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Abstract
We investigate the properties of the Phase Locking Value (PLV) and the Phase Lag Index (PLI) as
metrics for quantifying interactions in bivariate local field potential (LFP),
electroencephalography (EEG) and magnetoencephalography (MEG) data. In particular we
describe the relationship between nonparametric estimates of PLV and PLI and the parameters of
two distributions that can both be used to model phase interactions. The first of these is the von
Mises distribution, for which the sample PLV is a maximum likelihood estimator. The second is
the relative phase distribution associated with bivariate circularly symmetric complex Gaussian
data. We derive an explicit expression for the PLV for this distribution and show that it is a
function of the cross-correlation between the two signals. We compare the bias and variance of the
sample PLV and the PLV computed from the cross-correlation. We also show that both the von
Mises and Gaussian models are suitable for representing relative phase in application to LFP data
from a visually-cued motor study in macaque. We then compare results using the two different
PLV estimators and conclude that, for this data, the sample PLV provides equivalent information
to the cross-correlation of the two complex time series.
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1. Introduction
Information processing in the brain involves coordination of neuronal populations
distributed throughout the cerebral cortex (Tononi and Edelman, 1998; Horwitz, 2003).
Detecting and quantifying the interactions between these neuronal populations can lead to
important insights into the dynamic networks that underlie human brain function.
Noninvasive electrophysiological mapping with the electroencephalogram (EEG) and
magnetoencephalogram (MEG), as well as invasive recordings in patients and nonhuman
primates, provide data that we can use to explore these interactions. Electrophysiological
signals can be usefully characterized in terms of their oscillatory components either through
band-pass filtering into the standard frequency bands (delta, theta, alpha, beta, and gamma)
or using broadband spectral representations of the data. Interactions can then be analyzed
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using measures of within and between frequency-band coupling between electrode or
magnetometer pairs. If EEG or MEG data are first mapped back onto cortex using an inverse
mapping procedure (Baillet et al., 2001), then we can also compute interactions between
time series averaged over cortical regions of interests (ROIs).

In this paper we restrict attention to within-band coupling computed between pairs of
electrodes, magnetometers or cortical ROIs. The most widely used measure defines
interaction in terms of coherence, a complex measure of phase and amplitude similarity
computed as a function of frequency (Nunez et al., 1997; Klein et al., 2006; Challis and
Kitney, 1991). An alternative class of measures considers only the relative phase through
computation of a phase locking value between the two signals (Tass et al., 1998). Phase
locking is a fundamental concept in dynamical systems that has been used in control systems
(the phase-locked loop) and in the analysis of nonlinear, chaotic and nonstationary systems.
Since the brain is a nonlinear dynamical system, phase locking is an appropriate approach to
quantifying interaction. A more pragmatic argument for its use in studies of LFPs (Local
Field Potentials), EEG and MEG is that it is robust to fluctuations in amplitude that may
contain less information about interactions than does the relative phase (Lachaux et al.,
1999; Mormann et al., 2000).

The most commonly used phase interaction measure is the Phase Locking Value (PLV), the
absolute value of the mean phase difference between the two signals expressed as a complex
unit-length vector (Lachaux et al., 1999; Mormann et al., 2000). If the marginal distributions
for the two signals are uniform and the signals are independent then the relative phase will
also have a uniform distribution and the PLV will be zero. Conversely, if the phases of the
two signals are strongly coupled then the PLV will approach unity. For event-related studies
we would expect the marginal to be uniform across trials unless the phase is locked to a
stimulus. In that case, we may have nonuniform marginal which could in principle lead to
false indications of phase locking.

When comparing electrode pairs that share a common reference or overlapping lead field
sensitivities, or when investigating cortical current density maps of limited resolution, the
PLV suffers from sensitivity to linear mixing in which the same source can contribute to
both channels. In these cases, the PLV can indicate an apparent phase locking with the
relative phases concentrated around zero. Stam et al. (2007) proposed an alternative
measure, the Phase Lag Index (PLI) that is robust to the common source problem. PLI
quantifies the asymmetry of the relative phase distribution about zero and so will produce
large values only when the relative phase is peaked away from zero.

In this paper we first define nonparametric estimates of PLV and PLI, and consider the bias
intrinsic in the sample PLV estimator. We derive an expression for the unbiased estimator of
the squared PLV and show equivalence to the Pairwise Phase Consistency (PPC) metric
recently proposed by Vinck et al. (2010). We then investigate the relationship between PLV
and PLI and two possible parametric distributions that can be used to model relative phase.
The first of these, the von Mises distributions, is the maximum entropy distribution over the
class of circular distributions (Jammalamadaka and Sengupta, 2001). The second model is
the relative phase distribution associated with complex circularly symmetric Gaussian
processes. This model is appropriate for complex signals generated fom jointly Gaussian
real signals through use of the Hilbert transform. The relative phase distribution is obtained
by marginalizing the joint Gaussian distribution with respect to the amplitude of the two
complex signals. We derive closed-form expressions for the relationship between PLV and
the parameters of the von Mises and Gaussian models.
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Invasive microelectrode recordings can be used to investigate both multiunit activity, which
reflects axonal firing rates, and the local field potentials (LFPs) associated with dendritic
and volume conduction currents. In this paper we are concerned with the application of PLV
and PLI measures to LFPs as well as noninvasive EEG and MEG measurements that
similarly result from dendritic and volume conduction currents. We use LFP recordings
from a macaque monkey study (Bressler et al., 1999) to investigate whether the von Mises
and Gaussian distributions are appropriate for modeling relative phase between pairs of
electrodes. We then compare the ability of two different estimators of PLV, associated
respectively with the von Mises and Gaussian models, to detect phase locking between
electrodes.

The goal of this work is to clarify the relationships between nonparametric estimators of
PLV and PLI and two well-known parametric distributions that could be used to model
phase interactions. A second goal is to investigate the relationship between PLV and cross-
correlation when analyzing LFP data. We begin by stating, and where appropriate deriving,
these relationships. We then present computational simulations and analysis of experimental
LFP data using different PLV estimators.

