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Abstract
The skin has developed a hierarchy of systems that encompasses the skin immune and local
steroidogenic activities in order to protect the body against the external environment and
biological factors and to maintain local homeostasis. Most recently it has been established that
skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids,
androgens and estrogens either from precursors of systemic origin or, alternatively, through the
conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active
steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone
and estradiol. Their local production can be regulated by locally produced corticotropin releasing
hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production
of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the
final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis,
dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and
estrogens affect functions of the epidermis and adnexal structures as well as local immune activity.
Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune
diseases. The cutaneous steroidogenic system can also have systemic effects, which are
emphasized by significant skin contribution to circulating androgens and/or estrogens.
Furthermore, local activity of CYP11A1 can produce novel 7 -steroids and secosteroids that are
biologically active. Therefore, modulation of local steroidogenic activity may serve as a new
therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin
disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose
activity can affect its functions and the development of local or systemic inflammatory or
autoimmune diseases.
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1. Skin as an immune organ
1.1. An overview of immune barrier functions of the skin

The primary function of the skin is to protect the body against the external environment, and
a hierarchy of systems has developed to fulfill this function (reviewed in [1, 2]). One of the
most important is the skin immune system, which is artificially divided into “innate” and
“adaptive”, based on the specificity of the offending agent and presence or absence of
memory in the system [3] (Fig. 1). Nevertheless, the components of this system interact with
one another, are not truly separable and also interact with the cutaneous neuro-endocrine-
immune system (reviewed in [1]). Various mediators participate in interactions between
these elements (reviewed in [4, 5]) (Fig. 1), and will be discussed further.

1.2. Skin innate immunity
The epidermis is composed of proliferating keratinocytes that differentiate to form the
corneal layer. Corneocytes together with intercellular lipids isolate the body from the
external environment and also protect it against dehydration [6]. A crucial role in the
formation of this layer is played by the lipids and cholesterol derivatives which are
synthesized locally from acetate [7, 8]. This structural barrier is complemented by
components of innate immunity which are based primarily in the dermis [4]. Neutrophils
and macrophages phagocytize non-self cells and organisms and kill them by oxygen-
dependent or independent mechanisms. Eosinophils release major basic protein and other
substances that inactivate parasites [9]. Mast cells release mediators that enhance local
inflammation. Natural killer cells kill abnormal (infected or malignant) cells through
antibody-dependent, MHC I-regulated and killer-activating and killer-inhibitory receptors-
regulated pathways. The complement cascade kills microbes directly (through the
membrane-attack complex), enhances phagocytosis (through binding to antibody-antigen
complexes) and inflammation (through anaphylatoxins). Last but not least, keratinocytes and
sebocytes produce beta-defensins and other antimicrobial peptides [10, 11]. Toll-like
receptors are responsible for the recognition of pathogen-associated molecular patterns
(PAMPs) and thus form a basis for the differentiation between self- and non-self in innate
immunity [4, 12].

1.3. Skin adaptive immunity
The adaptive immune system is considered to be the more evolved part of the immune
response system. Foreign antigens are presented by Langerhans/dendritic cells to T
lymphocytes that in turn drive cellular or humoral responses [13]. T cell receptors and B
cell/plasma cell-produced antibodies are responsible for specificity of this mode of immune
response [4]. Langerhans cells are derived from the bone marrow and express CD (cluster of
differentiation) 45, CD1a and CLA (cutaneous lymphocyte-associated antigen) [13]. Foreign
antigens are presented in the context of MHC (major histocompatibility complex) II to CD4
positive lymphocytes and in the context of MHC I to CD8 positive lymphocytes. Variability
of T cell receptors and antibodies is a function of several mechanisms that recombine and
modify genes that code for variable regions [14]. The Th (T helper) 1 lymphocytes response
is mediated by cytokines such as interleukin (IL)-2 and interferon (INF)γ. The humoral
response is influenced by Th2 lymphocytes in part via the production of IL-4. Abnormal
Th1 and Th2 responses play a role in various skin diseases [15]. Th2 lymphocytes
additionally stimulate eosinophils (IL-5). CD4, CD25 and Foxp3 positive regulatory T
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lymphocytes suppress the immune response [3, 4]. CD4 positive Th17 lymphocytes express
RORC (retinoic acid receptor -related orphan receptor C), develop in response to
inflammatory cytokines, including IL-23, and release mediators such as IL-17, IL-21, IL-22,
GM-CSF (granulocyte-macrophage colony stimulating factor) and CCL20 [chemokine (C-C
motif) ligand 20] [16]. Several classes of antibodies are produced. Interaction between
CD40 and CD40 ligand is responsible for the Ig (immunoglobulin)M to IgG isotype switch.

1.4. Physiological role of the skin immune system
The above components of the skin immune system are linked in large part by cytokines
which serve as mediators connecting different components of innate and adaptive systems
within those systems and between them. IL-1α and β, IL-6 and TNF (tumor necrosis
factor)α are pro-inflammatory cytokines. INFα and β suppress viral infections. IL-10
inhibits cellular immunity. Transforming growth factor β (TGFβ) suppresses both Th1 and
Th2 modes of immune response [17]. IL-12 facilitates Th1 cellular response. These
cytokines have local and systemic effects. Moreover, an adaptive response that is initiated in
the skin within Langerhans cells are fully matured in lymph nodes [13]. Lymphocytes, act in
the skin in a retrograde manner but also affect other areas of the skin and the body [4]. The
skin immune system is integrated into the skin neuro-endocrine system [2] through
interaction with multiple pro- and anti-inflammatory neuropeptides, cytokines and hormones
[1].

2. Steroidogenesis in the skin
2.1. An overview of steroidogenesis in classical steroidogenic organs

Maintenance of normal reproductive function and bodily homeostasis is dependent on
steroid hormones synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta,
and brain. Steroid hormone biosynthesis is initiated upon mobilization of cholesterol, the
substrate for steroid hormones, from cellular stores in cytoplasmic lipid granules to the
mitochondrial inner membrane, the site of cytochrome P450scc (CYP11A1). This enzyme
catalyses the cleavage of the side chain of cholesterol [18, 19]. In this reaction cholesterol is
sequentially hydroxylated at carbons 22 and 20 producing 20R,22R-dihydroxycholesterol as
a reaction intermediate [20]. CYP11A1 then catalyses the cleavage of the C20-C22 bond
producing pregnenolone and isocaproic aldehyde. The concentration of cholesterol in the
inner mitochondrial membrane of steroidogenic tissues is low [21], thus CYP11A1 normally
works under subsaturating (limiting) cholesterol concentrations. Increased provision of
cholesterol to the inner mitochondrial membrane by the action of the steroidogenic acute
regulatory (StAR) protein causes a corresponding increase in the rate of pregnenolone
synthesis [22, 23]. The fate of pregnenolone produced by CYP11A1 varies depending on the
particular cell type or tissue, each of which contains a particular set of steroidogenic
enzymes.

