivity Toolbox (BCT) described by Rubinov 2010 (Rubinov and Sporns, 2010). The
network and statistical analyses were performed using our in-house software, Graph
Analysis Toolbox (GAT) (Hosseini et al., 2012b).

Analyzing similarities between SCN and RSN
We employed two metrics in order to assess the similarities between the thresholded binary
networks. The first metric examined the ratio of overlapping connections (and
disconnections) between networks to the number of all possible connections: Shd =
Noverlapping / Ntotal. Shd is 1 when the two networks are the same and is 0 when they are
completely opposite (mirrored). While Shd gives an accurate estimate of similarity between
networks, it overestimates the similarity if the networks under consideration are sparse (the
number of ones and zeros are significantly different). To overcome this problem, a
normalization procedure was proposed to correct for large baseline correlations in sparse
binary networks (Costa et al., 2007; van Wijk et al., 2010). This normalized metric assesses
the similarity by taking the geometrical average between the ratios of overlapping
connections and overlapping disconnections (zeros). For two binary network0s Gs and Gf,
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the similarity is computed as  where O1=(number of common connections
between Gs and Gf) / (number of total connections in Gs) and O0=(number of common
disconnections between Gs and Gf) / (number of total disconnections in Gf). Snorm equals 1
if two networks are similar and will be zero if they do not have any common connections (or
disconnections). We mainly focused on Snorm results as this metric is more appropriate for
comparing similarities between networks, regardless of the degree of sparsity.

In order to test the statistical significance of differences in similarity between structural and
resting-state networks (Gs vs. Gf), the following procedure was performed: 1000 bootstrap
networks were generated for Gs and Gf by random sampling of subjects with replacement
and then computing the connectivity matrices separately (BSs, BSf). The same bootstrap
sampling was used for both Gs and Gf. The similarity measures Shd and Snorm between BSs
and BSf networks were quantified. 1000 random networks (SIMs and SIMf) were generated
with the same density as the bootstrap networks. A 2-sample t-test was used to examine the
significance of differences in similarity scores obtained from comparing BSs and BSf and
those from comparing SIMs and SIMf. This procedure was performed separately for positive
(Gs-pos vs. Gf-pos) and negative (Gs-neg vs. Gf-neg) correlation networks.

Since comparing the networks at different densities results in multiple comparisons, a
summary measure using functional data analysis (FDA) was quantified (Bassett et al., 2012;
Hosseini et al., 2012b; Ramsay and Silverman, 2005). In FDA, the similarity score (s) is
treated as a function of network density (d) (s = f(d)). The summation of s-values is then
calculated at a range of density for BSs and BSf as well as for SIMs and SIMf networks.
Then a 2-sample t-test is used to examine the significance of difference between the
observed summary metric of similarity, as described above. We used FDA instead of area-
under the curve (AUC) analysis since it is more sensitive to differences in the shape of the
curves rather than their mean.

Analyzing similarities between small-world parameters of SCN and RSN
In order to test the statistical significance of the differences in small-world parameters
between SCN and RSN, we used the 1000 bootstrap networks generated for structural and
resting state networks, described in the previous section. We then computed the small-world
parameters (C, L, and SW) for each of these bootstrap networks. A paired t-test was then
used to test the significance of differences in small-world parameters between structural and
resting-state bootstrap networks. Similar to the comparison of similarity scores, an FDA
analysis was performed to compare the summary metrics of small-world parameters at a
range of network densities.