2. Measures of Phase Synchronization
2.1. The Phase Locking Value and Phase Lag Index

Phase synchronization between two narrow-band signals is frequently characterized by the
Phase Locking Value (PLV). Consider a pair of real signals s1(t) and s2(t), that have been
band-pass filtered to a frequency range of interest. Analytic signals zi(t) = Ai(t)ejφi(t) for i =

{1, 2} and  are obtained from si(t) using the Hilbert transform:

(1)

where HT (si (t)) is the Hilbert transform of si(t) defined as

(2)

and P.V. denotes Cauchy principal value. Once the analytic signals are defined, the relative
phase can be computed as

(3)

The instantaneous PLV is then defined as (Lachaux et al., 1999; Celka, 2007)

(4)

where E[.] denotes the expected value. The PLV takes values on [0, 1] with 0 reflecting the
case where there is no phase synchrony and 1 where the relative phase between the two
signals is identical in all trials. PLV can therefore be viewed as a measure of trial to trial
variability in the relative phases of two signals. In this work we use the Hilbert transform but
the continuous Morlet wavelet transform can also be used to compute complex signals,
producing separate band-pass signals for each scaling of the wavelet. Quiroga et al. (2002)
and Le Van Quyen et al. (2001) have shown that both approaches yield similar results.
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When computing synchrony between pairs of electrodes or cortical locations, nonzero PLVs
can arise from a single source contributing to both signals as a result of either volume
conduction in channel space or limited spatial resolution in the case of cortical current
density maps (Nunez et al., 1997; Tass et al., 1998; David et al., 2002; Guevara et al., 2005;
Amor et al., 2005; Vinck et al., 2011). In this case of direct linear mixing there is no phase
lag between the two signals potentially resulting in a large value of PLV. Linear mixing can
therefore easily be mistaken for phase locking between distinct signals. To distinguish these
two conditions we need a different measure of phase locking that is zero in the case of linear
mixing but nonzero when there is a consistent nonzero phase difference between the two
signals. The Phase Lag Index (PLI) (Stam et al., 2007) achieves this goal by quantifying the
asymmetry of the distribution of relative phase around zero and is defined as

(5)

PLI takes values on the interval [0, 1] and is zero if the distribution of relative phase is
symmetric about 0 or π.

In practice PLV and PLI are typically estimated by averaging over trials and/or time
(Lachaux et al., 1999, 2000; Mormann et al., 2000; Stam et al., 2007; Aviyente et al., 2010).
For notational convenience, we will drop the explicit dependence on t in the following. A
nonparametric estimate of PLV can be computed by approximating equ. (4) by averaging
over trials:

(6)

where n indexes the trial number and N is the total number of trials. The estimator
generalizes in an obvious way to incorporate averaging over multiple time samples. The
corresponding nonparametric estimator for PLI is

(7)

In the following section we consider the relationship between PLV and PLI and the
parameters of two alternative probability distributions that can be used to characterize phase
interactions: the von Mises and the bivariate circularly symmetric Gaussian. We first
consider the issue of bias in the nonparametric PLV estimator.

Without specifying the distribution of relative phase, we cannot find an expression for the
bias in the sample PLV defined in (4). However, as shown by Vinck et al. (2010), in the

general case  is a biased but consistent estimator of PLV:

(8)

(9)
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Working with the squared estimator of PLV, rather than PLV itself, it is straightforward to

derive the following non-parametric expression for the bias of  as a function of N
(see Appendix A):

(10)

This expression holds regardless of the distribution of the relative phase. Rearranging the
expression we obtain the following unbiased PLV2 estimator:

(11)

Interestingly, this measure is identical to Vinck’s Pairwise Phase Consistency (PPC)
measure

(12)

as we show in Appendix B. While this is an unbiased estimator, in general its square root is

not an unbiased estimator of PLV. The bias in  is dependent on distribution and we
were unable to find closed form unbiased estimators for either the von Mises or circular
Gaussian distributions that we investigate below.

We illustrate the bias and variance of these estimators in Fig. 1 for relative phase values
sampled from the von Mises distribution (which we describe in detail in the following
section). By varying the concentration parameter of the von Mises distribution we are able to
produce differing values of PLV. The figure shows that bias decreases rapidly with number
of samples and is negligible for N > 50. We also see that bias reduces as true PLV increases
for fixed N. Finally, as observed by Vinck et al. (2010), we see that there is a small increase
in variance when using the unbiased rather than biased measure. Since bias is small except
when the number of trials is small, in the following we will continue to work with the biased
estimator of PLV, which simplifies our analysis of the relationships between PLV and the
parameters of the von Mises and circular Gaussian models.

2.2. Phase Locking Value and the von Mises Distribution
The von Mises distribution is the most widely used model for circular (or periodic) random
variables, in part because it is the circular distribution with maximum entropy subject to
constraints on its first trigonometric moments (Jammalamadaka and Sengupta, 2001). The
probability density function (pdf) of the von Mises disribution is:

(13)

with concentration parameter κ ∈ [0, ∞) and mean ; I0(κ) is the modified
Bessel function of zeroth order
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(14)

The von Mises distribution is unimodal and symmetric about μ as illustrated in Fig. 2(a) for
μ = 0. As the concentration parameter κ increases, the relative phase φ becomes increasingly
concentrated about its mean. In the limit as κ goes to 0, it reduces to a uniform distribution
corresponding to the case where the phases of the two signals are mutually independent.

The PLV for the von Mises pdf can be found from the moment generating function:

(15)

as shown by Jammalamadaka and Sengupta (2001). The PLV is therefore a monotonic
function of κ and independent of μ. In contrast, PLI can be found as:

(16)

A closed form for this expression is intractable but it is clear that unlike PLV, PLI is a
function of both κ and μ. We show this dependence in Fig. 3 for samples drawn from the
von Mises distribution. This figure illustrates the monotonic relationship between PLV and
κ and the more complex interaction between (κ, μ) and PLI.