The biosynthesis of steroid hormones is regulated through the action of trophic hormones,
ACTH (or angiotensin II for the zona glomerulosa) acting on the adrenal cortex and LH on
the corpus luteum or the Leydig cells of the testis. These hormones bind to their specific
receptors, which in turn activate the cAMP/PKA signaling cascade, and results in the
phosphorylation of protein(s) involved in steroidogenesis [24, 25]. Hormonal regulation of
steroid biosynthesis occurs within minutes (acute response) and hours (chronic response)
and is mediated by cAMP/PKA signaling. The mobilization and delivery of cholesterol from
the outer to the inner mitochondrial membrane initiates the acute response of steroid
biosynthesis to hormonal stimulation that has an absolute requirement for de novo synthesis
of the StAR protein [18, 19, 26]. On the other hand, chronic effects, associated with long-
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term steroid production, involve increased transcription/translation of the genes encoding
steroidogenic enzymes [19].

The 30-kDa mitochondrial StAR protein was first purified from MA-10 mouse Leydig
tumor cells, and its cDNA was cloned and sequenced [27]. There is now a wealth of
information indicating that the StAR protein mediates the rate-limiting and regulated step in
steroid biosynthesis, i.e. the delivery of cholesterol from the outer to the inner mitochondrial
membrane [28–30]. Regulation of the StAR protein and thus steroid biosynthesis, is
predominantly mediated by cAMP/PKA signaling in steroidogenic tissues, although several
intracellular events have been demonstrated to be instrumental in this process [30–33].
Studies have demonstrated that a tight correlation exists between the synthesis of the StAR
protein and the synthesis of steroids through endocrine, autocrine and paracrine regulation
(reviewed in [28, 29, 33]).

Following the StAR-mediated delivery of cholesterol to CYP11A1 in the inner mitochodrial
membrane and its conversion to pregnenolone, subsequent pathways are tissue-specific and
involve a number of cytochrome P450 family members plus several different steroid
dehydrogenases. Unlike the P450 enzymes, there are multiple isozymes for the steroid
dehydrogenases catalysing the same reaction, and often varying in the preferred direction of
the reaction they catalyse in vivo [23]. CYP17A1 plays a pivotal role in steroidogenesis
because it is required for the synthesis of cortisol where its 17α-hydroxylase activity is
essential, and androgens where both its 17α-hydroxylase and C17-C20 lyase activities are
required. High lyase activity is seen when the initial substrate is pregnenolone, but with
progesterone essentially only 17α-hydroxylase activity is observed, directing products to the
glucocorticoid pathway [23, 34].

The major enzymes in the different classical steroidogenic tissues are listed in Table 1. Thus
the glomerulosa zone of the adrenal cortex produces aldosterone, and the zona fasciculata
produces cortisol. In the zona reticularis, which is deficient in 3βHSD, the pregnenolone
produced by CYP11A1 undergoes complete removal of the remaining two carbons of the
side chain by the 17-hydroxylase and C17-C20 lyase activities of CYP17A1, producing
DHEA, much of which is sulfated [22, 35]. Cytochrome b5, which is highly expressed in the
zona reticularis promotes the lyase activity of CYP17A1.

The corpus luteum produces large amounts of progesterone plus some estradiol [22]. In the
ovarian follicle, pregnenolone is produced by the granulosa cells which lack CYP17A1 and
cannot convert it to androgens. Conversion to androstendione occurs in the in the thecal cells
which do express the required CYP17A1. The androstenedione diffuses back into the
granulosa cells for conversion to estrone and estradiol by the aromatase enzyme, CYP19A1,
and 17βHSD1 [22, 35]. In the Leydig cells of the testis pregnenolone is converted primarily
to testosterone with only minor conversion to estrogens due to only low expression of
CYP19A1 [23, 34].

The placenta displays some differences to the other steroidogenic tissues in that
pregnenolone synthesis it is not limited by cholesterol availability, but rather by the level of
steroidogenic electron transport protein adrenodoxin reductase [20]. The placenta does not
express the StAR protein but a related START-domain protein, MLN64, appears to play a
role in cholesterol transport o the inner mitochondrial membrane [20, 30]. In the placenta, all
pregnenolone is converted to progesterone and cannot be converted to estrogens due to the
lack of expression of the CYP17A1 necessary for its initial conversion to androgens. The
large amounts of estrogens produced by the placenta are derived from the actions of 3βHSD
and CYP19A1 on DHEA derived from DHEA sulfate, produced by the fetal adrenal gland
[23].
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2.2. Extra-adrenal and extra gonadal steroidogenesis
Several tissues besides the adrenal cortex, gonads and placenta express CYP11A1 and
therefore can be considered steroidogenic, with pathways that commence form cholesterol.
These tissues and their major products are listed in Table 2. The products most likely play an
autocrine or paracrine regulatory role in these tissues [36]. It is noteworthy that
steroidogenesis in non-classical tissues is quite modest regardless of the stimulant, usually
being less than 1% of that seen with cAMP/PKA mediated StAR expression and steroid
synthesis in adrenal and gonadal cells. While the magnitude of StAR-mediated response on
steroidogenesis is small, it could be very important in local regulation of steroidogenesis in
certain non-classical tissues. One of the first non-classical tissues identified to make steroids
from cholesterol is the mammalian brain [23, 37]. Steroids produced include pregnenolone,
pregnenolone sulfate, DHEA sulfate, progesterone, 3β and 5α reduced derivatives of
progesterone, and corticosteroids [23, 36, 38]. Expression of CYP11A1 and its functional
activity in the mouse thymus with the production of corticosterone has also been known for
some time, but data for the human is lacking [36, 39]. CYP11A1 is expressed in bone but
the predominant form has an N-terminal truncation that is only 30 kDa in size and has a non-
mitochondrial localization, and is therefore unlikely to be catalytically active [40]. The
expression of CYP11A1, 3βHSD and CYP17A1, as well as the steroidogenic capability of
benign and malignant prostate and prostate carcinoma lines, as well as prostate stroma, has
been demonstrated [41–47]. CYP11A1 expression has been detected at the mRNA level in
both breast tumors and surrounding normal breast tissue [48]. The human gut and colon
cancer cells also express glucocorticosteroidogenic activity with production of cortisol and
corticosterone and expression of CYP11A1, CYP17A1 and CYP11B1 [49–51]. Other
organs which display local steroidogenic pathways in humans are the heart, skin and cells of
the immune system (see Table 2) including human basophils [52]. Table 3 shows the
expression of steroidogenic genes in different cancers, illustrating their likely capacity to
synthesize and/or metabolize steroid hormones as has already been shown with melanoma
cells [53, 54].

2.3. Glucocortico-steroidogenesis in the skin
Since the first demonstration that human skin expresses crucial genes of
glucocorticosteroidogenesis including CYP11A1, CYP17, CYP21A2, CYP11B1 and MC2
[55], a series of sequential investigations have shown that the skin or skin cells can produce
deoxycorticosterone (DOC), 18(OH)DOC, corticosterone and cortisol in situ [53, 56–61].
These findings have been firmly confirmed by others [62–69]. Furthermore, skin cells
express functionally active CYP11A1 (there are also alternatively spliced isoforms of this
enzyme in skin cells [54]), StAR and MLN64, and have the capability of starting the
steroidogenic pathway de novo from cholesterol [54, 70]. They also express 3βHSD [71, 72]
allowing the pathway to proceed with final production of glucocorticoids [73] and sex
hormones [74]. Thus, evidence has accumulated classifying skin as an additional extra-
adrenal organ with an endogenous steroidogenic capacity that is integrated into the
regulatory networks of the cutaneous neuro-endocrine-immune system(s) [1]. The scheme
and compartmental distribution of different elements of this steroidogenic pathway, which
can start from cholesterol are presented in Figures 2 and 3. The synthesis and metabolism of
cholesterol in the skin with phenotypic their phenotypic consequences are the subject of
separate reviews [6, 75–77]

