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Abstract

Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical
consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis)
ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven
widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems.
Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP
stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground
N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N
inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N
concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium
(NH4

+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil
inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term
changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results
suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall
quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However,
continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects
of mountain pine beetle outbreaks.
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Introduction

Whitebark pine (Pinus albicaulis; hereafter referred to as WbP) –

a coniferous tree species common in western North America – is

considered a keystone species in subalpine ecosystems [1], [2].

Recently, WbP has been the subject of both considerable research

and media attention because this important species is facing a

number of threats to its existence. WbP has already experienced

significant population declines across its distribution [3], and if

widespread mortality of WbP continues, the species is in danger of

becoming functionally extinct [4]. Among the most serious threats

to WbP is the current mountain pine beetle (Dendroctonus ponderosae,

MPB) outbreak, unprecedented in terms of its extent, particularly

in WbP ecosystems [5]. Unfortunately, it is still unclear how this

disturbance may affect many ecosystem processes – including

nutrient cycling – in WbP dominated ecosystems. Nevertheless,

understanding the potential effects on biogeochemistry are

important, because nutrient cycling could play a critical role in

determining the trajectory of recovery and regeneration of these

ecologically important ecosystems following disturbance [6].

Changes in biogeochemical cycling following ecological distur-

bances have been documented in a wide range of ecosystems [7–

10], and nitrogen (N) cycling, in particular, has been shown to

change dramatically and rapidly following disturbance [11–13].

Such changes can be ecologically significant for several reasons.

For example, N often limits ecosystem processes, particularly in

high elevation temperate forests [14]. Thus changes in N pools

and fluxes may impact a range of ecosystem characteristics [15–

17]. Because N is relatively mobile and can be easily lost from

ecosystems (e.g., via leaching; [18–20]), disturbances that mobilize

N can further deplete the availability of an already potentially

limiting nutrient. In general, disturbance-induced forest mortality

can initiate rapid increases in forest floor N due to both increases

in dead biomass inputs and reduced plant N demand and uptake.

This N can then be quickly lost, as large, episodic inputs of organic

N are typically followed by increases in N mineralization and

subsequent N losses through NO3
2 leaching and denitrification

[10]. However, while some studies have observed significant long-

term shifts in N pools and fluxes following disturbance [18], [21],

[22], other studies have shown that effects can be modest and

short-lived [23], [24], [25]. This suggests that the magnitude and
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longevity of biogeochemical responses to disturbances such as

insect-induced plant mortality are dependent upon characteristics

of the affected ecosystem and/or the outbreak itself.

The mountain pine beetle is a phloem-feeding insect that

typically undergoes outbreaks in pine forests of the western U.S.

and Canada over 30–40 year cycles, and some of the largest WbP

populations in the Greater Yellowstone Ecosystem experienced a

320-fold increase in the number of MPB-infested trees between

1999–2007 [4], [26]. During an attack, beetles deposit their eggs

in the phloem of a host pine tree where the larvae develop and

feed on the phloem [27]. As the larvae feed, they effectively girdle

the tree, often leading to mortality within two weeks of a successful

attack [5]. For approximately five years following attack, infested

stands undergo a number of changes that have the potential to

influence biogeochemical cycling. For example, shortly following

beetle attack, nutrient and water uptake by host trees ceases,

potentially altering soil moisture and soil nutrient pools [13], [28],

[29]. Within two years of attack, trees enter the ‘‘red’’ stage of

beetle infestation, when needles typically turn red and begin falling

to the ground. In other host tree species where litterfall nutrient

content has been analyzed, attacked tree litterfall typically has

higher N concentrations than normally senescing litterfall, because

the attacked trees do not resorb nutrients from their needles before

they fall [13], [20], [30]. This large, relatively rapid pulse of

needlefall during the red stage provides substantial inputs of

carbon (C) and N to the forest floor [29] several years after attack.

Five years after attack, trees have typically lost all their needles to

the forest floor and reach the ‘‘gray’’ stage.

We took advantage of an ongoing ‘‘natural experiment’’

initiated by the current beetle outbreak to investigate the effects

of tree mortality as a result of beetle attack on N cycling in a WbP

pine ecosystem. We measured a suite of N cycling metrics under

WbP trees occupying three different stages of beetle attack in the

Pioneer Mountains of southwestern Montana: ‘green’ (unattacked)

stage, ‘red’ stage, and ‘gray’ stage. Given observed changes in N

cycling following beetle disturbance in other types of forest

ecosystems [13], [29], [30], we began with several hypotheses.