From equ. (15) we see that the PLV can be computed from an estimate of the concentration
parameter κ. As shown in Jammalamadaka and Sengupta (2001), the maximum likelihood
estimator of PLV for the von Mises distribution can be computed directly from a maximum
likelihood estimator of κ and furthermore, the resulting estimator is identical to the sample
PLV estimator in equ. (6):

(17)

2.3. Phase Locking Value and Circularly Symmetric Gaussian Processes
We now turn to an alternative statistical model for relative phase. Under the assumption that
the time series whose phases are being compared are jointly Gaussian, then the distribution
of their relative phase, and hence the PLV and PLI, must be governed by the properties and
parameters of that Gaussian process. We now examine these relationships.

Let the sources s1(t) and s2(t) be jointly Gaussian zero mean processes. Then, the complex

random vector  where zi(t) = si(t) + jHT (si(t)) = Ai(t)ejφi(t) follows a
circularly symmetric complex Gaussian distribution that satisfies the condition E[z(t)z(t)T] =
0 and has the property that the real and imaginary components of z(t) are mutually
independent (Gallager, 2008). The pdf of the circularly symmetric complex Gaussian
distribution for a vector z(t) is

(18)
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where, for the bivariate case  is the covariance
matrix of z(t), with 0 ≤ κ12 < ∞ and −π ≤ μ12 ≤ π. Inverting this matrix and normalizing

gives the cross-correlation between z1(t) and z2(t) as .

We rewrite the pdf in polar coordinates in order to investigate the relative phase distribution:

(19)

(20)

where  and .

For the univariate case the circularly symmetric Gaussian pdf in polar form is separable. In
other words, if we write z = Aeiφ, then the density can be written p(z) = p(A, φ) = p(A)p(φ),
where p(A) follows a Rayleigh distribution and p(φ) is uniform (Davenport and Root, 1958).
However, this is not the case for the bivariate case, i.e. p(A(t), Φ(t)) ≠ p(A(t))p(Φ(t)), but
rather the phase and amplitude are mutually coupled unless the cross-correlation is 0. We
therefore now consider two different distributions for the relative phase Δφ(t) = (φ1(t)
−φ2(t)): the distribution conditioned on the amplitudes, and the distribution in which we
marginalize out the amplitudes.

From Bayes rule, the phase distribution conditioned on amplitude can be written as:

(21)

As shown in Appendix C, this results in the following conditional distribution for relative
phase:

(22)

Note that this has the form of a von Mises distribution, but with the mean and concentration
parameters a function of not only the parameters of the Gaussian but also the amplitude of
the observations. This result clearly shows that while we may be interested only in the
relative phases of two signals, amplitude and phase are not independent, so that the
amplitudes of the signals affect the relative phase distribution (and vice versa). Put another
way, the amplitude and phase of jointly Gaussian signals do not contain independent
information about those signals. Because of this amplitude dependence, to determine the
distribution of the relative phase alone we need to marginalize with respect to amplitude, as
also independently shown by Vo et al. (2011), to obtain the relative phase distribution:

(23)
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where  and γ ≜ |R12|cos (Δφ(t) − μ12). Note that in this case the relative
phase is solely a function of the cross-correlation R12 between z1(t) and z2(t), which also
governs the correlation in amplitude between the two signals.

Fig. 2(b) shows plots of the relative phase distribution for the circularly symmetric complex
Gaussian model for different values of R12 with μ12 = 0. Varying μ12 from zero will
circularly shift the distribution so that its maximum is at μ12. In comparison to the von
Mises distribution, |R12| plays the role of the concentration parameter, and μ12 the mean.
However, there are differences in the shapes of these two distributions, with the Gaussian
case showing slightly longer tailed behavior.

Using the moment generating function of the relative phase PDF (equ. 23), as we show in
Appendix D, we find the phase locking value for the circularly symmetric Gaussian model is

(24)

where  and 2F1(.) represents the hypergeometric function. Note that PLV is a
function of the magnitude of the cross-correlation . Fig. 4 shows this one-
to-one relationship. The significance of this result is as follows. The parameter κ12/κ11κ22
represents the magnitude of the cross-correlation between the two complex Gaussian
processes z1(t) and z2(t). If these are narrow-band signals, the cross-correlation at a single
frequency is equivalent to coherence between the two processes at that frequency.
Consequently, PLV and coherence are equivalent measures. Of course, this holds only for
the Gaussian case, and we will return to the question of whether electrophysiological signals
can be adequately modeled as jointly Gaussian in the following section.

As with the von Mises case, we do not have a closed form for PLI using the integral in equ.
(16) after substituting in the relative phase distribution in equ. (23) for the Gaussian case.
However, we can determine the relationship between PLI and the Gaussian parameters (|
R12|, μ12) by Monte Carlo sampling. We generated samples from the relative phase
distribution in equ. (23) for a range of values of |R12| and μ12. Fig. 5 shows sample estimates
of PLV and PLI as a function of these two parameters. Again, similarly to the von Mises
case, while PLV depends only on the |R12| value, PLI is a function of both |R12| and μ12.

The relationship in equ. (24) between cross-correlation and PLV also gives us an alternative
estimator for the latter. Rather than directly computing sample PLV, we can instead compute
the sample estimator of |R12| and then substitute this into equ. (24). We refer to this

estimator as . In the following section we compare this with the sample PLV
estimate in both simulated and experimental LFP data.

3. Results
3.1. Simulations Based on the Gaussian distribution

In the previous section we described three different estimators for the PLV:  (equ.

6),  (equ. 11), and  (the PLV computed from the sample cross-
correlation, Equ. 24). Their relative performance in terms of bias and variance will depend
on the true distribution of the data. Before considering the case of experimental
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electrophysiological data, we will first explore their behavior for simulated bivariate
Gaussian processes.