It is noteworthy, that steroidogenesis in non-classical tissues is quite modest regardless of
the stimulant, and in skin cells the rate of cholesterol conversion to pregnenolone represents
1% of that seen in the placenta [54]. This low rate of production could explain the lack of
detection of cortisol formation by keratinocytes in earlier studies by Milevich et al. [78] and
later by us [79]. In our studies on HaCaT keratinocytes, we have detected rapid metabolism
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of progesterone to DOC with further transformation to several products different from
corticosterone, aldosterone and cortisol, some of which were identified by GC/MS as 3β,6α,
21-trihydroxy-5α-pregnan-20-one, 3α,6α,21-trihydroxy-α-pregnan-20-one, and 3α,5α-and
3β,5α-tetrahydrodeoxycorticosterone [80]. Minor metabolites were 3α, 21-dihydroxy-5-
pregnen-20-one, 3β, 21-dihydroxy-5-pregnen-20-one, 3α, 21-dihydroxy-4-pregnen-20-one,
6-hydroxy-dihydrodeoxycorticosterone, and two 5-dihydrodeoxycorticosterone species.
These studies not only confirmed keratinocytic expression of 5α-reductase and 3α/βHSD but
also demonstrated expression of 6α-hydroxylase, and reverse Δ4/Δ5 isomerase enzymes
[80]. Other researchers using RIA or ELISA have detected cortisol in follicular [59, 68] or
epidermal keratinocytes [63–65]. We have also detected cortisol as well as corticosterone
production in epidermal melanocytes and dermal fibroblasts (chemical structure was
confirmed by LC/MS) [57, 58, 60]. This latter finding substantiates our previous
demonstration of rapid and robust transformation of progesterone and DOC into
corticosterone in human malignant melanocytes [53]. So far, production of aldosterone has
not been detected in epidermal and dermal cells.

Skin expresses 11βHSD1 which is primarily involved in the reduction of the 11-keto group
to the alcohol, such as in the activation of cortisone to cortisol [23, 54, 66, 81]. Skin also
expresses 11βHSD2 which works in the oxidative direction, converting cortisol to the
inactive cortisone [23, 64–66, 81]. The type 2 enzyme plays a key role in mineralocorticoid
tissues where it protects the mineralocorticoid receptor from cortisol [23]. Both 11βHSD1
and 11βHSD2 have been detected at the protein level in cultured keratinocytes [64, 81].
Keratinocytes with the type 1 isoenzyme silenced with siRNA produced less cortisol from
cortisone than control cells. Conversely, the silencing of 11βHSD2 caused an elevation in
cortisol levels [64]. It would appear that both the location and relative activities of these two
isoenzymes determines the ability of skin to activate/inactivate both locally produced and
pharmacologically administered glucocorticoids [64, 66, 81]. In the mouse skin, 11βHSD1
was found by immunohistochemical staining in keratinocytes, dermal fibroblasts and the
outer root sheath of hair follicles, and appears to have a similar distribution in humans [66].
In contrast, 11βHSD2 was not detected in these sites by immunohistochemistry, so that the
predominant activity was activation of cortisone to cortisol. Cortisol treatment of human
dermal fibroblasts increased 11βHSD1 mRNA expression at the mRNA level, and decreased
11βHSD2 expression, providing a positive feedback loop enhancing glucocorticoid
activation [66]. The mechanism for this increase in 11βHSD1 remains to be elucidated. In
contrast, dexamethasone treatment of human skin was reported to increase 11βHSD2
expression at the mRNA level [65].

In the liver cortisone is mainly converted to cortisol by 11βHSD1 which is then acted on by
5α- or 5β- reductase and 3αHSD producing 5α- and 5β-tetrahydrocortisol, some of which is
metabolised by 20αHSD or 20βHSD to α-cortol or β-cortol, respectively. Similar minor
pathways are observed for cortisone without the initial action of 11βHSD1. The reduced
products are excreted in the urine, predominantly as glucuronides [82, 83]. There is good
evidence that these metabolic pathways may occur in skin. As mentioned above, 5-
dihydroxycorticosterone and 3α,5α-tetrahydroxycorticosterone are produced by HaCaT
keratinocytes incubated with progesterone, along with 5α-reduced pregnanes, indicating that
both 3αHDS and 5α-reductase are present in these cells [80] that could potentially act on
cortisol or cortisone.

The expression of StAR has been detected by RT-PCR and immunohistochemical analyses
in epidermal keratinocytes, sebocytes, outer root sheath of hair follicles (HFs), vascular
tissues and eccrine ducts [62, 63, 69, 84]. In addition to StAR, epidermal keratinocytes also
express cholesterol transporters TSPO and MLN64 [54, 63]. Expression of positive [adrenal
4-binding protein/steroidogenic factor 1 (SF-1)] and negative (dosage-sensitive sex reversal,
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adrenal hypoplasia congenital, critical region on the X chromosome, gene 1) regulators of
StAR has also been detected in the epidermis [63, 85–87]. DAX-1 prominent expression has
been confirmed in sebaceous and sweat glands, the basal layer of the epidermis and ORSKs,
while SF-1 immunoreactivity was detected across all epidermal layers except of the stratum
corneum, IRSKs, matrix cells and DPCs [85, 88]. The co-factor, WT-1, modulates androgen
sex steroid production by up-regulating DAX-1 and is also present in the skin [89]. It has
been reported that the coiled-coil α-helical rod (CCHCR1) protein is involved in epidermal
steroidogenesis and that CCHCR1 colocalizes with the StAR protein [62]. Upregulation of
CCHCR1, associated with epidermal growth factor receptor expression, has been
demonstrated in skin cancer [90]. We observed recently that expression of StAR mRNA was
found to be aberrant in several skin diseases, including eczema, intertrigo, and seborrheic
keratosis, suggesting acute steroid synthesis is disrupted in these diseased conditions
(Manna et al., data not shown). In accordance with the above findings HaCaT cells treated
with a cAMP analog, (Bu)2cAMP, significantly elevated StAR mRNA expression and
pregnenolone synthesis over unstimulated cells, respectively (Fig. 4). However, levels of
StAR mRNA and steroid synthesis in response to cAMP signaling were substantially lower
in HaCaT cells when compared to responses for adrenal and gonadal cells. This suggests a
slower onset of StAR localization to mitochondria and lower rates of steroid synthesis in
epidermal keratinocytes. Moreover, in contrast to the rapid induction of cAMP-responsive
steroidogenesis in various endocrine tissues, in HaCaT cells elevations in StAR and
pregnenolone levels require a long period of time. These results may suggest differences
between the classical steroidogenic organs and the cutaneous system.

2.4 Synthesis of androgens and estrogens in the skin
Plasma dehydroepiandrosterone sulfate (DHEA-S) and lesser free DHEA originate from the
adrenal glands, while androstenedione is produced by the adrenal cortex and ovaries, and
less by the testes [74]. Testosterone (T) is mainly secreted by the testes in males with the
onset at puberty and in premenopausal females from the ovaries and the adrenal cortex. The
most potent androgen, dehydrotestosterone (DHT), is mainly synthesized in peripheral
tissues, including skin [74]. Since it cannot be further aromatized to estrogens, its action
remains exclusively androgenic. The pilosebaceous unit has all the necessary tools to utilize
sex steroid precursors for the transformation to more potent sex hormones [91, 92].