First, we hypothesized that litterfall mass would be significantly

higher under red stage trees compared to green and gray stage

trees, and that litterfall C:N ratios would be lower under infested

trees (reflecting minimal foliar nutrient resorption in attacked

trees; [29], [30]). Second, we hypothesized that soil inorganic

(NH4
++NO3

2) and organic N concentrations would be higher

under red and gray stage trees compared to green trees. An

increase in available soil N could have many possible fates,

including microbial immobilization, uptake by understory plants,

and/or conversion of NH4
+ to NO3

2 with the potential for loss

from the ecosystem through leaching [18], [21], [22], [28]. Thus,

in response to increased N inputs under attacked trees, we

hypothesized increases in soil N mineralization and nitrification

rates and understory plant foliar N concentrations.

Methods

2.1. Study Site
The study was conducted at Vipond Park (45.697u N,

2112.910u W) in the Pioneer Mountains in the Beaverhead-

Deerlodge National Forest of southwestern Montana, USA (Fig. 1).

All necessary field permits were obtained from the Beaverhead-

Deer Lodge National Forest. The site elevation is 2500 m and

average temperatures in the region range from 29uC in January

to 13uC in July (SNOTEL site 656, 2530 m, 1979–2009 average).

Mean annual precipitation is approximately 770 mm falling

mostly as snow (SNOTEL site 656, 2530 m 1979–2009 average),

and snow covers the ground for approximately 8 months per year.

Soils in the area consist of Typic calcicryepts (Inceptisols) and

Eutic haplocryalfs (Alfisols) derived from limestone colluvium

parent materials (USDA Natural Resources Conservation Service,

Web Soil Survey; http://websoilsurvey.nrcs.usda.gov/app/

HomePage.htm). The site contains an open canopy forest with

whitebark pine (Pinus albicaulis) as the dominant canopy tree

species co-occurring with occasional lodgepole (Pinus contorta) and

limber pine (Pinus flexilis). The understory is sparse, consisting

primarily of perennial grasses and forbs. The current mountain

pine beetle outbreak at Vipond Park was first observed in 2005

and, at the time of the study, had progressed to the point where

over 70% of the WbP trees are at some stage of beetle infestation

(Diana Six, personal communication).

2.2. Sampling Design
WbP at the study site does not grow in a stand per se, but in

‘‘clumps’’ or ‘‘patches’’ [31] consisting of several individuals. Thus,

to assess the influence of WbP mortality resulting from beetle kill

on N cycling, we established ten 464 m (16 m2) plots centering

around individual ‘‘focal trees’’ [32]. This sampling design allowed

for the isolation of tree-level effects of beetle infestation at a site

that is relatively heterogeneous (as most WbP stands are) in terms

of both canopy cover and beetle attack. Three common stages of

beetle infestation were investigated in this study: 1) ‘green’,

uninfested WbP; 2) ‘red’, recently infested WbP (within 2 years)

with needles that had turned red but had not fallen; and 3) ‘gray’,

WbP trees infested more than two years ago and that lacked

needles. These three categories reflect approximate times since

tree death and depict significant changes in terms of potential N

fluxes. Ten WbP pine individuals at each of the three infestation

stages (30 trees total) were used as focal trees. Focal tree locations

were selected based on where patches of trees of a particular beetle

infestation stage occurred (i.e., focal trees were adjacent to trees of

the same infestation stage/mortality state). Each focal tree was at

least 30 m from every other focal tree. In addition to beetle

infestation stage, focal trees were chosen based on a .15 cm

minimum diameter at breast height (DBH) threshold, as this is

considered to be the cutoff size that is conducive to beetle attack.

In addition, all focal trees were relatively similar in size, ranging

from 15–40 cm DBH.

At each focal tree, soil samples were collected at four different

points between the bole and the crown drip line of the tree, in each

of four cardinal directions (90u apart) starting 0.5 m from the base

of the tree and rotating outward in 0.5 m increments. Soil organic

horizon samples were collected to a depth of approximately 5 cm

at each sampling point. Mineral soil samples were collected

directly below the organic horizon cores to 15 cm depth using an

eight cm diameter hand corer. In cases where rocks obstructed the

mineral cores, samples were taken adjacent to the organic

sampling point after removing the organic material from the

mineral soil surface. During each sampling event, soil samples

from each of the two depths were composited by tree (i.e., for each

three there was an organic and mineral soil horizon sample),

placed in coolers and transported to the laboratory at the

University of Montana for analysis. Within 48 h, soil samples

were sieved (to 2 mm) and subsampled for physical and chemical

analyses including gravimetric moisture content, inorganic N

concentrations and microbial biomass analysis (see below), and the

remaining soil was air-dried for pH and dried at 105uC for total C

and N analyses. Soil pH was determined at 2:1 (water: soil)

(Beckman Instruments, Fullerton, CA).