Analyzing similarities between regional network properties of SCN and RSN
We performed Spearman’s rank correlation to investigate network similarities in terms of
regional topology. Network similarities in FDA of regional clustering coefficient and
regional degree were investigated. In addition, we compared the distribution of hubs in SCN
and RSN. Hubs are crucial components for efficient communication in a network. They are
considered important regulators of information flow and play a key role in network
resilience to insult (Rubinov and Sporns, 2010). A node is considered a hub if its regional
betweenness centrality is 1 SD higher than the mean network betweenness (Bernhardt et al.,
2011). Nodal betweenness centrality is defined as the fraction of all shortest paths in the
network that pass through a given node and is used to detect important anatomical/functional
connections in the network (Rubinov and Sporns, 2010). Hub analysis was also performed
on the summary metric (FDA) of nodal betweenness.
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We also investigated the pattern of distribution of regional connectivity (degree distribution)
in SCN and RSN. Degree distribution reveals specific characteristics of the network and its
resilience to random failure and targeted attacks (Achard et al., 2006; Albert et al., 2000; He
et al., 2007). Degree distribution of small-world brain networks has been shown to follow an
exponentially truncated power-law distribution (Bassett and Bullmore, 2006; He et al., 2007;
Iturria-Medina et al., 2008), formulated as P(d) ~ [d (e−1) * exp(−d / dc)]. P(d) is the
probability of network regional degree (d), dc is the cut-off degree above which there is an
exponential decay in probability of hubs and e is the exponent, and indicates a scaling
regimen, followed by an exponential decay in the probability of nodes with nodal degree
greater than a cutoff value of dc. We computed the degree distribution for networks
thresholded at the minimum density at which both SCN and RSN were not fragmented (dmin
= 0.12).

RESULTS
Similarities between SCN and RSN

Positive correlations—Similarities between SCNpos and RSNpos as a function of
network density are shown in Fig. 2 and Fig. S1. As expected, at lower densities where the
networks were sparse, Shd gave a higher degree of similarity between SCN and RSN (close
to 1) (Fig. S1. A) compared with Snorm (around 0.6) (Fig. 2. A). However, at medium
network densities, both similarity metrics showed 60% similarity between networks. Both
similarity metrics revealed a significant similarity between SCNpos and RSNpos (at all
densities) when compared with the similarity of randomly simulated networks (p < 10−6).
Additionally, the FDA analysis showed that both Shd and Snorm was significantly greater for
Gs-pos vs. Gf-pos comparison compared with corresponding random networks comparison (p
< 10−6). The localization of connections/disconnections that were similar or different
between SCNpos and RSNpos is shown in Fig. 3. For demonstration purposes, an illustration
of similarity indices across regions is given in Fig. 3. C. A side-by-side comparison of
connectivity patterns for a number of seed regions that showed high similarity between
networks is also shown in Fig. 4.

Negative correlations—Similarities between SCNneg and RSNneg as a function of
network density are shown in Fig. 2 and Fig. S1. At lower densities where the networks
were sparse, Shd gave a higher degree of similarity between SCNneg and RSNneg (close to 1)
(Fig. S1. B) compared with Snorm (around 0.1) (Fig. 2. B). Maximum similarity between
SCNneg and RSNneg as quantified by Snorm was 40% at 13% density. Both similarity metrics
revealed a significant similarity between SCNneg and RSNneg when compared with
similarity of randomly simulated networks at a range of network densities (Density > 0.05, p
< 0.05). Additionally, the FDA analysis showed that both Shd and Snorm was significantly
greater for Gs-pos vs. Gf-pos comparison compared with corresponding random networks
comparison (p < 10−6).

The results of similarity analysis using the combined data, as well as for the second time
point data, were consistent with the above observations for positive and negative networks
(Fig. S3 and S4). In addition, there was a significant correlation between the obtained
similarity indices across the two time points (p < 0.0001). For SCNpos vs. RSNpos
comparison, the correlation between similarities across time points was 0.99 for Shd and
0.89 for Snorm. For SCNneg vs. RSNneg comparison, the correlation between similarities
across time points was 0.99 for both Shd and Snorm.
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Similarities between small-world parameters of SCN and RSN
Positive correlations—Small-world parameters of SCNpos and RSNpos as a function of
network density are shown in Fig. 5. The normalized clustering coefficient and characteristic
path length were significantly greater in RSNpos than in SCNpos resulting in a significantly
greater small-world index in RSNpos across a range of network densities (all p’s < 10−6).
The FDA analysis confirmed these results and showed significantly greater small-world
parameters in RSNpos than in SCNpos (p < 10−6).