We generated independent samples from two different bivariate Gaussian processes with
normalized cross-correlation values of |R12| = 0.25 and |R12| = 0.91, with analytic PLV
values of 0.20 and 0.83, respectively. This was achieved by multiplying pairs of independent
zero mean uncorrelated Gaussian random variables by the inverse square root of the 2 × 2

covariance matrix . We then generated the complex signal by applying the
Hilbert transform to the bivariate sequences using Matlab’s discrete Fourier transform based

“Hilbert” function. For both values of correlation we computed ,

and  as a function of sample size N. A total of 1,000 Monte Carlo trials were
performed for each value of cross-correlation and N, and sample means and variances
computed for each measure of PLV. Results are plotted in Fig. 6.

All three measures exhibit bias for small N. Note that while  is an unbiased
estimator of PLV2, its square root is not an unbiased estimator of PLV although it does

exhibit the lowest bias among the three estimators. As expected,  also has the
largest variance. It is also clear from Fig. 6 that the variance when estimating PLV from the

cross-correlation is significantly smaller than that of . Consequently, for data that
are approximately Gaussian, using cross-correlation to compute phase locking gives a more
reliable (lower variance) interaction measure than does sample PLV. In comparison, in the
case of the von Mises distribution, we saw that the sample PLV is a maximum likelihood
estimator which is asymptotically efficient and in practice tends to exhibit close to minimum
variance behavior even for small sample sizes.

3.2. Roessler Oscillator Simulations
Roessler oscillators are commonly used models of weakly coupled stochastic oscillators. We
generated two Roessler oscillators ξ1 and ξ2 using the equations described in Schelter et al.
(2006):

(25)

where i, j ∈ {1, 2}. The parameters were a = 0.5, b = 0.2, c = 10, ω1 = 1.03, ω2 = 1.01 and
ηj is standard Gaussian noise. A range of values of σ were used as shown in Fig. 7.
Parameter εi, j controls the amount of coupling from the ith to the jth oscillator and is set
such that ε12 = ε21 = ε implying a bidirectional coupling. In this study we consider two
cases: coupling (ε > 0) and no coupling (ε = 0). For each of 1, 000 trials we generated time
series up to length 9, 000 samples with a sample interval Δt = 0.02.

We used the simulated time series X1 and X2 to investigate the behavior of  and

 for the cases with and without coupling. We generated receiver operating
characteristic (ROC) curves (Swets, 1996) showing the fraction of true positive values (PLV
> τ when ε > 0) versus false positives (PLV > τ when ε = 0) as a function of the threshold τ.
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Comparing the ROC curves for the two different PLV estimators we can determine which
has the better sensitivity vs. specificity performance, as indicated by the area under the
curve, AUC (an AUC = 1 represents error free detection).

A sample ROC curve is shown in Fig. 7(a) for the two estimators, indicating superior

detection performance for  compared to . Figs 7b–d show the AUCs for
the ROC curves over range of (b) coupling parameters, (c) number of samples, and (d)

variances. Results consistently show superior performance for , particularly for
small values of the coupling parameter and for a relatively small number of samples. As

these parameters increase, results for both estimators are similar. Since the  is a
deterministic monotonic function of the sample cross-correlation, it follows that identical

ROC curves would be obtained by replacing  with the sample cross-correlation.
These results indicate that even in the cases where the data are not Gaussian, PLV
calculation based on the Gaussian model (or equivalently, the sample cross-correlation) can
give superior detection of coupling than can be achieved using the sample PLV. This seems
to indicate that care should be taken in interpreting PLVs, since they do not necessarily
provide different or more reliable insight into data than does the sample correlation. This is
the case even in this case where the data are not obviously Gaussian. We now turn to the
case for experimental data.

3.3. Analysis of LFP data
Phase locking values have been used to analyze invasive (cortical and depth electrode) and
noninvasive (EEG, MEG) recordings. In our work we are interested in modeling signals
ranging in scale from local field potentials from microelectrodes through invasive recordings
with larger electrodes as well as EEG and MEG. Of these, microelectrode LFPs have the
most localized sensitivity. The other recordings can be viewed as equivalent to linear
mappings of LFPs at the cortical level (or equivalently, the combination of dendritic and
volume current sources that give rise to them) by integration with respect to the field
sensitivities of the electrodes or magnetometers. These macro recordings should therefore be
more Gaussian than the microrecordings through a law of large numbers argument.
Conversely, multiunit and single unit recordings reflect the spiking activity associated with
action potentials, and we would expect these to be highly non-Gaussian. Here we investigate
the degree to which LFP recordings can be assumed to be Gaussian from the perspective of
their relative phase distributions. In other words, we explore whether PLVs computed from
cross-correlations produce equivalent results to those computed directly using the sample
PLV.

For this study we used the LFP data described by Bressler et al. (1993), which has been
widely studied over the past two decades (Bressler, 1995; Bressler et al., 1999; Ding et al.,
2000; Brovelli et al., 2004). Recordings were made using 51 μm diameter bipolar electrodes
separated by 2.5 mm in macaque monkeys. Measurements from a total of 15 electrode pairs
in the right hemisphere, with approximate locations shown in Fig. 8, were analyzed. In the
experiment the monkey was trained to depress a lever and wait for a visual cue to either go
(release) or no-go (not release). The go and no-go cues were a diamond and line pattern as
shown in Fig. 9, with the choice of diamond or line as the go cue changing between
experiments. The cue was given 115ms after the lever was depressed, and a reward given if
the monkey responded correctly to the go cue within 500ms. In the results presented below,
we examine phase-locking at two time intervals: early response (120 ± 25 msec after cue)
and late response (260 ± 25 msec after cue). Data were originally sampled at 200Hz and bad
trials discarded. The remaining 10, 178 trials contained 5225 go trials (go cue is line for
2322 trials and diamond for 2903 trials) and 4953 no-go trials (no-go cue is diamond for
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2407 trials and line for 2546 trials). For this study, the data for each channel and trial was
first band-pass filtered to a frequency band 13–30 Hz by using two-way elliptic IIR filtering
of order 14. Hilbert transforms were then applied to each of these time series using Matlab’s
“Hilbert” transform function. Because of the use of bipolar electrodes, the data should not be
sensitive to volume conduction effects and therefore we restrict attention here to PLV and
do not compute PLI.

