
www.landesbioscience.com	 Organogenesis	 19

Organogenesis 9:1, 19–21; January/February/March 2013; © 2013 Landes Bioscience

 Views and Commentary Views and Commentary

Keywords: cartilage tissue engineering, 
silk fibroin, hyaluronic acid, scaffold

Submitted: 02/14/13

Accepted: 03/11/13

http://dx.doi.org/10.4161/org.24257

*Correspondence to: Antonella Motta; 
Email: antonella.motta@ing.unitn.it 

Natural polymers offer various advan-
tages in cartilage tissue engineering 

applications, thanks to their intrinsic 
bioactivity and adaptability, which can 
be exploited for the optimization of scaf-
fold properties. In particular, silk fibroin 
has multifunctional features driven by 
the self-assembly of molecular subunits 
in appropriate environmental condi-
tions. For these reasons, it was used in 
combination with hyaluronic acid to pro-
duce porous sponges for cartilage regen-
eration. The added amount of hyaluronic 
acid and the cross-linking with genipin 
modulated scaffold properties in a syner-
gistic way, showing a strong inter-correla-
tion among macroscopic and microscopic 
characteristics. Interestingly, hyaluronic 
acid affected silk fibroin conforma-
tion and induced a physical separation 
between the two material components 
in absence of genipin. Instead, this was 
prevented by the cross-linking reaction, 
resulting in a more interspersed network 
of protein and polysaccharide molecules 
partially resembling the structure of 
cartilage extracellular matrix. In addi-
tion, the systematic evaluation of sponge 
properties and how they can be modu-
lated will represent a significant starting 
point for the interpretation of the com-
plex outcomes driven by the scaffold in 
vitro and in vivo.

Successful Tissue Engineering therapies 
require scaffold materials with physical 
properties consistent with the application 
and ability to promote cells adhesion, pro-
liferation and ECM production/assem-
bling. The last requirement is mandatory, 
since the ultimate goal of tissue engineer-
ing is to rebuild the architecture of the 
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tissues to restore, possibly quickly and 
with the full recovery of its structural and 
functional properties.1 Even if synthetic 
materials can offer multiple choices in 
terms of adaptability to specific physical 
properties requirements, they do not gen-
erally possess bio molecular recognition 
features that are needed for the induction 
of the regenerative pathway. Natural mate-
rials can offer for many application favor-
able solutions, thanks to their intrinsic 
bioactive properties, provided that these 
are properly selected and addressed.2,3

Scaffold materials and architecture, 
cells and biochemical and/or mechanical 
signals, must be established for each appli-
cation and, eventually, for each pathologic 
condition. On this basis, energies have 
been devoted to the exploration and the 
management of the micro environmental 
niche experienced by cells in the TE sys-
tem, such as oxygen concentration, pH, 
electric potential, cytokine gradients and 
mechanical forces.4

These are the general considerations 
that supported our recent study.5 The aim 
was to produce a scaffold tailored for car-
tilage regeneration.

Silk fibroin (SF) and hyaluronic acid 
(HA) were selected to fabricate porosity-
controlled sponges by means of the salt 
leaching technique. SF isolated from 
Bombyx mori cocoons filament is a mul-
tifunctional responsive polymer whose 
adaptability is driven by the self-assem-
bly of nanostructures (hydrophobic and 
hydrophilic blocks) into molecular con-
formations which depend on the envi-
ronmental conditions.6-8 Many studies 
have already demonstrated the adaptabil-
ity of this material for the fabrication of 
tissue engineering scaffolds. Proposed 
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porosity was crucial in the determination 
of scaffold water content and mechani-
cal properties. Nevertheless, the system-
atic characterization allowed a deep and 
critical understanding of the strong rela-
tionships among sponge properties. In 
addition, two different perspectives were 
considered in this study, focusing on the 
macroscopic characteristics of the scaf-
folds (morphology, porosity, mechani-
cal properties), the microscopic features 
(molecular arrangement, cross-linking 
degree, silk fibroin crystallinity) and their 
connection.

However, beyond the premises and 
approach adopted in this study, a sig-
nificant question is still left to answer: 
will this systematic picture be effective 
in helping clarify and guide cell behav-
ior, once chondrocytes or even stem cells 
are cultured on the produced sponges or 
the best scaffolds are implanted in vivo? 
Or, on the contrary, is the big picture too 
much complex? Most likely, the answer 
is yes, to both. In fact, complexity arises 
not only from dealing with biological sys-
tems, but also from the mutual interac-
tions between the material and the cells 
and tissues involved. This means that, 
even if all elements of the TE system are 
well known, they may be changed by their 
being in communication, adding a fur-
ther level of complication. Nevertheless, a 
deep understanding of the playing forces 
remains as a fundamental starting point 
for tissue engineering, as it can effectively 
help reduce the complexity of interpreting 
the outcomes of a TE system, even if it 
cannot remove it.
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applications range from bone9-15 to ten-
dons16-18 or skin.19,20 Scaffolds with tunable 
characteristics can be fabricated with sev-
eral methods, such as gelation, salt leach-
ing, casting, spinning and so on.21

However, the peculiar aspect of 
silk fibroin molecule is in the pres-
ence of two different active sequences, 
VITTDSDGNE and NINDFDED, 
recognized by integrin promoting cell 
growth, that were identified in the 
N-terminal region of the heavy chain,22 
lending the silk protein with multifunc-
tional bio-recognition capabilities.

Hyaluronic acid is ubiquitous in mam-
malian tissues and particularly in cartilage. 
Cartilage is one of the most interesting 
examples of design from Nature. An engi-
neered combination of collagen fibers with 
different orientation along the thickness 
impart cartilage the required mechani-
cal properties, while the matrix materi-
als, i.e., glycosaminoglycans comprising 
hyaluronic acid, and its swelling-deswell-
ing assure the nutrients diffusion to cells 
while reducing to physiologically accept-
able values the friction among bones of 
the joint.2,23 As an attempt to mimic these 
functions, we modulated both hyaluronic 
acid concentration and distribution in the 
scaffold matrix with respect to silk fibroin.

Results showed a strong inter-corre-
lation of scaffold properties, which were 
affected by the amount of hyaluronic acid 
and cross-linking in a complex and syn-
ergistic way. The addition of HA in silk 
fibroin sponges determined a modification 
of SF conformation and arrangement with 
respect to the pure material: hyaluronic 
acid not only enhanced the formation 
of crystalline stable structure in the pro-
tein, but also induced the segregation of 
silk fibroin due to its higher hydrophilic-
ity. Interestingly, HA acted as the hydro-
philic sericin during the extrusion of the 
silk bave from the silkworms glands.24 
The cross-linking reaction, instead, com-
peted against the physical separation of 
the two material components, forming 
a more interspersed network of protein 
and polysaccharide molecules and par-
tially resembling the structure of carti-
lage extracellular matrix. As expected, all 
scaffold properties were affected by the 
different molecular arrangements, even 
if it is worth to mention that the role of 
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