Negative correlations—Small-world parameters of SCNneg and RSNneg as a function of
network density are shown in Fig. S2. The results showed that negative correlation networks
do not follow small-world architecture across the range of densities (SW < 1). As for
positive correlations, the path length was significantly greater in RSNneg than in SCNneg at a
range of densities (all p’s < 10−6). Conversely, normalized clustering and small-world index
was significantly greater in SCNneg than in RSNneg (Density > 0.05, all p’s < 10−6). The
FDA analysis confirmed these results and showed significantly smaller path length and
significantly greater clustering and small-world index in RSNneg than in SCNneg (p < 10−6).

Similarities between regional network properties of SCN and RSN
Since we did not observe small-world architecture in SCNneg and RSNneg, we only
investigated the similarities in regional topological parameters between SCNpos and RSNpos.
While regional degree of SCNpos and RSNpos was significantly correlated (r = 0.332, p =
0.001) (Fig. 6), correlation in regional clustering coefficient between networks was not
significant (r = 0.034, p = 0.75). We also quantified the network hubs for SCNpos and
RSNpos (Table 2). Compared to SCNpos, RSNpos showed a larger number of hubs (fourteen
vs. nine hubs).

Degree distribution in both SCNpos and RSNpos networks followed an exponentially
truncated power-law distribution (Fig. 7). The exponent estimate (e) was 1.36 for SCNpos
and 1.57 for RSNpos. The cut-off degree (dc) was 1.87 for SCNpos and 1.65 for RSNpos. The
goodness-of-fit value (R-square) was 0.99 for SCNpos and 0.92 for RSNpos (R-square value
close to 1 represents a perfect fit).

DISCUSSION
In this report, we investigated the similarities between structural correlation networks,
derived from correlations of regional gray matter volume, and resting-state networks. While
the results showed a significant similarity between SCN and RSN constructed from positive
correlations (60% similarity), the small-world properties were significantly different
between these networks. Specifically, the small-world index of resting-state network was
higher than that of structural correlation networks. Conversely, we observed very low
similarity between structural correlation and resting-state networks extracted from negative
correlations (10–40% similarity). The organization of these negative networks was
randomized and did not show small-world architecture.

Connectivity in SCN vs. RSN
—We compared the connectivity between SCN and RSN by investigating the degree of
overlapping connections between networks. Shd and Snorm formulations were used for this
purpose.

Positive correlations: The similarity index Snorm revealed 60% similarity between SCNpos
and RSNpos that was consistent across network densities; suggesting that the normalized
similarity index accounts for biases in sparsity threshold. The observed similarity was
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significant compared with similarity of randomly simulated networks. Similar results were
observed for the combined data (72 subjects). This provides some confirmation of our
analysis in a larger sample although the correlation may have been slightly inflated by the
use of longitudinal data within the same subjects. The results confirmed the recent report
that showed a significant correlation between thickness SCN and RSN (Alexander-Bloch et
al., 2013). In addition, we found a significant agreement between similarities obtained
across two different time points for the same set of subjects that further confirms our
findings.

The observed 60% similarity between SCNpos and RSNpos suggests a certain degree of
convergence between volumetric correlations and resting-state connectivity that is higher
than expected by chance. A portion of this similarity is likely driven by anatomical
connectivity underlying both structural correlation and resting-state networks. There is a
body of evidence that suggest resting-state connectivity reflects underlying anatomical
connectivity architecture of the brain. Van der Heuvel and colleagues (2009a) reported that
the majority of commonly found resting-state subnetworks (e.g. default-mode network,
visual and motor networks, frontoparietal networks) were interconnected by known
anatomical white matter tracts. Skudlarski and colleagues (2008) found a significant
agreement between resting-state networks and DTI-based anatomical networks. They
reported that agreement was high, specifically in regions with strong overall connectivity.
Other studies have also shown positive correlation between anatomical connectivity, derived
from in-vivo diffusion weighted imaging, and resting-state connectivity (Greicius et al.,
2009; Honey et al., 2009).