We first consider the relative phase distribution between pairs of electrodes. In Fig. 10, we
show goodness of fit between the empirical relative phase distribution extracted from LFP
data and the theoretical distributions based on von Mises and circularly symmetric Gaussian
models. To compute the theoretical distributions we assumed zero mean and estimated the
concentration (for von Mises) and cross-correlation (for Gaussian) parameters from the
sample data. The electrodes and the tasks are selected based on the results represented in
Table 2 which will be discussed later. The common feature of all selected electrodes is that
they represent significant interaction when using sample PLV and circularly symmetric
Gaussian PLV. We used a chi-square goodness of fit test for the two distributions (Lancaster
and Seneta, 2005). We list the p-values for the selected pairs in Table 1. We were unable to
reject the null hypothesis at α = 0.05 for either distribution for any pairs shown, with the
exception that the von Mises was rejected between electrodes 3 and 5 at 120 msec as shown

in Fig. 10(c) and listed in Table 1. We also plot  versus  using all
pairwise combinations in Fig. 11. We can conclude from these results that either distribution
is probably adequate to represent the true phase relationships in this LFP data.

We computed  and  for each electrode pair for each of the 18
experiments for the early and late intervals with trials sorted in two ways: (a) by visual cue
(diamond vs. line) and (b) task (go vs no-go). Since the visual cues were switched in
different experiments, the two different groupings allow us to differentiate interactions
associated with cue vs. those associated with task.

To assess significance of interactions we applied permutation testing by trial-shuffiing
within electrode pairs to obtain a null distribution (no interaction). Using these distributions,
computed separately for each pair and each condition, we then converted the PLV values to
p-values. We account for multiple hypotheses testing by thresholding with a false discovery
rate (FDR) of 0.01. For each pair we then computed the number of experiments (out of 18)
in which PLV values indicated a significant interaction. Results are reported in Table 2 and
illustrated in Fig. 12. Only pairs showing a minimum of 5 out of 18 experiments in either
cue or task based comparison with significant PLVs are included in Table 2 whereas no
threshold was applied for representation of results in Fig. 12.

In Table 2 we report the electrode pairs with significant PLVs for diamond vs. line and for
go vs. no-go for both the early and late period. These results are included for two different

PLV estimators:  , which is the ML estimator for the von Mises distribution, and

. Consider first the results for . For the early response we consistently
see significant PLVs between electrode pairs 2–3, 2–5 and 3–5 for the diamond stimulus
while there are none for the line. For this same early period, when sorting trials by go vs. no-
go (both of which contain diamond and line stimuli) we see no indication that the go
condition produces consistently more significant PLVs than the no-go condition. Note that
electrode pairs 2–3, 2–5 and 3–5 are in striate/pre-striate cortex.

If we now look at results for the late response we see that the above observation is now
largely reversed. In this case it is the go condition that leads to significant interactions
between striate/prestriate and motor/pre-motor cortices (pairs 1–7, 1–8, 4–7, 4–8, 7–8) while
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the no-go condition shows no significant interactions for any of these pairs. If the same data
are sorted according to diamond vs. line we see no clear preference for significant
interactions. These results might be expected since the early response (120 ± 25 msec after
cue) should reflect visual processing while the later response (260 ± 25 msec after cue)
should also include visual/motor interactions. We now turn to the comparison in Table 2
between the two PLV estimators. While the number of experiments showing significant
interactions is not identical between the top and bottom halves of the table, the pairs of
electrodes showing significant interactions are exactly the same for the two estimators, with
very close agreement between the number of experiments with significant interactions for
diamond vs. line in the early response and go vs. no-go for the late response. The Gaussian
model consistently produces equal or slightly larger number of significant interactions in
each column in the table, possibly reflecting superior detection power resulting from the
lower variance of the estimator shown in Fig. 6.

4. Discussion and Conclusion
The primary purpose of this paper was to explore the properties of the phase locking value
as it is frequently applied to electrophysiological data, i.e. as a measure of variability of the
relative phase between two signals computed by averaging over multiple trials and relatively
short time windows (Mormann et al., 2000; Lachaux et al., 2000; Varela et al., 2001;
Bhattacharya et al., 2001; Doesburg et al., 2008; Ossadtchi et al., 2010).

The sample PLV is a biased measure, as previously shown by Vinck et al. (2010). While the
degree of bias depends on distribution, the bias in the squared sample PLV was shown to be
a simple function of sample size N, equ. (10). Rearranging this result produces an unbiased
estimator, equ. (11). It is interesting to note that this result is identical to Vinck’s PPC
(Pairwise Phase Consistency) measure. In practice bias is relatively small for N > 50 so that
the sample PLV should be adequate unless sample size is small.

The sample PLV is a maximum likelihood estimator when the data follow a von Mises
distribution implying efficiency of the estimator. We also saw that PLV is a monotonic
function of the concentration parameter and independent of the mean. Similarly we also saw
that for jointly Gaussian data, the PLV is a monotonic function of cross-correlation and also
independent of mean. This latter result was based on marginalizing the joint density for the
complex representation of the two signals with respect to the signal amplitudes leaving a
distribution as a function of relative phase. In contrast to the von Mises case, the sample
PLV is not a maximum likelihood estimator, and in fact we saw from Fig. 6 that computing
PLV directly from the sample cross-correlation leads to a lower variance estimate than the
sample PLV.

It is not surprising that PLV depends only on cross correlation for Gaussian signals, since
jointly Gaussian processes are completely characterized by their mean and covariance.
Nevertheless, the consequence of this observation is perhaps less obvious: that if data are
reasonably well modeled as jointly Gaussian, then the PLV provides no information that is
not already contained in the cross correlation. We saw that this appears to be the case for the
macaque LFP data analyzed above as well as the simulation based on the Roessler oscillator.
Comparing sample PLV results with a PLV computed directly from the sample cross-
correlation we see very little difference between results in terms of the pairs of electrodes
exhibiting significant interaction when using the two different measures. The distribution
plots in Fig. 10, and associated hypothesis tests in Table 1, indicate that both the von Mises
and circularly symmetric Gaussian distributions are adequate for this data. This supports the
earlier statement that PLV does not add information not contained in the cross correlation.
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It appears reasonable to expect that similar results to these LFP studies would be obtained
when analyzing MEG and EEG data, since they share with the LFP a dependence primarily
on dendritic currents and the associated volume or conduction currents. Differences between
these data depend on the lead field sensitivities of the transducers, with MEG and EEG
being sensitive to far larger regions of cortex than the microelectrodes used to acquire the
data in the study. Through the law of large numbers, we would expect as we integrate over
larger regions of cortical activation, that data would tend to become more rather than less
Gaussian.