Cutaneous formation of DHEA, the main substrate for the more potent androgens T and
DHT, proceeds both from endogenous cutaneous cholesterol (see section 2.3) and from
DHEA-S of adrenal origin. In support of the latter, T synthesis by SZ95 sebocytes in vitro
derives mainly from DHEA [93]. DHEA-S is hydrolysed in the skin to DHEA by steroid
sulfatase, detected in sebaceous glands and dermal papilla cells (DPCs) of terminal HFs [94,
95]. Monocytes also exhibit steroid sulfatase activity, thus introducing the variable of
“inflammation” to cutaneous androgen production [96].

Addition of pregnenolone, progesterone and 17α-hydroxyprogesterone led to a significant
rise of T levels in culture media, reflecting the activity of 3βHSD1 and 17βHSD3 on SZ95
sebocytes [93]. 3βHSD converts DHEA to androstenedione, which is converted in a further
step to T by the enzyme 17βHSD. Human skin expresses predominantly the 3βHSD1
isoform [97]. Interestingly, 5 isozymes of 17βHSD were identified, functioning like a
“switch on-off” mechanism for the production of more potent sex steroids: Isozymes 3 and 5
catalyze the formation of T from androstenedione, in contrast to isozymes 2 and 4, which
oxidize the inactivation of T to its weaker precursor [98–101]. Synthesis of T from
androstenedione in skin, similar to other peripheral tissues, is catalyzed by 17βHSD type 5
[102]. 17βHSD is also detected in ORSKs of HFs, mainly type 2 and moderately type 1 in
anagen ones, thus inactivating potent androgens [98, 103].
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5α-reductase (5αR) type 1 is the predominant isoform detected in the skin [104, 105] and
more abundantly expressed in sebaceous and sweat glands [106], keratinocytes [78, 80] and
dermal fibroblasts [107]. 5αR2 is detected in genital skin fibroblasts and IRSKs [107]. The
5αR1 inhibitor MK386 blocked completely the conversion of T to DHT in SZ95 sebocytes
and HaCaT keratinocytes and reduced T-induced proliferation of sebocytes [108]. The
newly found 5αR3 has been detected in prostate cancer and the SZ95 sebocyte line [109].
Sebocytes normally metabolize T mainly to androstenedione, rather than DHT, since low
DHT levels are required for skin homeostasis. 5aR2 mRNA levels were minimal in beard
and scalp DPCs as well as normal human fibroblasts, while beard DPCs were the ones
mainly expressing 5αR1 at the protein level. The formation of DHT in SZ95 sebocytes does
not always require T as an intermediate, since 5α-reduction of androstenedione to 5α-
androstanedione and subsequent conversion to DHT by 17βHSD provides an alternative
pathway [110]. Moreover, the 3αHSD isozymes convert potent androgens to inactive
compounds, which do not bind to AR [74, 111]. 3αHSD is strongly expressed in epidermal
keratinocytes [80, 91, 112].

E2 derives from T and E1 from androstenedione. Local estrogen synthesis was correlated
with aromatase mRNA levels and cutaneous elastic fiber content [69]. mRNA transcripts of
the CYP19 gene were reported in dexamethasone-induced human fibroblasts in vitro [113],
while aromatase was expressed in anagen and terminal HFs, cultured keratinocytes,
melanocytes, sebaceous glands and adipose fibroblasts [114]. Interestingly, 17α-estradiol
increases aromatase activity of female HFs [115]. Estrogens are inactivated through
sulfation, by the enzyme estradiol sulfotransferase (SULT1E1) [116]. Its activity is higher in
differentiated normal human epidermal keratinocytes (NHEKs) in comparison to
proliferating ones [117], suggesting a mechanism of attenuation of estradiol-induced
keratinocyte proliferation. Aromatase in skin can serve to fine-tune the relative actions of
androgens and estrogens in target cells [118].

Apart from the aforementioned enzymes involved in the formation of more or less potent
androgens or estrogens, tissue-specific ones are responsible for the degradation and
subsequent elimination of sex steroids, via their transformation to soluble metabolites, which
can be excreted in the urine, bile or feces. Enzymes which play a key role in this procedure
are CYP enzymes for the hydroxylation, sulfotransferases (SULT) for the sulfation and UDP
glucuronosyl transferases (UGT) for the conjugation of sex steroids with glucuronic acid
respectively [119–121]. The three UGT2B enzymes, UGTB7, UGTB15, UGTB17, which
are responsible for the glucuronation of DHT and its metabolites, androsterone and 3α-diol
are all expressed in the skin [122, 123]. E2 is inactivated by estrogen sulfotransferase
SULT1E1 in normal human keratinocytes [117]. The SULT2B1 enzyme, member of the
SULT2 family, which catalyzes the sulfation of 3β-hydroxysteroids, such as DHEA and
pregnenolone, was also detected in the skin [124, 125]. The isoform SULTB1b is
abundantly expressed in ORSKs, sebocytes and differentiated epidermal keratinocytes [125].
The SULT1 family consists of enzymes, which primarily sulfate phenolic groups of
estrogens. Its member SULT1A1 are located on the outer sheath of rat HF [126]. Expression
of the aldo-keto reductases (AKR) AKRC1 and AKRC2 in keratinocytes and fibroblasts
leads to inactivation of progesterone and DHT respectively, which are further metabolized
through glucuronosyl transferases or hydroxylases [127]. Skin shows immunohistochemical
reactivity for the enzyme CYP7B1, which catalyzes the 7α-hydroxylation of DHEA.
Moreover, it turns the DHT metabolites 5-androstene-3β,17β-diol (Aene-diol) and 5-
androstane-3β,17β-diol (3-Adiol) in compounds with little or no estrogenic effect [128].
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2.5. Regulators of local steroidogenic activity
Steroid production in the skin is controlled by several internal and external factors, and is
dependent on local enzymatic activity, substrate availability, and mobilization of signal
transduction and gene expression pathways.

The hypothalamic-pituitary-adrenal (HPA) axis—Since all regulatory elements of the
hypothalamus-pituitary-adrenal gland (HPA) axis, including proopiomelanocortin (POMC)-
derived peptides [129], CRH and related peptides as well as the corresponding functional
receptors [130, 131] are expressed in mammalian skin, the concept that skin expresses a
homologue of the HPA was introduced 15 years ago [2, 73, 132]. Since then, evidence has
accumulated that the cutaneous stress system follows the functional hierarchy of the central
HPA with its direct local phenotypic consequences and systemic implications [1, 73, 133].
Most recently, it was proposed that the algorithm of HPA first developed in the primordial
integument and then was adopted by central neuroendocrine system [134]. In the skin,
induction of steroidogenesis by CRH or ACTH, or factors raising intracellular cAMP levels
appears to be cell type dependent because induced corticosterone and cortisol formation has
been observed in normal and malignant epidermal melanocytes [53, 58] and dermal
fibroblasts [57, 60], but not epidermal keratinocytes. On the other hand HF and follicular
keratinocytes were found to produce cortisol after stimulation with CRH and ACTH [59,
68]. The production of steroids in the skin after stimulation by CRH is strongly dependent
on the CRH-R1 receptor [57–59]. Another important receptor with a regulatory function on
steroids synthesis is the glucocorticoid receptor (GR coded by NR3C1), a ligand activated
transcription factor that belongs to the nuclear hormone receptor superfamily that regulates
gene expression through DNA-binding–dependent and– independent mechanisms. The wide
use of glucocorticoid analogs in clinical practice relies on their great efficacy as anti-
inflammatory agents, mostly due to the antagonism between ligand-activated GR and the
proinflammatory NF-κB, AP-1, and signal transducer and activator of transcription (STAT)
signaling pathways in the skin [135]. Though GR is alternatively spliced and species-
dependent differences in aminoacid sequences occur, there are two isoforms, GRα and GRβ.
Increased ratios of GRβ/GRα have been shown to correlate with resistance to GCs, and
constitutes a big challenge in dermatology[136]. Modern dermatology searches for novel
synthetic GR ligands that should display a better therapeutic index than the known classical
ones [137, 138].

