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Leg-tracking and automated behavioural
classification in Drosophila
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Much remains unknown about how the nervous system of an animal generates behaviour,

and even less is known about the evolution of behaviour. How does evolution alter existing

behaviours or invent novel ones? Progress in computational techniques and equipment will

allow these broad, complex questions to be explored in great detail. Here we present a

method for tracking each leg of a fruit fly behaving spontaneously upon a trackball, in real

time. Legs were tracked with infrared-fluorescent dyes invisible to the fly, and compatible

with two-photon microscopy and controlled visual stimuli. We developed machine-learning

classifiers to identify instances of numerous behavioural features (for example, walking,

turning and grooming), thus producing the highest-resolution ethological profiles for indivi-

dual flies.
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A
major goal of biology is to elucidate the mechanisms

underlying behaviour and how they have evolved. Because
of its vast genetic toolkit, Drosophila melanogaster is an

ideal model system for understanding the underpinnings of
behaviour. However, analysing behaviour is not trivial and therefore
most studies rely on simple, robust behaviours such as phototaxis1

and olfactory chemotaxis2. Classic paradigms, performed on groups
of flies, quantify these behaviours efficiently, but coarsely. In
contrast, methods to efficiently characterize the behaviour of
individual flies at high levels of detail are rare. With recent advances
in computer vision, a new generation of automated and
sophisticated assays are being developed that allow for richer
characterizations of behaviours, and consequently the genes,
circuits and evolution underlying them.

The first high-resolution analysis of Drosophila walking
was a labour-intensive, frame-by-frame movie analysis3. Newer,
sophisticated techniques can automatically annotate behaviour at
the level of conspicuous behaviours of single flies. For example,
the most sensitive methods to date can track individual animals
and detect the behavioural motifs of walking, lunging and
wing extension, but cannot resolve individual legs4,5. Given
the tiny size of Drosophila, legs are exceptionally difficult to
track, particularly when flies are imaged within a large arena.
Visualizing the legs is vital for identifying behaviours such as
grooming or for a deeper analysis of walking. Using a total
internal reflection based optical method, Mendes et al.6 were able
to achieve high temporal and spatial resolution of a walking fly,
including its legs, to explore gait parameters in great detail. The
legs of large insects, like cockroaches, marked with paint on their
joints, have been tracked with high-speed cameras, and detailed
analyses of their locomotion have been performed7. However, the
data acquisition requires human assistance. Unfortunately, both
of these methods only capture several seconds of walking because
they require that the insect walks within the narrow field of view
of the high-speed camera6,7. Recently, recordings for B1 min of a
freely behaving cricket with many paint markers on its body have
been made using manual camera tracking and automated offline
video analysis8. In contrast to such arena assays, tethered
Drosophila walking behaviour assays (for example, Buchner9,
Seelig et al.10, Clark et al.11 and Gaudry et al.12) can capture long
periods (several hours) of data, but to date have not included the
tracking of individual legs.

Here we present a method that overcomes these limitations. It is
the first technique that tracks in real time the six individual legs
and the fictive movement of a tethered fruit fly behaving either
spontaneously or in response to controlled visual stimuli, for hours.
We also developed a machine-learning classifier that automatically
detects and categorizes distinct behavioural features (for example,

walking, turning and grooming), rapidly providing the most
detailed behavioural recordings of single flies yet achieved. Notably,
this setup was designed for compatibility with either electro-
physiology or optophysiological two-photon microscopy. This
approach exploits the near-infrared fluorescence of two oxazine
dyes to visualize leg position with conventional (and economical)
optical components and detectors, in a compact arrangement
suitable as the stage of custom multi-photon microscopes. Using
this device, we have uncovered new insights about Drosophila
behaviour. Specifically, we discovered significant individual-to-
individual variation in freely behaving animals, and we found that
individual variation is amplified by breaking the loop between
motor behaviour and sensory feedback.