It is important to note that the above observations are applicable only to data that can be
considered approximately stationary over the interval over which the PLV is calculated. This
is frequently the case in published studies, where either PLV is calculated over a short time
window, or using a single time sample and averaging over trials (Lachaux et al., 2003, 2000;
Hurtado et al., 2004; Rudrauf et al., 2006). If PLV is computed over longer time periods for
which the behavior cannot be considered to be stationary, then the equivalence of PLV and
cross-correlation would not necessary be retained. We also emphasize that the above
arguments apply only to LFPs, EEG and MEG. Multiunit recordings are clearly non-
Gaussian and we would not expect to see equivalence in this case.

In several instances false phase locking can arise as a result of linear mixing or cross-talk
between time series: (a) use of common reference in microelectrode or EEG recordings, (b)
EEG or MEG recordings with overlapping sensitivities in the lead field, and (c) cortical
current density maps computed from EEG or MEG data in which the low resolution causes
interference between sources. Since the PLV is independent of the mean phase difference,
this measure cannot differentiate between a zero-mean phase difference, which can be
explained by linear mixing, and a non-zero phase lag, which cannot be caused by linear
mixing. The Phase Lag Index (PLI) was designed to be robust to this problem. In Figures 3
and 5 we show the dependence of PLI on the parameters of both the von Mises and Gaussian
distributions. Unlike PLV, PLI is a function of the mean as well as the variance of relative
phase. While this does produce the desired robustness to linear mixing, it is also a function
of both mean and variance so that it is not possible to assess the strength of the interaction
without also knowing the phase. One solution to this problem might be to compute both the
mean and PLV of the relative phase, and use the mean to test for linear mixing and the PLV
to assess the strength of the detected interaction. A similar problem is encountered when
using coherence as an interaction measure: a real value of coherence can arise simply due to
linear mixing. An effective solution to this problem is to use only the imaginary part of
coherence (Nolte et al., 2004), which cannot be nonzero without true interaction. We note
that even in the Gaussian case, where PLV and cross-correlation are equivalent, the PLI and
imaginary coherence are not: while both depend on the complex value rather than the
magnitude of the cross-correlation, they are different functions of this parameter.

Interactions between neuronal populations are not pairwise, but typically involve multiple
areas or electrodes. When computing pairwise correlations, interactions between pairs can
be produced even if the pair does not have a direct interaction but instead both of the areas
are interacting with a third. For this reason, multinode network models are sometimes
inferred using a multivariate model in which partial correlations are computed to
differentiate direct from indirect interactions between electrode pairs. These networks can be
represented using multivariate Gaussian models where the partial correlations are given by
the non-zero entries of the inverse of the correlation matrix (Whittaker, 2009; Mima et al.,
2000). Recently Canolty et al. (2012) have developed a multivariate extension of the von
Mises distribution that similarly is able to differentiate between direct and indirect
interactions, but with respect to phase coupling rather than correlation. It would be
interesting to explore differences between partial correlation and partial phase in LFP, EEG
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and MEG networks, since the relationships explored here between PLV and cross-
correlation could in principle be extended to multivariate Gaussian models.

Acknowledgments
This work supported by the following grants: NIH R01 EB009048, NIH R01EB000473 and NSF BCS-1028389.

References
Amor F, Rudrauf D, Navarro V, Ndiaye K, Garnero L, Martinerie J, Le Van Quyen M. Imaging brain

synchrony at high spatiotemporal resolution: application to meg signals during absence seizures.
Signal processing. 2005; 85:2101–2111.

Aviyente S, Bernat E, Evans W, Sponheim S. A phase synchrony measure for quantifying dynamic
functional integration in the brain. Human brain mapping. 2010; 32:80–93. [PubMed: 20336687]

Baillet S, Mosher J, Leahy R. Electromagnetic brain mapping. Signal Processing Magazine, IEEE.
2001; 18:14–30.

Bhattacharya J, Petsche H, Feldmann U, Rescher B. Eeg gamma-band phase synchronization between
posterior and frontal cortex during mental rotation in humans. Neuroscience Letters. 2001; 311:29–
32. [PubMed: 11585560]

Bressler S. Large-scale cortical networks and cognition. Brain Research Reviews. 1995; 20:288–304.
[PubMed: 7550362]

Bressler S, Coppola R, Nakamura R. Episodic multiregional cortical coherence at multiple frequencies
during visual task performance. Nature. 1993; 366:153–156. [PubMed: 8232553]

Bressler S, Ding M, Yang W. Investigation of cooperative cortical dynamics by multivariate
autoregressive modeling of event-related local field potentials. Neurocomputing. 1999; 26:625–631.

Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler S. Beta oscillations in a large-scale
sensorimotor cortical network: directional influences revealed by granger causality. Proceedings of
the National Academy of Sciences of the United States of America. 2004; 101:9849. [PubMed:
15210971]

Canolty R, Cadieu C, Koepsell K, Ganguly K, Knight R, Carmena J. Detecting event-related changes
of multivariate phase coupling in dynamic brain networks. Journal of neurophysiology. 2012;
107:2020–2031. [PubMed: 22236706]

Celka P. Statistical analysis of the phase-locking value. Signal Processing Letters, IEEE. 2007;
14:577–580.

Challis R, Kitney R. Biomedical signal processing (in four parts). Medical and Biological Engineering
and Computing. 1991; 29:1–17. [PubMed: 2016912]

Davenport, W.; Root, W. An introduction to the theory of random signals and noise. Vol. 11.
McGraw-Hill; New York: 1958.