Cytokines—Cytokines serve as communicators between immunological, endocrine and
nervous systems [139]. While the vast majority of both pro- and anti-inflammatory
cytokines are involved in cutaneous biology, recognizable effects on steroidogenesis were
caused by IL-1β and TNFα [140]. IL-1β is a critical mediator of the adaptive stress response
and stress associated psycho- and neuropathology [141]. This cytokine plays a fundamental
role in the pathogenesis of many inflammatory and autoagressive disorders in the skin, and
its expression is up-regulated by UVB [142]. Furthermore, IL-1β can activate receptors
localized on sensory nerve endings, and via a reflex switched in DRG is responsible for
release of neuroinflammatory substance P (SP) [143, 144]. IL-1β stimulates components of
the HPA axis (c-fos expression in CRH-producing parvocellular neurons in the PVN) to
enhance cortisol production [141]. Furthermore, IL-1β can directly stimulate human
adrenocortical cells [140], and similar stimulation has been also observed in epidermal
keratinocytes [65]. This finding may suggest a possible feedback loop that attenuates the
initial proinflammatory responses, preventing excess inflammation that can lead to further
tissue damage [65]. TNFα, apart from its well-characterized proinflammatory role, has
various antiinflammatory properties; an example of the latter is stimulation of the HPA axis
resulting in increased steroid production [145]. Suppressor of cytokine signaling (SOCS)
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acts as a potent negative regulator of cytokine signaling and suppresses cytokine-induced
POMC expression and ACTH release [146].

11βHSD1 and 11βHSD2—Two key enzymes that regulate the local cortisol availability
for the GR are 11βHSD1 and 11βHSD2, which are expressed in many peripheral organs
[147]. Recent studies have demonstrated that intracellular conversion, performed by these
two enzymes, together with GR activity, represent a key mechanism of tissue-specific
regulation of GC action contributing to GC deficiency, which constitutes a big challenge in
dermatology [64, 66, 81, 148, 149]. The equilibrium between 11βHSD1 and 11βHSD2
expression in the skin together with sympathetic nerves density can maintain immunological
homeostasis [1, 64, 150].

Ultraviolet radiation—Ultraviolet radiation (UVR) represents the electromagnetic energy
of solar radiation covering wavelengths between 100–400 nm. UVC (100–280nm), when
applied to the skin, stimulates cortisol production with simultaneous GR down regulation
and upregulation of CRH, POMC, ACTH, β-endorphin, CYP11A1 and 11βHSD1 [81, 151].
UVB (280–320 nm), a recognized stimulator of melanin pigmentation [152], has similar
stimulatory effect on CRH and POMC signaling, production of cortisol and inhibition of the
GR [81, 129, 131, 151, 153, 154]. UVA (320–400 nm) had no effect on cortisol, CRH and
ACTH production but stimulated β-endorphin and 11βHSD2 expression [81, 151, 155].

The CRH signaling system is highly expressed in mammalian skin (epidermis and dermis),
and its expression is up-regulated by UVR [1, 131]. UVB stimulated CREB phosphorylation
and the binding of phosphorylated CREB to CRE sites in the CRH promoter [156]. Next,
CRH interacts with CRH-R1 stimulating cAMP production with a subsequent increase in
POMC gene expression and production of ACTH [57, 60]. Pharmacological inactivation of
CRH-R1 by selective inhibitors abrogated the UVB-stimulated induction of POMC
production [156]. ACTH stimulates the cutaneously distributed MC2R to start
steroidogenesis leading to cortisol/corticosterone production. The paracrine communication
in the skin modulated by internal and external stressors can include nerve fibers,
keratinocytes, melanocytes, fibroblasts and immune cells to maintain cutaneous homeostasis
[1].

2. 6. Non-classical steroidogenesis
A recent review by Shackleton [157] describes in an elegant manner alternative branches in
steroidogenesis that are relevant to the skin. Firstly, the 7-Δ reductase deficiency observed in
Smith–Lemli–Opitz syndrome (SLOS), in an addition to severe malformations, results in
development of skin photosensitivity to UVA [158, 159] and production a series of unusual
steroids [79, 160, 161]. 7DHC (7-dehydrocholesterol) can be metabolized by CYP11A1
through hydroxylation at C22 followed by C20, cleavage of the site chain and subsequent
metabolism of the 7DHP (7dehydropregnenolone) by existing steroidogenic enzymes [54,
162, 163] (Fig. 5). Interestingly, all of the resulting 5–7 dienes are potential source of
vitamin D analogues with short side chain when subjected to UVR [54, 164], while the
hypersensitivity of skin in SLOS patients has recently been explained by reactive oxigen
species dependent formation of 5, 7, 9(10)-trienes. It was shown that cholesta-5,7,9(11)-
trien-3β-ol (9-DDHC) derivative of 7DHC is indeed formed in the skin subjected to UVA
irradiation [158]. Such a compound was capable of generating singlet oxygen in the cycle
reaction stimulated by UVR [158, 165]. Interestingly, we have recently shown that another
5,7-diene, pregna-5,7-diene-3β,17α,20-triol, when subjected to UVR may also be converted
to a triene, namely pregna-5,7,9(11)-triene-3β,17α,20S-triol [166]. The accumulation of
unusual steroidal 5,7-dienes in skin subjected to UV irradiation may generate new classes of
secosteroids with modified side-chains [166, 167]. It has to be stressed that such reactions
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lead not only to formation of vitamin D analogues, but also to other tachysterol- and
lumisterol-like derivatives. This photoconversion of 5–7-dienes was demonstrated not only
in vitro [164, 166, 167] but also ex vivo in human skin [166]. In addition, mutation of any
gene encoding enzymes involved in steroidogenesis in the skin may result in local formation
of unusual steroids, as extensively reviewed recently [157]. Finally, expression of CYP11A1
in the skin is also responsible for the local generation of novel secosteroids with a full-length
side chain [168].

3. Role of local steroidogenic pathways in inflammatory disorders
3.1. Role of local glucocosteroidogenic pathways in inflammatory disorders

Multiple components of innate and adaptive immune systems contribute to pathogenesis of
different inflammatory disorders of the skin, including atopic dermatitis, psoriasis, acne
vulgaris and alopecia areata. Although described mechanisms typically center on the role of
various immune cells and in particular on cytokines, the role of glucocorticosteroids is also
emerging. Of note, most treatments for these entities include various analogs of
corticosteroids [4]. It has recently been proposed that inflammatory skin diseases may be
driven by locally produced CRH that stimulates pro-inflammatory pathways that in turn are
not inhibited by glucocorticosteroids [130, 169–172]. These proinflammatory activities can
be counteracted by locally produced POMC derived peptides [73, 129, 173] and by locally
produced glucocorticoids [1, 73]. Note, that IL-1 affects expression of steroidoigenic
enzymes and production of cortisol in the skin [65].