Focal tree, soil, and understory plant sampling were done in

three phases. First, WbP focal tree foliage, litterfall and standing

Nitrogen Cycle in Whitebark Pine after Disturbance
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litter assessments were performed in July 2010. Soil samples were

collected in September and October 2010; in September, soil

inorganic N concentrations and potential N mineralization rates

were assayed, and in October soil microbial biomass and total soil

C and N concentrations were assessed. Understory cover and

foliar chemistry was determined in July of 2011.

2.3. Foliage and Litter Quantity and Quality
One 0.25 m2 litter trap was placed 0.5 m from the bole of each

focal tree in July 2010. Litter was collected after one month to

obtain an index of relative litterfall among beetle infestation stages

and to perform litter C and nutrient analyses. Following collection,

litter was dried at 70uC for 48 hours and subsequently weighed.

Oven-dried subsamples from each litter trap were ground with a

Wiley Mill (20-mesh screen), weighed into tin capsules (approx-

imately 4 mg sample), and combusted on a CHNS-O elemental

analyzer (CE Instruments EA 1110, Thermo Fisher Scientific,

Waltham, MA, USA) to determine total litter C and N

concentrations (University of Montana Environmental Geochem-

istry Laboratory, University of Montana, Missoula, MT).

Canopy foliage was collected in July 2010 from green and red

stage trees. Samples were taken approximately 2.5 m from the

ground at various points around each tree. All green and red

foliage was collected near the branch tips in order to maintain

consistency with respect to needle cohort. Foliage was analyzed for

total C and N concentration using the above protocols. Standing

litter was sampled from below each focal tree in July 2010. A

0.25 m2 sampling quadrat was placed 0.5 m away from each tree

and all intact standing litter in the quadrat was collected down to

the organic horizon, dried at 70uC for 48 hours and weighed.

Subsamples were ground, weighed into tin capsules (approximate-

ly 4 mg sample), and combusted on a CHNS-O elemental

analyzer (CE Instruments) for total standing litter C and N.

2.4. Understory Vegetation and Foliar N
Understory vegetation under each focal tree was measured in

July 2011. Two 0.25 m2 quadrats were placed 0.5 m from the bole

of each tree oriented toward the north and south. Percent ground

cover for all understory species in each quadrat was assessed using

ocular estimation according to plant functional group (grass, forb,

sedge, shrub, seedling). Foliar samples from two common

understory species, Viola praemorsa (Canary violet) and Oxytropis

sericea (Silky locoweed), were collected from the quadrats and

composited by focal tree and species. Samples were oven-dried at

Figure 1. Map of study site. Location of study site, Vipond Park (filled circle) in the Beaverhead-Deer Lodge National Forest (gray shading) in
southwestern Montana.
doi:10.1371/journal.pone.0065004.g001
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70uC for 48 hours, ground as described above, weighed into tin

capsules (approximately 4 mg sample), and combusted on a Carlo

Erba elemental analyzer for total C and N concentration.

2.5. Soil N Pools
Within 24 hours of collection, soil inorganic N (ammonium

[NH4
+] and nitrate [NO3

2]) was extracted from the September

2010 soil samples. Ten grams of each soil sample were extracted in

2 M KCl for 18 hours, vacuum filtered through 11 mm Whatman

(Grade 1) filter paper, and stored at 4uC until analysis. Extracts

were analyzed colorimetrically for inorganic N (NH4
+ and NO3

2)

using a Synergy 2 Microplate Reader (BioTek, USA) after

Weatherburn [33] and Doane and Horwath [34], for NH4
+ and

NO3
2, respectively.

Soil microbial biomass C and N concentrations were analyzed

using the chloroform fumigation-extraction method [35]. Briefly,

ten grams each of chloroform-fumigated and unfumigated samples

from the October 2010 collection (organic and mineral samples

composited) were extracted with 0.5 M K2SO4 for one hour and

vacuum-filtered through 11 mm Whatman (Grade 1) filter paper.