David O, Garnero L, Cosmelli D, Varela F. Estimation of neural dynamics from meg/eeg cortical
current density maps: application to the reconstruction of large-scale cortical synchrony.
Biomedical Engineering, IEEE Transactions on. 2002; 49:975–987.

Ding M, Bressler S, Yang W, Liang H. Short-window spectral analysis of cortical event-related
potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation,
and variability assessment. Biological cybernetics. 2000; 83:35–45. [PubMed: 10933236]

Doesburg S, Roggeveen A, Kitajo K, Ward L. Large-scale gamma-band phase synchronization and
selective attention. Cerebral Cortex. 2008; 18:386–396. [PubMed: 17556771]

Gallager R. Circularly-symmetric gaussian random vectors. 2008:1–9. preprint.

Guevara R, Velazquez J, Nenadovic V, Wennberg R, Senjanović G, Dominguez L. Phase
synchronization measurements using electroencephalographic recordings. Neuroinformatics. 2005;
3:301–313. [PubMed: 16284413]

Horwitz B. The elusive concept of brain connectivity. Neuroimage. 2003; 19:466–470. [PubMed:
12814595]

Hurtado J, Rubchinsky L, Sigvardt K. Statistical method for detection of phase-locking episodes in
neural oscillations. Journal of neurophysiology. 2004; 91:1883–1898. [PubMed: 15010498]

Aydore et al. Page 14

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jammalamadaka, S.; Sengupta, A. Topics in circular statistics. Vol. 5. World Scientific Pub Co Inc;
2001.

Klein A, Sauer T, Jedynak A, Skrandies W. Conventional and wavelet coherence applied to sensory-
evoked electrical brain activity. Biomedical Engineering, IEEE Transactions on. 2006; 53:266–
272.

Lachaux J, Chavez M, Lutz A. A simple measure of correlation across time, frequency and space
between continuous brain signals. Journal of neuroscience methods. 2003; 123:175–188.
[PubMed: 12606066]

Lachaux J, Rodriguez E, Martinerie J, Varela F, et al. Measuring phase synchrony in brain signals.
Human brain mapping. 1999; 8:194–208. [PubMed: 10619414]

Lachaux J, Rodriguez E, MICHEL L, ANTOINE L, Martinerie J, FRANCISCO J. Studying single-
trials of phase synchronous activity in the brain. International Journal of Bifurcation and Chaos.
2000; 10:2429–2439.

Lancaster, H.; Seneta, E. Chi-Square Distribution. Wiley Online Library; 2005.

Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie J, Varela F. Comparison of
hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of
neuroscience methods. 2001; 111:83–98. [PubMed: 11595276]

Liang H, Ding M, Bressler S. Temporal dynamics of information flow in the cerebral cortex.
Neurocomputing. 2001; 38:1429–1435.

Mima T, Matsuoka T, Hallett M. Functional coupling of human right and left cortical motor areas
demonstrated with partial coherence analysis. Neuroscience letters. 2000; 287:93–96. [PubMed:
10854720]

Mormann F, Lehnertz K, David P, Elger EC. Mean phase coherence as a measure for phase
synchronization and its application to the eeg of epilepsy patients. Physica D: Nonlinear
Phenomena. 2000; 144:358–369.

Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M, et al. Identifying true brain interaction
from eeg data using the imaginary part of coherency. Clinical Neurophysiology. 2004; 115:2292–
2307. [PubMed: 15351371]

Nunez P, Srinivasan R, Westdorp A, Wijesinghe R, Tucker D, Silberstein R, Cadusch P. Eeg
coherency:: I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and
interpretation at multiple scales. Electroencephalography and clinical Neurophysiology. 1997;
103:499–515. [PubMed: 9402881]

Ossadtchi A, Greenblatt R, Towle V, Kohrman M, Kamada K. Inferring spatiotemporal network
patterns from intracranial eeg data. Clinical Neurophysiology. 2010; 121:823–835. [PubMed:
20434948]

Quiroga R, Kraskov A, Kreuz T, Grassberger P. Performance of different synchronization measures in
real data: a case study on electroencephalographic signals. Physical Review E. 2002; 65:041903.

Rudrauf D, Douiri A, Kovach C, Lachaux J, Cosmelli D, Chavez M, Adam C, Renault B, Martinerie J,
Le Van Quyen M. Frequency flows and the time-frequency dynamics of multivariate phase
synchronization in brain signals. Neuroimage. 2006; 31:209–227. [PubMed: 16413209]

Schelter B, Winterhalder M, Dahlhaus R, Kurths J, Timmer J. Partial phase synchronization for
multivariate synchronizing systems. Physical review letters. 2006; 96:208103. [PubMed:
16803212]

Stam C, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi
channel eeg and meg with diminished bias from common sources. Human brain mapping. 2007;
28:1178–1193. [PubMed: 17266107]

Swets, J. Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers.
Lawrence Erlbaum Associates, Inc; 1996.

Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H. Detection
of n: m phase locking from noisy data: application to magnetoencephalography. Physical Review
Letters. 1998; 81:3291–3294.

Tononi G, Edelman G. Consciousness and complexity. Science. 1998; 282:1846–1851. [PubMed:
9836628]

Aydore et al. Page 15

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Varela F, Lachaux J, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale
integration. Nature reviews neuroscience. 2001; 2:229–239.

Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz C. An improved index of phase-
synchronization for electrophysiological data in the presence of volume-conduction, noise and
sample-size bias. Neuroimage. 2011; 55:1548–1565. [PubMed: 21276857]

Vinck M, Van Wingerden M, Womelsdorf T, Fries P, Pennartz C. The pairwise phase consistency: a
bias-free measure of rhythmic neuronal synchronization. Neuroimage. 2010; 51:112–122.
[PubMed: 20114076]

Vo A, Oraintara S, Nguyen N. Vonn distribution of relative phase for statistical image modeling in
complex wavelet domain. Signal Processing. 2011; 91:114–125.