Atopic dermatitis is characterized by extensive pruritus leading to extensive lichenification.
Specifically, this is initially a Th-2 entity mediated by IL-4 and IL-5 that with time becomes
driven by the cellular mode of immune response mediated by INFγ [174]. Atopic patients
demonstrate a blunted response to stress (decreased production of cortisol) compared to
normal controls [175]. Production of IL-4 and IL-5 is suppressed by glucocorticosteroids
[176]. The absence of GRs in atopic dermatitis leads to impairment of skin permeability
function [177]. Psoriatic lesions are sharply demarcated plaques with silvery scale in
characteristic distribution including scalp, elbows and knees. The Th1 immune response
with increased levels of IL-2 and INFγ occurs in psoriasis. IL-23, IL-17 and Th17
lymphocytes lead to increased levels of IL-22 that stimulates keratinocyte proliferation [16,
178]. Coiled-coil alpha-helical rod protein 1 (CCHCR1) promotes steroidogenesis by
interacting with StAR. CCHCR1 expression in psoriatic plaques is decreased [62].
Methylprednisolone inhibits production of IL-17 by lymphocytes [179]. StAR expression
has been demonstrated to be decreased or absent in psoriatic and atopic dermatitis when
compared to normal skin tissues [62, 63]. Psoriatic patients have lower saliva cortisol levels
[138]. Alopecia areata is a non-scarring alopecia that typically presents as well-
circumscribed patches of hair loss with exclamation-mark hairs, cadaver hairs and nail
pitting [180]. The HF is considered an immune privilege organ that can also be maintained
by POMC-derived peptides including melanocyte stimulating hormone (MSH) [129, 180,
181] and perhaps cortisol [59, 182]. The higher elements of the HPA axis are functional
within the pilosebaceous unit and provide another important element maintaining the
immune privilege of this site [131, 133, 171, 183]. Down-regulation of immune privilege
and local activation of the immune system is considered to be operative in alopecia areata
[180]. However, in a mouse model of alopecia areata, the basal plasma levels of ACTH and
cortisol are higher than in normal mice, although in response to stress the levels are lower
[34]. Levels of cortisol change within the HFs, which might reflect its systemic
concentration or change in local production [184]. However, it was recently documented
that indeed those levels can change locally without central input [68]. In summary, effectors
of the HPA and glucocorticoids in particular play significant roles in common inflammatory
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skin diseases, and targeted regulation of cutaneous HPA represents an exciting future
approach to treat skin pathology [1, 73].

Autoimmune progesterone dermatitis is a cyclic condition of which clinical manifestations
are triggered by progesterone surges during luteal phase of the cycle [185]. The
symptomatology includes erythema multiforme and urticaria although disease has debatable
variety of clinical and histopathological presentations [186]. Progesterone clearly causes this
condition only in some women. It is possible that abnormal local cutaneous metabolism of
systemically delivered progesterone is responsible for symptomatology. Different defects or
levels of expression of enzymes involved in steroidogenesis and steroid metabolism might
affect local processes that in turn lead to different clinical and histopathological expressions
of this entity.

3.2. Role of sex hormones in inflammatory disorders
In skin, androgens mediate their effects through interaction with the androgen receptors
(AR) triggering cascades of networks [91, 106, 187–189]. Higher levels of AR were
detected in the balding than non-balding scalp [190], while DPCs from the occipital scalp
did not express AR [191] and the expression of AR co-activator was higher in DPCs
localized at the beard and frontal scalp than in the occipital scalp [192]. Very high doses of
T or DHT induce apoptosis of DPCs through the bcl-2 pathway [193].

Androgens have a central role in acne, since acne onset is correlated with adrenarchal rise of
blood DHEA-S levels [194], it manifests in congenital adrenal hyperplasia [195], is seen
during hyperadrogenism in women [196], and it develops during anabolic steroid
administration [197]. Cutaneous manifestations (SAHA syndrome [198] – seborrhea, acne,
hirsutism, male-pattern alopecia) are common in cases of androgen excess. T and DHT
promoted sebocyte proliferation in vitro at concentrations higher than physiological levels
[70, 199], while their synergistic effect with the PPAR ligand linoleic acid resulted in
increased lipogenesis [200].

Greater activity of the 17βHSD types 3 and 5 was detected in sebaceous glands of facial skin
than in other, non-acne prone skin areas, suggesting the in situ more potent androgen
formation in these areas [74, 101]. Strong expression of steroid sulfatase was detected in
sebaceous glands of acne lesions [74]. 17βHSD2 (which can inactivate potent androgens)
and was found mostly in sebaceous glands of non-acne prone areas in comparison to facial
skin [99]. Although 5αR1 is the main enzyme converting T to DHT in human sebaceous
glands, the use of selective inhibitors did not improve acne vulgaris lesions [201]. This
might be interpreted to be due to reduced production of DHT by other 5αR isozymes to the
minimal quantity required to trigger cellular responses, and/or the idea that T rather than
DHT plays the main role in stimulating sebaceous lipogenesis [107, 202].

Of the two intracellular estrogen receptors, ERα and ERβ, ERβ is the predominant ER of
human scalp skin [203] and is expressed in NHEKs. ERα expression of foreskin NHEKs
was also reported in vitro [204, 205]. DPCs, in contrast to normal human fibroblasts, express
double mRNA levels for ERα than for ERβ [111]. Both receptors have been
immunohistochemically detected in human sebocytes in situ, but ERα was restricted in basal
sebocytes [206]. Apocrine and eccrine glands also express ERβ, but not ERα [74, 207, 208].

Estrogens stimulate the proliferation of NHEKs [209], increase acid mucopolysaccharides,
hyaluronic acid, collagen I and III synthesis [210, 211], promote wound healing [212],
protect from photoageing [213] and prevent wrinkle formation and skin dryness of post-
menopausal women [214]. Estrogens are believed to stimulate hair growth in men, by
prolonging the anagen phase of the HF and postponing their transition to telogen phase
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[114]. In vitro E2 has an inhibitory effect in hair shaft elongation in female occipital scalp,
while it promotes it in fronto-temporal male HFs [213, 215]. E2 stimulates HF vascular
endothelial growth factor (VEGF) synthesis [216]. Estrogens suppress lipogenesis and the
size of sebaceous glands in both sexes directly and indirectly, through affecting the
gonadotropins released from the pituitary [106].

ERRβ and ERRγ, two orphan members of the nuclear receptor superfamily, are expressed in
human skin and may also have a role in cutaneous estrogen signaling [217, 218].

Acne is the most common chronic disorder of the pilosebaceous unit, appearing usually
during puberty. Its multifactorial pathogenesis includes local cutaneous sex-hormone
hyperproduction or hyperresponsiveness of the epithelial cells involved, inflammatory
processes and defects of adaptive immunity [219–224]. Human sebocytes express TLR-2
[225], which is activated by P. acnes, thus triggering innate immunity mechanisms.
Involvement of SP, the CRH signaling system and the MC1 receptor in acne development
was also suggested [226–229]. The androgen/AR complex does not only affect sebaceous
gland activity, but also its inflammation, by augmenting the inflammatory responses of
neutrophils and macrophages [230, 231].