Additionally, axonally connected regions are believed to be influenced by common
developmental and trophic effects (Bernhardt et al., 2011; Cheverud, 1984; Wright et al.,
1999; Zhang & Sejnowski, 2000). Lerch and colleagues (2006) reported consistent
connectivity patterns seeding from inferior frontal, opercular part between cortical thickness
correlation and DTI tractography networks (Lerch et al., 2006). Other studies also reported a
degree of similarity between morphometric correlations and known anatomical fiber tracts
(Bernhardt et al., 2008; Gong et al., 2012; He et al., 2007). Specifically, Gong and
colleagues (2012) have recently investigated the similarity between cortical thickness
correlations and DTI-derived anatomical connectivity and reported 40% similarity between
these networks. Finally, morphometric associations are also influenced by neurological
disorders that involve alterations in anatomical connectivity (Bullmore et al., 1998;
Mitelman et al., 2005a). For example, schizophrenia is associated with cortical thinning in
frontal-temporal regions (Kuperberg et al., 2003) that further affects the morphometric
correlations in these regions (Mitelman et al., 2005b). Consistent with these reports,
Alexander-Bloch and colleagues (2013) reported a significant agreement between thickness
SCN and maturational correlation networks, constructed from correlation of rate of changes
in cortical thickness over 6–12 years of development. They suggested that synchronized
pruning of anatomically connected regions during adolescence might drive population
covariance in cortical thickness.

Another source of similarity between structural correlation and resting-state networks might
be driven by functional connectivity mediated by indirect anatomical connections. RSN
connectivity has been demonstrated between regions that have little or no anatomical
connectivity [see (Damoiseaux et al., 2009) for a review]. These functional connections
appear to be mediated by indirect anatomical connections (through a third region) or by
simultaneous elicitation of activities in two regions with no anatomical connections (Honey
et al., 2009; Rykhlevskaia et al., 2008). These connections seem to reflect a history of
coactivation between brain regions and experience-related functional plasticity. For
example, musicians showed a significant increase in resting-state functional connectivity in
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the motor and multi-sensory cortices compared with non-musicians, suggesting an
experience-related functional plasticity in perceptual and motor networks resulting from
long-term synchronization of these regions by musical training (Luo et al., 2012).

Morphometric correlations might also arise from functional specialization of certain brain
regions through experience-related plasticity. As noted above, previous studies have shown
coordinated changes in gray matter structure in various brain regions in response to
professional experience (Gaser and Schlaug, 2003a, 2003b; Maguire et al., 2000, 2006).
Additionally, several studies have shown changes in cortical morphology in response to
short-term intensive training on a specific task, suggesting a possible functional significance
of the structural changes (Bezzola et al., 2011; Boyke et al., 2008; Engvig et al., 2010; Hyde
et al., 2009a, 2009b). A significant increase in gray matter volume has been observed in
novice golf players after 40 hours of golf training in task-relevant cortical network
comprising sensorimotor and occipital-parietal regions (Bezzola et al., 2011). Changes in
brain deformations in motor regions were also observed after 15 months of musical training
in children (Hyde et al., 2009b). Changes in regional gray matter volumes have been
observed following cognitive training in working memory and processing speed (Takeuchi
et al., 2011a, 2011b). These experience/training-related changes in gray matter structure
might be explained by several cellular mechanisms including axon sprouting, dendritic
branching and synaptogenesis, neurogenesis and glial changes (Zatorre et al., 2012).

Our data also suggest that 40% of the connectivity pattern observed in structural correlation
networks might be influenced by factors other than resting-state connectivity. First, resting-
state connectivity does not reflect the entire set of anatomical connections that exist between
brain regions. Second, a large portion of the variations in regional morphology is influenced
by genetic factors (Bartley et al., 1997; Eyler et al., 2011b; Joyner et al., 2009; Thompson et
al., 2001, 2002). Twin studies have consistently shown a significant similarity between
regional brain morphology and gyrification compared to unrelated pairs (Eyler et al., 2011a;
Hasan et al., 2011; Joshi et al., 2011), suggesting the significant contribution of genetic
factors on brain morphology. Third, while negative resting-state connectivity represents a
“division of labor” between networks with seemingly opposite (or competitive) functions
(e.g. anti-correlation between task-positive networks and default-mode network) (Uddin et
al., 2009), such competitive relationships might also lead to positive associations in the
corresponding structure. We speculate that a portion of positive correlations in SCN might
overlap with negative correlations in RSN.