Organic C and total N in extracts were analyzed using a Shimadzu

TOC-V CPN/TNM-1 analyzer (Shimadzu, Inc, Kyoto, Japan).

Microbial biomass C was determined as the difference between

extractable organic C in fumigated and unfumigated samples

using a proportionality constant (Kc) of 0.45 [36]. Microbial

biomass N was determined the same way except using a correction

factor (Kn) of 0.54 [35]. Finally, composited organic and mineral

soil samples from the October 2010 soil collection were ground,

weighed into tin capsules (approximately 7 mg samples), and

combusted on a CHNS-O elemental analyzer for total soil C and

N determination.

2.6. Soil N Transformations and Fluxes
2.6.1. N mineralization/net nitrification rates. We con-

ducted a 28-day laboratory incubation of soil samples collected in

September 2010 (organic and mineral horizons kept separate) to

assess net N mineralization rates. Ten grams of field moist, sieved

soil were mixed and weighed into plastic vials, covered with

perforated plastic wrap, and incubated in the dark at room

temperature (22uC) for 28 days. Vials were reweighed weekly and

deionized water was added to maintain field moisture of each

sample. After 28 days, samples were analyzed for NH4
+ and NO3

2

as described above (after Weatherburn [33] and Doane and

Horwath [34], respectively.) Net N mineralization rates were

calculated by subtracting the pre-incubation September 2010

inorganic N values from the final (post-incubation) values, and

dividing by the number of incubation days (i.e., 28). Net

nitrification rates were obtained in the same way, using NO3
2

concentrations instead of inorganic N (NH4
++NO3

2) concentra-

tions.

2.6.2. Soil soluble N fluxes. Soil N fluxes were assessed

using ion-exchange resin capsules (Unibest, Inc, Bozeman, MT,

USA). Capsules were deployed in the field twice, first capsules

remained in soil from July – October 2010, and second capsules

remained in soil from October – July 2011, following snowmelt.

Resin capsules were inserted in soil beneath each focal tree to 10–

15 cm depth by carefully creating a slit in the soil with a hand

trowel, inserting the capsule, and carefully removing the blade to

minimize disturbance. Once the capsules were collected from the

field, resin-exchanged inorganic N (NH4
++NO3

2) concentrations

were determined following extraction in 2 M KCl and colorimet-

ric analysis.

2.7. Statistical Analyses
All statistical analyses were conducted using SPSS v. 19 (IBM

SPSS, Inc., Chicago, IL, USA). Analysis of variance (ANOVA)

was used to determine significant differences between the three

beetle infestation stages for litterfall mass, standing litter mass,

litter C and N concentrations, soil C and N pools and fluxes, and

understory vegetation cover and nutrient concentrations. The

assumptions of normality and homogeneity of variances were met

for all data. Repeated measures ANOVA was used to test for the

effects of both time and beetle infestation stage on soil moisture.

The normality, homogeneity of variance, and sphericity assump-

tions were all satisfied. For post-hoc analyses, Tukey’s HSD test was

used to determine differences between stages when ANOVAs were

significant (a= 0.05).

Results

3.1. Soil Abiotic Characteristics
Soil pH did not vary significantly with beetle infestation stage

(Table 1), but soil moisture was higher under both the red and

gray stage trees (P = 0.03 and P = 0.04, respectively) compared

with soil moisture soil under the green stage trees. The repeated

measures ANOVA indicated that sampling time was a significant

factor in explaining differences in soil moisture over the course of

the growing season (P,0.001; Table 1). There was not a

significant time 6 infestation stage interaction. However, infesta-

tion stage alone explained a significant proportion of the variation

in soil moisture among treatments (Table 1).

3.2. Litterfall: Relative Rates and Chemistry
In July 2010, litterfall inputs were more than an order of

magnitude higher under the red stage trees (278.38644.08 g/m2)

than under either green stage or gray trees (1165 g/m2 and

77621 g/m2 respectively; P,0.001 for both). However, July 2010

Table 1. Mean (61 SE) soil characteristics under green, red
and gray stage whitebark pine trees at Vipond Park in
southwestern Montana.