Rosacea is a chronic, progressive disorder of the interfollicular skin, affecting mainly the
convexities of the central face [171, 232]. The mechanisms involved in the disease can be
triggered by cytokines, hormones, neuropeptides [233–235], and CRH [169, 171]. UV-
radiation is considered as an initial stress factor, which triggers the cutaneous inflammatory
response [236, 237]. However, UV radiation can also create a local immunosuppressive
microenvironment (see 2.5).

Hidradenitis suppurativa/acne inversa (HS) is defined as “a chronic, inflammatory,
recurrent, debilitating skin disease of the terminal HFs with deep-seated, painful and
inflamed lesions of the apocrine gland bearing areas of the body, most commonly the
axillae, inguinal and anogenital regions” [238–240]. A hypothesis of hyperandrogenism was
suggested since premenstrual exacerbations, female preponderance, occurrence after
menarche and improvement during pregnancy were observed [241–243]. Altered serum
androgen levels [244] are rare in HS patients. Comorbidity with Crohn’s disease and other
autoinflammatory Th17-induced diseases [238], subsequent bacterial colonization of the
lesions [245, 246] and the response of HS patients to anti-TNFα factors strongly suggest
involvement of the immune system.

3.3. Local and systemic autoimmune diseases originating in or involving the skin
Lupus erythematosus (LE) has several cutaneous variants and also a systemic form. The
diagnosis is made based, on among other things, on the presence of anti-nuclear antibodies
including anti-native DNA (systemic LE), anti-Sm (systemic LE), and anti-Ro (subacute
cutaneous LE) [247]. Antigen-antibody complexes are deposited at the dermo-epidermal
junction. What triggers production of autoantibodies is still not known, although various
genetic and environmental factors are considered [4, 247]. Corticosteroids are one of the
main medications used for treatment [4, 247]. Levels of androstenedione, cortisol and
DHEA-S are lower in patients with systemic LE than in healthy subjects [248]. ACTH levels
do not differ between LE patients and controls [248]. Glucocorticoid treatment seems not to
be responsible for these changes but they are possibly due to abnormal cytokine levels or a
Th17/Th1 imbalance [248, 249]. In other studies, untreated LE patients had levels of 17-
hydroxypregnenolone and cortisol similar to controls, and levels of progesterone, 17-
hydroxypogesterone, androstenedione, DHEA and DHEA-S lower than controls [250].
Inhibition of the C17-C20 lyase step of the of CYP17 reaction can also be responsible for
decreased levels of steroids in LE patients [250].
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Systemic sclerosis (SSc, scleroderma) is an autoimmune disease characterized by a poorly
understood vasculopathy, autoimmunity, and extensive deposition of extracellular matrix
(ECM) components in skin, lungs, gastrointestinal tract, heart and other body structures [4,
251]. Endothelial damage contributes to ongoing platelet aggregation with release of a
member of fibrogenic mediators such as TGFβ1, TGFβ2, IL-4, platelet derived growth factor
(PDGF), connective tissue factor, sphingosine 1-phosphate and lysophosphatidic acid [252].
Defective angiogenesis, neointimal proliferation and vascular spasm contribute to tissue
hypoxia further stimulating ECM deposition [252]. There is also predominance of Th17 and
Th2 cells with release of IL-17, IL-4 and IL-13 at sites of lymphocytic infiltration which
contributes to ongoing fibrosis [252]. Basal levels of cortisol, androstenedione, DHEA-S
and 17-hydroxyprogesterone in patients with SSc do not differ from healthy controls [253,
254]. Levels of DHEA are lower and of ACTH are higher in SSc patients [254]. They also
have a diminished response to a stress test or hypoglycemia, i.e. their level of cortisol does
not increase [253, 254]. Apparently, the HPA axis malfunctions in these patients.

4. Systemic implications of cutaneous steroidogenesis and conclusion
Since skin is the largest organ of the human body with powerful neuroendocrine activities
(for most recent review see [1]), local production of sex steroids makes a significant
contribution to circulating androgens and/or estrogens [255]. Up to half of the total
circulating T is produced from skin and other peripheral organs [198]. The stromal cells of
adipose tissue express CYP19A1 (aromatase) [256, 257] and provide a source of androgens
for both sexes. The skin-located formation of E1 from circulating androstenedione can be
the main site of estrogen biosynthesis in postmenopausal women, obese individuals and
elderly men. Interestingly, CYP19A1 gene expression is higher in subcutaneous than
omental adipose tissue [258–260]. The intracrine production of estrogens in peripheral
tissues in women is around 75% in premenopausal and almost 100% in postmenopausal
women, with a minor contribution from adrenal and ovarian T and androstenedione [97].

Although it still remains to be tested whether skin produced CRH, urocortin and ACTH can
affect pituitary or adrenal functions, it is already well documented that CRH and POMC
signaling systems in communication with cytokines can regulate local steroidogenic activity
and skin immune activity in a context and compartment dependent manners (for most recent
review see [1]). Furthermore, after exposure to UVB human skin in organ culture produces
and secretes CRH, POMC derived ACTH, β-endorphin and cortisol [151]. Similarly, in vivo
studies demonstrate that HF releases cortisol into the hair shaft after local pain stimuli [68].
Thus, it is likely that depending on the type and strength of the stressor(s), cutaneous
elements of HPA including POMC-derived peptides and glucocorticoids will be released
into the circulation. We have already obtained initial evidence that mice exposed to UVB
show increased serum levels of ACTH, β-endorphin and corticosterone (Skobowiat and
Slominski, in preparation). Furthermore, locally produced glucocorticoids or POMC-
peptides can induce resident and circulating immune cells to express immunosuppressive
phenotype with potential systemic implications as suggested previously [1]. The biological
significance of novel local secosteroidogenic pathways based on action of CYP11A1 on
7DHC and vitamin D represents a new exciting challenge is skin research [163, 168].

In conclusion, skin is a steroidogenic organ in which local steroidogenic activities can
regulate local and systemic immune activities, and dysregulation of cutaneous
steroidogenesis may be etiologically linked to inflammatory or autoimmune skin diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS LIST

ACTH adrenocorticotropic hormone

cAMP/PKA cAMP-dependent protein kinase A

CD cluster of differentiation

CRH corticotrophin releasing hormone

CYP11A1 or P450 scc cytochrome P450 side-chain cleavage enzyme

CYP11B1 11-hydroxylase type 1

CYP11B2 11-hydroxylase type 2

CYP17A1 or P450c17 cytochrome P450 17α-hydroxylase/17,20-lyase

CYP21 21-hydroxylase

DAX-1 dosage-sensitive sex-reversal-adrenal hypoplasia congenital
critical region on the x-chromosome, gene 1