Finally, inherent differences between the methods of constructing correlation networks
might also contribute to the observed differences between SCN and RSN. Specifically,
functional networks are derived from correlations between time-series (216 time points) at
the individual level and then summarizing the networks across group. However, structural
correlation networks are defined at the group level by computing the coordinated variations
in regional volume across individuals. We speculate that the inherent differences in network
construction methods might affect the number of transitive connections in the networks
(Zalesky et al., 2012). Future studies with larger sample sizes might explore this issue by
investigating differences between RSN and SCN extracted from correlations with those
constructed from partial correlations.

In addition, localization of similarity indices showed a high similarity between homologous
inter-hemispheric and intra-hemisphere regions (Fig. 3). Connectivity pattern in the
occipital, prefrontal and parietal regions showed the highest similarity. Examination of
similarities for some of the known networks also showed a certain degree of correspondence
between RSN and SCN (Fig. 4). Specifically, the left SMG network in SCN included the
majority of the language network connections (75% similarity with SMG network in RSN)
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including the left inferior frontal connection and the superior temporal connection. The
MFG network contained most of the executive network connections (69% similarity with
MFG network in RSN) including the frontoparietal connections. The PCC network also
included a certain number of dorsal default mode network connections (66% similarity with
PCC network in RSN).

Negative correlations: The similarity index Snorm revealed a maximum similarity of 40%
between SCNneg and RSNneg at network density of 13%. The observed similarity was
significant compared with similarity of randomly simulated networks.

The observed similarity between SCNneg and RSNneg was lower than similarity of SCNpos
and RSNpos. As discussed earlier, while negative correlations between two regions in
resting-state network might reflect competitive functions of those regions, the etiology of
negative correlations in structural correlation networks is not clear. Previous studies
speculated that negative correlations in structural correlation networks might reflect
functional connectivity between antagonistic areas (Gong et al., 2012). Our data
corroborates this idea and further suggests that a portion of negative correlations in these
networks is associated with functional connectivity of anticorrelated regions. A large portion
of the connectivity pattern in SCNneg cannot be explained by anti-correlations in resting-
state network. Further research is needed to further clarify biological meaning of negative
correlations in structural correlation networks.

Network organization in SCN vs. RSN
Previous studies have demonstrated that the architecture of SCNs and RSNs is not random
and follow an optimized organization known as small-world (Bassett et al., 2008, 2012; He
et al., 2009; Fan et al., 2011; Hosseini et al., 2012a, 2012b; Wu et al., 2012). We compared
the organizational properties of SCN and RSN at global level by directly comparing their
small-world characteristics. In addition, we investigated the similarities and differences
between organization of SCN and RSN in regional level.

Global network properties
Positive correlations: As was expected, both SCNpos and RSNpos followed small-world
organization (SW > 1) across a range of densities. The observed small-world architecture is
in line with previous studies that have consistently reported small-world architecture in
structural correlation and resting-state networks (extracted from positive correlations) in
healthy individuals (Bassett et al., 2008, 2012; He et al., 2009a; Fan et al., 2011; Hosseini et
al., 2012a, 2012b; Wu et al., 2012).

While both SCNpos and RSNpos followed small-world architecture, the small-world
parameters were significantly different between networks. This is not surprising considering
40% difference in the pattern of connectivity between networks. Specifically, SCNpos
showed smaller clustering and path length compared with RSNpos. The observed differences
in clustering and path length between SCN and RSN corroborate the previous report
(Alexander-Bloch et al., 2013) and further expand their findings for cortical/subcortical
volume correlation networks as well as across a large range of network densities. In
addition, we demonstrated a significantly smaller small-worldness in SCNpos than in RSNpos
across a large range of densities. Our data suggest that the network organization in SCNpos
is more random than in RSNpos. It is intuitively plausible that RSNpos follows a more
efficient architecture since functional connections require rapid transitions and network
reconfigurations in response to sensory inputs and cognitive tasks. Conversely, structural
correlations are usually affected by slow processes including aging, disease progression and
experience-dependent plasticity (Bullmore and Sporns, 2009).
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Negative correlations: SCNneg and RSNneg did not show a small-world architecture. While
the path length in both networks was close to the path length of null networks, the clustering
coefficient in both networks was smaller. These data suggest that networks constructed from
negative correlations might not be biologically meaningful and further support previous
studies that only exploited positive correlations for constructing correlation networks.