Infestation Stage

Green Red Gray

Soil moisture (%)

Organic horizon

July 2010 37.43 (7.71) a * 49.32 (11.48) b * 45.82 (7.58) b *

August 2010 22.77 (10.39) a **34.30 (13.73) b **32.80 (14.79) b **

September 2010 37.44 (9.22) a * 44.93 (9.52) b * 47.93 (12.80) b *

Mineral horizon

July 2010 26.77 (7.05) a * 24.29 (3.03) a * 27.34 (4.42) a *

August 2010 8.31 (6.67) a ** 12.66 (4.85) ab **15.05 (6.51) b **

September 2010 19.93 (3.45) a *** 24.22 (2.55) b * 24.38 (4.41) b *

Bulk soil pH (0–15 cm) 6.17 (0.22) a 6.44 (0.21) a 6.30 (0.19) a

Bulk soil C (%) 7.43 (2.66) a 8.48 (3.23) a 9.72 (4.73) a

Bulk Soil N (%) 0.34 (0.09) a 0.38 (0.14) a 0.41 (0.18) a

Bulk soil C:N 21.25 (1.24) a 22.51 (1.01) a 23.32 (1.35) a

Green stage represents unattacked trees, red stage, trees attacked within the
last five years, and gray stage, trees attacked.five years ago. Lower case letters
denote significant differences among stages (rows) and number of stars
denotes significant differences among sampling dates (columns). Letters and
stars denote significant differences at a= 0.05.
doi:10.1371/journal.pone.0065004.t001
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litterfall inputs did not vary significantly between the gray and

green stages (Table 2). Total litterfall N concentrations were

significantly higher in gray and red stage litterfall (1.4560.05%

and 1.1660.07%, respectively) compared to green stage litterfall

(1.0660.04%) (P = 0.001; P,0.001, respectively). This was

reflected in the significantly higher litterfall N pools under the

red and gray stages compared to the green stage (P,0.001 for

both) (Table 2). Litterfall C:N ratios varied between stages, with

the red and gray stages having significantly lower C:N ratios than

the green stage needles (P = 0.046; P,0.001 respectively; Table 2).

Foliar C:N ratios varied as well, with the green stage trees having

approximately double the foliar C:N (109.8862.35) of the red

stage trees (55.6662.91; P,0.001). There were no significant

differences in standing litter mass among infestation stages,

although the red and silver stages tended to be higher than the

green stage (Table 2). Similarly, standing litter N and C:N did not

vary among infestation stages.

3.3. Soil N Pools
Soil inorganic N concentrations (NH4

++NO3
2) were higher

(P,0.001) in the organic horizon compared to the mineral

horizon for all stages. Across infestation stages, the organic horizon

under red stage trees had higher extractable inorganic N

concentrations than the organic horizon of either the green or

gray stage trees (P = 0.005, P = 0.071) (Table 2). These differences

in inorganic N were driven by changes in NH4
+ across infestation

stages. In the mineral horizon, extractable inorganic N did not

vary across infestation stages (Table 2) and soil NO3
2 concentra-

tions were very low (i.e., near detection limits) and highly variable

for all mineral soils measured. There were no differences in NO3
2

levels across infestation stages in either soil horizon, and there were

no significant differences in either microbial biomass N concen-

trations or total soil N concentrations across infestation stages in

either the organic or mineral soil horizons (Tables 1 and 3).

However, soil microbial biomass C:N ratios were significantly

lower under the red stage trees compared to the gray stage trees

(P = 0.01; Table 3).

3.4. Soil N Cycling
Net soil N mineralization rates were higher in both organic and

mineral soils under gray trees, followed by red and then green trees

(Table 3), but the differences among stages were not significant.

Soil inorganic N fluxes as measured with resin capsules did not

vary across stages of beetle infestation (Table 2).

3.5. Understory Plant Responses
Understory ground cover did not significantly vary across the

three stages of beetle infestation, although grasses and forbs

displayed an increasing trend moving from the green to red and

gray stages (data not shown). Neither of the two understory forb

species (Viola praemorsa and Oxytropis sericea) exhibited significantly

different C:N values across the three stages of beetle infestation

(Table 3).

Discussion

The widespread, unprecedented WbP mortality occurring as a

result of the current MPB outbreak has profoundly affected WbP

ecosystems, and some research has even suggested that WbP may

become ‘‘functionally extinct’’ as a result of the current

Table 2. Mean (61 SE) N input characteristics under green, red and gray stage whitebark pine trees at Vipond Park in
southwestern Montana.