DHEA dehydroepiandrosterone

DHT dihydrotestosterone

DOC deoxycorticosterone

DPCs Dermal Papilla Cells

E1 Estrone

E2 estradiol

ECM extracellular matrix

ERE estrogen response element

ERR estrogen-related receptor

F-1 steroidogenic factor 1

GM-CSF granulocyte-macrophage colony-stimulating factor

HPA hypothalamus-pituitary-adrenal gland

HF hair follicle

HS Hidradenitis suppurativa/acne inversa

3α-HSD 3α-hydroxysteroid dehydrogenase

3β-HSD 3β-hydroxysteroid dehydrogenase

HSD11B1 or 11-HSD 1 11-hydroxysteroiddehydrogenase type 1

HSD11B2 or 11-HSD 2 11-Hydroxysteroiddehydrogenase type 2

17β-HSD 17β-hydroxysteroid dehydrogenase

INF interferon

IRSKS Inner root sheath keratinocytes
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LE Lupus erythematosus

MHC major histocompatibility complex

NFkB nuclear factor kappa-light-chain-enhancer of activated B cells

NHEKs normal human epidermal keratinocytes

ORSKs outer root sheath keratinocytes

POMC proopiomelanocortin

5αR 5α-reductase

SSc Systemic sclerosis

SP substance P

StAR steroidogenic acute regulatory protein

T testosterone

TGFβ Transforming growth factor β

Th T helper

GR glucocorticoid receptor

MR mineralocorticoid receptor

UVR ultraviolet radiation
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Highlights

• Human skin produces and metabolizes glucocorticosteroids

• Human skin produces and metabolizes sex hormones

• Cutaneous steroidogenesis is regulated by local factors and UVR

• Skin derived steroids regulate activity of skin immune system

• Dysregulation of cutaneous steroidogenesis can lead to inflammatory or
autoimmune disorders

Slominski et al. Page 31

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Elements of innate and adaptive immune system
Yellow circle: innate part; blue circle: adaptive part; green dots: cytokines; 1. Microbe; 2.
Neutrophil; 3. Mast cell; 4. Eosinophil; 5. NK cell; 6. Keratinocyte; 7. Complement; 8.
Antimicrobial peptides; 9. Langerhans cell; 10. T helper 1/2/17 lymphocyte; 11. Cytotoxic
lymphocyte; 12. Plasma cell; 13. Antibodies.
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Figure 2. Cutaneous steroidogenic pathways
DHEA: dehydroepiandrosterone, StAR: steroidogenic acute regulatory protein, CYP11A1 or
P450scc: cytochrome P450 side-chain cleavage enzyme, CYP17A1 or P450c17: cytochrome
P450 17α-hydroxylase/17,20-lyase, 3β-HSD: 3β-hydroxysteroid dehydrogenase, DHEAS:
dehydroepiandrosterone sulfate, DHT: dihydrotestosterone, 3α-HSD: 3α-hydroxysteroid
dehydrogenase, SF-1: steroidogenic factor 1, E2: estradiol, SULT1E1: estradiol
sulfotransferase, E1: Estrone, 5αR: 5α-reductase, HSD11B1 or 11-HSD1: 11-
hydroxysteroiddehydrogenase type 1, HSD11B2 or 11-HSD2: 11-
hydroxysteroiddehydrogenase type 2, CYP21: 21-hydroxylase, CYP11B1: 11-hydroxylase
type 1, CYP11B2: 11-hydroxylase type 2
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Figure 3. Compartmental expression of enzymes and co-factors involved in cutaneous
steroidogenesis
DPCs: Dermal Papilla Cells, ORSKs: outer root sheath keratinocytes, IRSKS: Inner root
sheath keratinocytes, BS: Basal Sebocytes, DS: differentiating sebocytes, MS: mature
sebocytes, AR: androgen receptor, HF: hair follicle, SF-1: steroidogenic factor 1, SREBP-1:
sterol response binding protein-1, DAX-1:dosage-sensitive sex-reversal-adrenal hypoplasia
congenital critical region on the X-chromosome, gene 1, ERR: estrogen-related receptor,
ERα/β: estrogen receptor α or β, PR: progesterone receptor, GR: glucocorticoid receptor,
MR: mineralocorticoid receptor,
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Figure 4. (Bu)2cAMP stimulates StAR gene expression and pregnenolone production
Detailed methodology is in Supplementary Methods. Briefly, mouse adrenocortical (Y-1),
Leydig turmor (MA-10), granulosa (KK-1), and human keratinocyte (HaCaT) cells were
treated without or with (Bu)2cAMP (1.0 mM) as indicated, in the presence of SU-10603 (20
μM) and cyanoketone (5 μM). StAR mRNA expression (A) was measured by quantitative
real-time PCR, while accumulation of pregnenolone in conditioned media (B) was
determined by RIA. Gene expression is shown as fold changes in StAR mRNA levels
relative to untreated cells, while levels of pregnenolone are expressed as ng/mg protein.
Results represent means ± SE of four independent experiments.
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Figure 5.
Production of 7-Δ-steroids in the skin.
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Table 1

Expression of CYP enzymes involved in steroid biosynthesis and the major steroid products in classical
steroidogenic tissues.

Organ/tissue CYP enzymes Other Steroidogenic proteins Major Steroid products

Adrenal cortex, zona glomerulosa 11A1, 17A1, 21A2, 11B2 StAR protein, 3βHSD2 aldosterone

Adrenal cortex, zona fasciculata 11A1, 17A1, 21A2, 11B1 StAR protein, 3βHSD2 cortisol

Adrenal cortex, zona reticularis 11A1, 17A1, 11B1 StAR protein, cytochrome b5,
sulfotransferase

DHEA-S

Ovary, corpus luteum 11A1, 17A1, 19A1 StAR protein, 3βHSD2, progesterone,

Ovary, follicle, granulosa cells 11A1, 19A1 StAR protein, 17βHSD1 estradiol

Ovary, follicle, thecal cells 17A1 3βHSD2 androstendione (converted to
estrogen in granulosa)

Testis, leydig cells 11A1, 17A1, StAR protein, 3βHSD2, 17βHSD3 testosterone

Placenta, syncytiotrophoblasts 11A1, 19A1 MLN64, 3βHSD1, 17βHSD1, steroid
sulfatase

progesterone, estradiol, estrone,
estriol

See [23] for further details of steroidogenesis in the tissues listed.
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Table 2

Extra-adrenal and extra-adrenal steroidogenesis in humans.

Tissue CYP Enzymes Other Steroidogenic proteins Major Products from cholesterol References

Brain 11A1, 17A1, 11B1,
11B2, 2D6 (21-
hydroxylase)

StAR, 3βHSD,
sulfotransferase, 5α-reductase
3αHSD

pregnenolone sulfate, DHEA-S,
corticosteroids

[23, 36, 38]

Gut 11A1, 17A1, 21A2,
11B1

3βHSD cortisol [36, 49]

Heart 11A1, 21A2, 11B1,11B2 StAR, 3βHSD aldosterone [36]

Mammary Gland 11A1, 19A1 Unknown [36, 48]

Prostate (including tumors) 11A1, 17A1 StAR, MLN64, 3βHSD,
17βHSD, 11βHSD, 5α-
reductase, cytochrome b5

progesterone, androgens [41–47].

Skin 11A1, 17A1, 21A2,
11B1, 19A1

StAR, MLN64, adrenodoxin,
adrenodoxin reductase,
3βHSD1, 17βHSD, 11βHSD

glucocorticoids, androgens, estrogens [65, 69, 73,
151, 255]
Also see
Sections
2.3 and
2.4.

Thymus* (mouse) 11A1, 11B1, 21A2 StAR, 3βHSD corticosterone [36, 39]

*
Steroidogenesis in thymus is for mouse species.
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