Regional network properties—Our results showed a significant correlation in regional
degree between SCNpos and RSNpos. The degree of a node represents the amount of
interaction each region has with the rest of the network. The results suggest that the pattern
of variation in regional interaction across regions corresponds between SCNpos and RSNpos.
We also investigated the distribution of hubs in both networks. For RSNpos, hubs were
identified mainly in frontal, temporal and parietal cortices, consistent with previous
functional brain network studies (Buckner et al., 2009; Cole et al., 2010). SCNpos hubs were
mainly located in frontal, temporal, parietal and insular cortices. These regions were
previously identified as hub regions in structural brain networks (Bassett et al., 2008;
Hagmann et al., 2008; He et al., 2007; Hosseini et al., 2012a).

However, we only found two hubs (inferior frontal and inferior temporal regions) that were
common between SCNpos and RSNpos. We found a larger number of hubs in RSNpos
compared with SCNpos, consistent with the observed higher global small-worldness in
RSNpos. Since hubs are important regulators of information in the network, a larger number
of hubs would allow functional networks to accommodate rapid transitions and network
reconfigurations in response to sensory inputs and cognitive tasks.

In addition, the degree distribution of both networks followed an exponentially truncated
power law distribution, suggesting a network with many regions having a small number of
connections and a few regions having a large number of connections (hubs). The cutoff
degree at dmin = 0.12 was approximately 1.5 for both the networks, consistent with previous
reports (He et al., 2007). The results are in line with the observed correlation in regional
degree between SCNpos and RSNpos.

CONCLUSIONS
Together, our data suggest that there is a certain degree of similarity between structural
correlation and resting-state networks that is higher than expected by chance. This similarity
might be explained by anatomical connectivity and experience-related functional
connectivity underlying both structural correlation and resting-state networks. However, our
data suggest that a portion of the connectivity pattern in SCN does not match the
connectivity pattern in RSN, suggesting that there are other factors (e.g. genetic factors)
contributing to SCN connectivity. This difference in connectivity pattern results in networks
with significantly different small-world parameters. Thus, while structural correlation
networks are significantly similar to resting-state networks, they cannot be regarded as a
substitute for these networks. Future studies need to clarify alternative factors (other than
resting-state connectivity) that may additionally contribute to SCN connectivity. Structural
correlation networks (using positive correlations) appears to be very useful in investigating
alterations of brain network topology associated with brain disorders (Bassett et al., 2008;
Bernhardt et al., 2011; He et al., 2008, 2009a; Raj et al., 2010; Zhou et al., 2011). However,
it should be noted that a portion of the observed alterations might be explained by factors
other than those reflecting resting-state connectivity. The combination of both structural and
resting-state network analyses may yield interesting, complementary insights regarding
brain-based disorders.
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Highlights

• More than 60% similarity between SCN and RSN networks.

• Significant difference in small-world parameters between SCN and RSN.