Infestation Stage

Green Red Gray

Litterfall Mass (g/m2) 11.05 (5.23) a 278.38 (44.08) b 77.48 (21.31) a

Litterfall N (%) 1.06 (0.12) a 1.16 (0.21) b 1.45 (0.15) b

Litterfall C:N 48.10 (5.38) a 41.25 (7.97) b 34.67 (4.34) b

Litter Mass (g/m2) 1938.99 (261.79) a 2994.08 (451.98) a 2655.96 (517.99) a

Litter N (%) 1.48 (0.31) a 1.56 (0.30) a 1.63 (0.20) a

Litter C:N 31.66 (5.69) a 29.25 (5.98) a 27.17 (2.45) a

Organic soil inorganic N (mg N/g soil) 14.96 (6.97) a 33.60 (15.76) b 21.19 (11.58) ab

Mineral soil inorganic N (mg N/g soil) 4.86 (2.96) a 4.73 (2.93) a 6.32 (3.89) a

‘Green’ stage represents unattacked trees, ‘red’ stage, trees attacked within the last five years, and ‘gray’ stage, trees attacked.five years ago. Letters denote significant
differences between stages at a= 0.05.
doi:10.1371/journal.pone.0065004.t002

Table 3. Mean (61 SE) N cycling characteristics under green,
red and gray stage whitebark pine trees at Vipond park in
southwestern Montana.

Infestation Stage

Green Red Gray

N mineralization (mg N/g
soil/day)

Organic horizon 1.51 (0.19) a 1.53 (0.44) a 1.65 (0.36) a

Mineral horizon 0.61 (0.21) a 0.63 (0.19) a 1.05 (0.33) a

Microbial biomass C:N 8.53 (0.40) ab 7.65 (0.16) a 8.98 (0.30) b

Resin Capsule Flux (mg N/
g soil)

0.46 (0.17) a 1.13 (0.49) a 0.45 (0.22) a

Understory foliar C:N

Silky Locoweed 8.87 (0.28) a 8.57 (0.17) a 8.35 (0.22) a

Canary Violet 11.14 (0.24) a 11.87 (0.83) a 11.27 (0.34) a

Green stage represents unattacked trees, red stage, trees attacked within the
last five years, and gray stage, trees attacked.five years ago. Letters denote
significant differences between stages. Letters denote significant differences at
a= 0.05.
doi:10.1371/journal.pone.0065004.t003
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disturbance [4]. However, what this massive mortality event

means for WbP ecosystem biogeochemical cycling remains

unknown, and to our knowledge this study is the first to assess

how beetle kill alters N cycling at the individual tree level in these

high elevation ecosystems. We recognize that our sampling design

is effectively a chronosequence, which limits the strength with

which we can assert direct causality to the disturbance in the

absence of any pre-disturbance data [37]. However, there is no

evidence or previous research indicating that factors other than the

mountain pine beetle outbreak would have influenced N-cycling

changes in our study. We hypothesized that this disturbance would

lead to short-term changes in ecosystem N pools and fluxes

underneath beetle-infested trees. However, despite some modest

changes in soil N cycling in response to the MPB outbreak, overall

our results indicate that short-term changes to the N cycle were

relatively subtle. This suggests that while the current MPB

outbreak may drive large changes in other WbP ecosystem

characteristics and ecosystem processes (e.g., succession or

disturbance dynamics [4]), changes to the N cycle are relatively

small in the short-term, at least compared to the profound effect of

the disturbance on other ecosystem characteristics.

Soil moisture varied with beetle infestation stage, such that the

red stage trees had the highest soil moisture. There are several

possible explanations for this, including changes in transpiration

[13], [29], [38], [39], and/or changes in evaporation under green,

red or gray trees. For example, increased radiation due to

complete loss of canopy cover could promote evaporation, perhaps

explaining (at least in part) why soil moisture under gray stage trees

was lower than soil moisture under red stage trees. In ponderosa

pine stands, Morehouse et al. [30] measured significantly higher

photosynthetically active radiation (PAR) reaching the forest floor

under beetle-killed trees compared to unattacked trees. Reduced

canopy cover of the gray stage trees may partially counteract

increases in soil moisture stemming from reduced transpiration.

Such changes in soil moisture can have important implications for

a number of microbial processes, including N mineralization,

respiration and decomposition [40], [41].

Not surprisingly, litterfall inputs were significantly higher under

red stage trees compared to green and gray stage trees, reflecting

the pulse of litterfall often observed soon after tree mortality

following beetle attack. However, increased litterfall (as seen in

July) did not translate into differences in standing litter biomass

under infested trees. Griffin [13] observed similar patterns in

MPB-attacked lodgepole pine stands and attributed this to

decomposition breaking down the gradual (3–4 year) influx of

litter at a pace that did not allow buildup of a litter layer.