Whittaker, J. Graphical models in applied multivariate statistics. Wiley Publishing; 2009.

Appendices

A. Bias of Squared PLV

Here we derive an expression for the bias of .

(26)

(27)

Assuming Δφn and Δφm are independent for n ≠ m

(28)

(29)

B. Unbiased square PLV and PPC
Rearranging equ. (29), gives the following unbiased estimate of PLV2:

(30)

Further manipulation of this expression shows it is equivalent to the pairwise phase
consistency (PPC) measure of Vinck.
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(31)

(32)

(33)

(34)

which is the PPC measure in equ. 12 in Vinck et al. (2010).

C. Conditional Distribution of Relative Phase for the Bivariate Circularly
Symmetric Complex Gaussian

First, we need to find an expression for the marginal distribution of amplitudes A(t)

(35)

from equ. (20)

(36)

(37)

Substituting this result into equ. (21), we get

(38)

(39)

Aydore et al. Page 17

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



D. The PLV for the Bivariate Circularly Symmetric Complex Gaussian

(40)

using the first moment generating function of von Mises distribution:

(41)

(42)

using the result in equ. 37:

(43)

(44)

(45)

(46)

(47)

(48)

(49)

where . Then,

(50)

(51)
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where x ≜ r − μ.

(52)

(53)

(54)

where Φ(.) is standard normal cumulative distribution function. Hence, we get

(55)

By defining  we simplify C(A2(t), κ11, κ12):

(56)

(57)

(58)

(59)

Hence,
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(60)

(61)

where  and . Then,

(63)

Using Mathematica to solve the two integrals in Equ 63 we find:

(64)

(65)

where  and 2F1 represents a hypergeometric function. Hence, we get

(66)
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Highlights

• We explore the properties of the Phase Locking Value as a measure of phase
coupling

• We relate the PLV to the parameters of the von Mises distribution

• We relate the PLV to parameters of complex circularly symmetric Gaussian
processes

• We compare PLV with cross-correlation in bivariate LFP data

• We show that for the LFP data used here, these measures are equivalent
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Figure 1.

Bias and variance of  (red) and  (blue) as a function of N, the number
of samples used to compute the estimators: (a) mean value vs N for four different true values
of PLV; (b) variance vs. N for the same true values of PLV. Samples were drawn
independently from the von Mises distribution for four different concentration parameter
values.

Aydore et al. Page 22

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Probability density functions: (a) von Mises distribution with mean μ = 0 for a range of
concentration values, κ; (b) relative phase distribution for bivariate circularly symmetric

Gaussian models for different values of cross-correlation magnitude  with phase
μ12 = 0.
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Figure 3.
Plots of sample (a) PLV and (b) PLI as a function of concentration parameter κ and mean μ
for samples drawn from the von Mises distribution. Note that while PLV is independent of
μ, PLI depends on both κ and μ.
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Figure 4.
Plot of the monotonic relationship between PLV and the magnitude of cross-correlation,

, for the bivariate circularly symmetric Gaussian model.
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Figure 5.
Plots of sample (a) PLV and (b) PLI as a function of cross-correlation magnitude

 and phase μ12 for the bivariate circularly symmetric Gaussian distribution.
Similarly to the von Mises distribution, PLV is independent of phase while PLI depends on
both cross-correlation magnitude and phase. Samples were drawn from relative phase
distribution in equ. (23).
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Figure 6.
Plot of bias and variance for the sample PLV, root of unbiased sample PLV, and PLV
computed from sample cross-correlation. (a) plot of the mean over 1,000 Monte Carlo trials
as a function of number of samples used to estimate the parameter for two different values
of cross-correlation; (b) corresponding plot of variance for each of the three estimators for
the two different cross-correlation values. Samples were drawn independently from bivariate
Gaussian processes.
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Figure 7.

Roessler oscillator simulations (a) Comparison of ROC curves of  (blue) and

 (red) when ε = 0.15 for coupled oscillators, standard deviation σ = 1.5 and number
of samples L = 5000. (b) Area under ROC curve as a function of coupling parameter ε when
σ = 1.5 and L = 5000. (c) Area under ROC curve as a function of number of samples L
when σ = 1.5 and ε = 0.15. (d) Area under ROC curve as a function of the standard
deviation of the noise σ when L = 5000 and ε = 0.15.
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Figure 8.
Locations of 15 electrode pairs in the right hemisphere (reproduced from Liang et al. (2001))
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Figure 9.
Four visual cues represented to the monkey in the experiment (a) right slanted line (b) left
slanted line (c) right slanted diamond (d) left slanted diamond.
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Figure 10.
Goodness of fit between empirical distribution of relative phase extracted from LFP data and
parametric von Mises and circularly symmetric Gaussian distributions. The concentration
parameter (von Mises) and cross-correlation parameter (Gaussian) were directly estimated
from the sample data. (a–c) pairs at 120 msec (d–h) pairs at 260 msec
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Figure 11.

Scatter plot of  versus  computed from macaque LFP data.
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Figure 12.
Phase synchronization networks constructed from the results in Table 2. Green: significant
PLVs occur when diamond is presented. Magenta: significant PLVs occur when line is
presented. Blue: significant PLVs occur during go condition. Red: significant PLVs occur
during no-go condition. The thickness of the edges represents the number of experiments
sessions in which significant synchronization occurs.
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Table 1

The p-values of Chi-square statistic for goodness of fit of the von Mises and circularly symmetric Gaussian
phase models. In only on case are we able to reject the null hypothesis: electrode pair 3 and 5 for the von
Mises model.

Electrode Pairs von Mises Gaussian

2 and 3 at 120 msec 0.97 0.99

2 and 5 at 120 msec 0.55 0.53

3 and 5 at 120 msec 0 0.51

1 and 7 at 260 msec 0.48 0.54

1 and 8 at 260 msec 0.47 0.61

4 and 7 at 260 msec 0.50 0.85

4 and 8 at 260 msec 0.43 0.54

7 and 8 at 260 msec 0.09 0.46
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