• Significant correlation in regional degree between SCN and RSN.
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Figure 1. Network comparison
An illustrative example on how Shd and Snorm differ in measuring similarities between
sparse and dense networks. Top panel shows two example networks at density of 10%.
There are two overlapping and two divergent connections between networks (out of four
connections). Since the networks are sparse, Shd gives 89% similarity between networks
(most of which arise from shared disconnections) while Snorm only gives 68% similarity.
Bottom panel shows two networks at 50% density. These networks were constructed by
adding additional 14 overlapping connections to the top networks. Thus, they have 16
overlapping and two divergent connections (out of 18 connections). Adding 14 overlapping
connections to the networks does not change Shd output but increases the Snorm output.
Since these networks are not sparse, both Shd and Snorm gives a similar result for similarity.
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Figure 2. Similarities between SCN and RSN bootstrap networks compared with simulated
networks as a function of network density
A) Similarity based on Snorm between SCNpos and RSNpos bootstrap networks (BS) (red
circles) compared with similarity between equivalent simulated networks (SIM) (black dots)
across the density range (0.01: 0.02: 0.65). B) Similarity based on Snorm between SCNneg
and RSNneg bootstrap networks (BS) (red circles) compared with similarity between
equivalent simulated networks (SIM) (black dots) across the density range (0.01: 0.02:
0.14). Dashed lines represent 2SD deviations from the mean similarity. Although the
distributions of BS and SIM networks are overlapped for SCNneg and RSNneg comparison,
they are significantly different (p < 0.05).
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Figure 3. Similarities and differences in connectivity between SCNpos and RSNpos
A) A similarity map indicating the connections that are similar (red) or different (black)
between SCNpos and RSNpos networks, thresholded at an arbitrary density of 33%.
Overlapping disconnections are shown in dark blue. For clarity, only regions in the left
hemisphere are labeled and the right hemisphere regions are shown immediately below/ to
the right of their corresponding left hemisphere regions and left unlabeled. B) The mapping
of overlapping connections on brain for left (L) and right (R) hemispheres. C) The
localization of similarity indices across brain regions. Connectivity pattern in the occipital,
prefrontal and parietal regions showed the highest similarity.
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Figure 4. Comparison of connectivity patterns for different seed regions
The patterns of similarity for three seed regions that showed high similarity between
networks are illustrated. The red (yellow) lines represent connections that are common
(different) between RSN and SCN. The similarity index for the left MFG, left SMG and
right PCC networks was 69%, 75% and 66%, respectively.
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Figure 5. Changes in small-world properties of bootstrap networks for SCNpos and RSNpos as a
function of network density
A) normalized path length, B) normalized clustering and C) small-world index for SCNpos
bootstrap networks (BS-S) (black circles) and RSNpos bootstrap networks (BS-F) (blue
squares) across the density range (0.01: 0.02: 0.65). Both networks follow a small-world
organization. However, the estimated small-world parameters were significantly different
between networks.

Hosseini and Kesler Page 26

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Relationship between regional degree in SCNpos and RSNpos
A significant Spearman rank correlation was found between regional degree in SCNpos and
RSNpos. Black circles represent brain regions and the red line represents the linear
relationship between regional degree in SCNpos and RSNpos.
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Figure 7. Degree distributions in SCNneg and RSNneg
The log-log plot of cumulative degree distributions in A) SCNpos and B) RSNpos
thresholded at dmin = 0.12. The solid line indicates the exponentially truncated power-law
curve fitted to the cumulative degree distribution of the networks (black circles). The
estimated exponent was 1.36 for SCNpos and 1.57 for RSNpos, the cut-off degree was 1.87
for SCNpos and 1.65 for RSNpos. These parameters resulted in R-square values of 0.99 and
0.92 for SCNpos and RSNpos, respectively.
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Table 1

Demographics of the participants

N 36

Age (years) 28.4 (4.65)

Education (years) 17 (2.72)

Gender 19F, 17M

Ethnicity 3A, 5B, 1PI, 27W

F: female; M: males; A: Asian; B: Black; PI: Pacific Islander; W: White
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Table 2

Distribution of hubs in SCNpos and RSNpos

SCNpos RSNpos

L Inferior frontal, orbital part R Inferior frontal, opercular part

R Superior frontal, orbital part L Inferior frontal, orbital part

B Insula B Fusiform

L Lingual gyrus R Postcentral

R Parahippocampal gyrus L Rolandinc operculum

B Precuneus B Inferior temporal gyrus

R Inferior temporal gyrus B Middle temporal gyrus

B Superior temporal pole

B Superior temporal gyrus

R: right, L: left, B: bilateral. Regions highlighted bold indicate hub regions that are common between networks.
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