Alternatively, the canopy cover patchiness of WbP, as well as the

movement of litter during snowmelt or wind and rain events, may

contribute to the high variability of standing litter mass, thereby

masking detectable shifts among infestation stages.

Litterfall nutrient chemistry varied with infestation stage.

Litterfall from gray stage trees had significantly lower C:N ratios

than green stage trees, largely driven by higher N concentrations

in the needles falling from the infested trees. This result matches

the findings of studies conducted in both MPB-attacked lodgepole

and ponderosa pine ecosystems [13], [29], [30]. Differences in

litterfall nutrient content following MPB attack most likely reflect

limited N resorption prior to senescence [30], [42]. However,

while we expected these changes in litterfall quantity and quality to

translate to subsequent shifts in N cycling as they reached the

forest floor and became available for microbial processing and

decomposition [12], [20], the shifts we observed for WbP were

relatively subtle.

Once increased litterfall N inputs reach the forest floor, the N

has multiple possible fates, one of which is uptake by surviving

understory vegetation. This could manifest itself through increases

in understory net primary productivity, or increases in foliar N

concentration of understory plants after the disturbance [43], [44],

or both. For example, in lodgepole pine stands attacked by MPB,

Griffin et al. [13] observed higher foliar N concentrations in the

understory sedge, Carex geyerii, in beetle-infested stands compared

to uninfested stands, but did not measure higher sedge produc-

tivity in infested stands. Other studies of post-beetle stands have

observed increases in understory growth in a number of forest

types [43], [44], [45]. Increases in available N after disturbance

may be responsible for some of this enhanced growth, but other

abiotic factors such as increased light and moisture are also likely

contributors, particularly in the longer term. We observed no

significant differences across infestation stage in the foliar N or

C:N ratio of two common understory species (Viola praemorsa and

Oxytropis sericea). There was also no measurable increase in

understory ground cover under beetle-attacked trees. Taken

together, these data suggest that biogeochemical cycles in different

forests may respond differently to attack.

As hypothesized, the highest soil inorganic N values were

observed in the organic horizon under red stage trees, and the

differences in inorganic N concentrations observed were due to

shifts in soil NH4
+ concentrations, not to changes in NO3

2

concentrations. The increase in soil inorganic N under red stage

trees could be explained by one or a combination of factors. For

example, higher N in litterfall, reduced plant uptake [10], higher

microbial N mineralization [7], [38], [30], lower microbial

immobilization of N, or transport of N from the N-enriched litter

layer [20] could all contribute to the increase in soil inorganic N in

the organic horizon in red stage trees. Other studies have reported

similar results, with infested stands having significantly more

extractable soil NH4
+ than uninfested stands [38], [12], [29]. In

beetle-infested vs. uninfested ponderosa pine stands, however,

there were no significant differences measured in soil inorganic N

pools [30]. In our study, inorganic N concentrations were

significantly different and correlated with lower soil microbial

C:N ratios. Thus, while the N cycling response is not dramatic and

was not observable in our assessment of understory plants, there is

the potential for beetle mortality to affect soil N cycling in ways

that could feedback to influence soil N availability and loss.

In contrast to the differences in inorganic N in the organic

(surface) soil horizons, inorganic N concentrations in the mineral

soil horizons did not vary among infestation stages. This may

suggest that sufficient time has not elapsed for the increased inputs

of N to be transported into the lower mineral horizons. Leaching

of inorganic N from the organic horizon and litter layers requires

time and movement of water through the soil profile [46].

Alternatively, the increased inorganic N in the organic horizon

may be immobilized by microbes, lost via denitrification, or taken

up by plants before it can move into the mineral horizon.

While we predicted that the relatively low C:N ratios in litter

from beetle-infested trees would drive increases in soil N pools, not

all forms of inorganic N shifted following beetle attack. Soil NO3
2

concentrations in both the organic and mineral horizons were

consistently very low, highly variable and did not differ among

beetle infestation stages. Low soil NO3
2 levels are often measured

in high elevation, N-limited ecosystems, as available N is often

rapidly taken up by plants or immobilized by microbes [47].

Increases in soil NO3
2 may also have been lost from the ecosystem

quickly through leaching during rain events or snowmelt [46]. In

other disturbed systems, large increases in soil NO3
2 have been

observed, but usually involved nearly 100% vegetation mortality,
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or took place in systems with substantial N deposition [17], [19].

For example, Orwig [48] measured soil NO3
2 in hemlock stands

that had been infested by the insect defoliator, hemlock woody

adelgid, and observed significantly higher levels in attacked vs.

unattacked stands. These forests were nearly pure hemlock and

experienced almost complete mortality as the outbreak moved

through the system. Soil texture and the timing of snowmelt or

rain events also influence the magnitude of N losses from an

ecosystem [6]. Ecosystem characteristics such as climate and soil

texture, as well as the extent of disturbance-induced mortality

interact to determine how mobilized N behaves following the

disturbance, particularly with respect to N losses.

Microbial biomass C:N ratios were lower under red stage trees

compared to gray stage trees, but surprisingly red stage trees did

not differ from green stage trees. Microbial immobilization of N is

one pathway mineralized N may take after a disturbance,

particularly if N is limiting [49]. In such cases, lower microbial

biomass C:N should reflect this, indicating uptake of N. Potential

net N mineralization rates in incubated soils did not vary across

beetle infestation stage and this result is not consistent with other

insect outbreak studies, which found significantly higher net N

mineralization potential in soil from attacked stands [12], [30],

[38]. Our results appear to argue against increased microbial N

mineralization as the driver behind the observed increase in soil

inorganic N in the organic soil horizon. One possibility is that

reduced plant uptake resulted in the increase in inorganic N rather

than increased N mineralization. Alternatively, the timing of

sampling may have missed an initial pulse of mineralization

following tree mortality. High elevation WbP ecosystems may

undergo the majority of their microbial processing of organic

matter and decomposition during spring snowmelt, a time at

which our study site is inaccessible.

Inorganic N fluxes through the soil profile (as measured with

resin capsules) also did not vary with beetle infestation stage in our

site. Nitrogen losses are one of the most commonly measured

biogeochemical variables in disturbance studies, and increased

NO3
2 levels have been observed in a number of insect defoliation

studies (often measured in streams draining the disturbed

ecosystem; [7], [18], [21], [22]). For example, a spruce bark

beetle outbreak in Germany resulted in elevated N concentrations

40 cm below the soil surface for five years following the outbreak

[28]. The fact that no measurable changes to N fluxes were

observed in this WbP ecosystem is not entirely surprising

considering the very low NO3
2 levels measured in the soil profile.

Overall, the results of this study suggest that, from an N cycling

perspective, WbP ecosystems experience relatively subtle changes

in the years immediately following beetle attack. While N inputs

under focal trees changed significantly following tree mortality,

they were accompanied by few shifts in internal cycling and pools

of N, at least for the variables we measured. In addition, the

internal N cycling characteristics that did change with beetle

infestation stage varied in the upper, organic soil horizon, but did

not appear in the mineral soil horizon, and there was no evidence

suggesting significant shifts in N losses from the system. We would

expect gaseous N losses to be very low at this site given the coarse

texture of the soil and the dry environment [50]. This does not

mean that the differences we did observe are not important, as N

could strongly limit ecosystem processes in the system, but overall

we did not observe the large N cycling responses we expected

based on the dramatic mortality and our focal tree sampling

design. Given the lack of strong responses at the level of individual

trees, we would also predict that the stand-to-ecosystem scale

responses would be similarly subtle, but future research is

necessary to test the effects of widespread WbP mortality on N

cycling at larger scales. However, it is worth noting that this study

indicates that WbP ecosystems react differently to MPB attack

compared to studies from lower elevation ecosystems [30], [39],

which displayed either stronger or more rapid biogeochemical

responses to bark beetle attack.

Considering the extent of WbP mortality at the site, the lack of

many significant biogeochemical responses to the increased litter C

and N inputs was unexpected. The characteristics of WbP

ecosystems, however, provide some insight into potential lags in

response time to the disturbance, which may ultimately allow

regeneration to occur before any longer-term nutrient shifts occur.

For example, the very short growing season and harsh climatic

conditions that exist in WbP ecosystems most likely cause many

microbial processes to progress more slowly than in other

ecosystems. From a biogeochemical perspective, climatic con-

straints on N cycling could have some benefit. Following this large-

scale, high mortality disturbance, major shifts in C and N do not

appear to occur over the timeline of a few years, but instead may

play out over longer timescales that ultimately do not lead to

dramatic N losses. Longer-term monitoring at a number of sites is

required to determine whether biogeochemical changes are indeed

more subtle in WbP ecosystems, or whether they merely take

longer to manifest themselves. Thus far the data suggest that, from

an N cycling perspective, the prospects for the future regeneration

of WbP may be relatively promising.
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