Results
Recording individual fly behaviour at high resolution. We
started with a traditional floating-ball treadmill rig9–12 because
tethering a behaving fly simplifies leg imaging and permits the
future incorporation of simultaneous electrophysiology or
optophysiology. We substituted a transparent ball to allow
imaging of the legs from below using a custom imaging system
(Fig. 1a, Supplementary Fig. S1; Supplementary Methods). The
sphere was tracked by two infrared laser sensors normally found
in computer mice. As each sensor only detects two dimensions
of motion, two sensors were used to capture all three
rotational components (pitch—the result of forward/backward
running; yaw—the result of turning in place; and roll—the result
of sidestepping/crabwalking) (Supplementary Fig. S1d–f;
Supplementary Methods).

Small pieces (B100� 100� 50mm3) of the dyes [2.2.1]-
oxazine (221ox)13 and julolidine-oxazine (julox) dye14 were
glued in alternation to each of the six legs (Fig. 1b,c;
Supplementary Methods). Flies were allowed to adapt to the
dye spots for at least 24 h, and then mounted above the floating
sphere via a wire tether glued to the thorax. A HeNe laser
illuminated the dye on the legs, which were imaged from below,
through the clear sphere, by two cameras (Fig. 1a). Each camera
was equipped with a band-pass filter optimized for either 221ox
or julox, allowing each leg to be uniquely detected, and adjacent
legs distinguished (Fig. 1d,e). The optical wavelengths used here
(between 630 and 850 nm) were chosen for their invisibility to the
flies15—which exhibited no conspicuous responses to illumination—
and compatibility with two-photon and traditional fluorescent
microscopy (Fig. 1e).

Animals were typically recorded in the dark for 2 h, although we
have observed flies to behave beyond 16 h. After data acquisition,
the fly can easily be removed from the tether and saved for future

Figure 1 | The leg-tracker apparatus and its properties. (a) Schematic of the leg-tracker apparatus. A fly is mounted by wire tether to a clear sphere

supported by flowing air. Fictive motion of the fly is recorded by tracking sensors. The dye spots on the leg fluoresce when excited by the HeNe laser and a

second sphere re-collimates the image of the dye spots that are tracked from below by two cameras. (b) Photograph of a fly with bits of 221ox and julox

dyes (arrowheads) glued alternately on each leg. (c) Cartoon illustrating the positioning of the dye spots. Dye was placed upon the femurs of the fore and

hind limbs and upon the tibia of the middle legs. (d) Imaging of dye spots and detection of their positions. Top panel shows differential detection of

alternating legs marked with the two dyes. Because the dyed segments on the front and hind legs do not cross, leg identity can be readily inferred in single

frames (bottom panel). (e) Diagram of the absorption wavelengths of the Drosophila rhodopsins (top). Diagram of the absorption (dashed lines) and

emission (solid lines) wavelengths of the 221ox and julox dyes and their chemical structures (middle). The dyes are compatible with green fluorescent

protein (GFP). Emission wavelengths of the HeNe laser, vertical cavity surface emitting laser (VCSEL) of the tracking sensors and Ti:Sapphire lasers are

depicted as vertical lines (bottom). Also shown are the transmission properties of the rig dichroic filters. (f) Representative data showing the 15 data

vectors (3 for ball motion and 12 for leg positions) being recorded over 7,200 s (top). Magnification of a 120 s data slice (middle). Higher magnifications of

two typical behaviours (bottom). Red, black and green traces represent the ball’s pitch, yaw and roll components, respectively. Grey and blue traces are the

x and y coordinates, respectively, of each leg. Plots are in arbitrary units, with ball motion vectors and leg-position components respectively comparable.

Instrument output is calibrated. (g) Analysis of swing and stance phases during the second half of the running bout magnified in f. Blue lines correspond to

the last six data vectors in f. Colour bar indicates the number of legs in swing phase at each frame, that is, the gait index—with Te indicating tetrapod gait

(green) and Tr indicating tripod gait (orange).
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use. Custom LabView software records 15 vectors in real time: the x
and y coordinates of each of the six legs, and the three rotational
components of the floating sphere. The HeNe laser warmed the fly
and ball slightly (increasing temperature 0.6 �C; see Supplementary
Methods). However, neither this temperature difference nor the
presence of the dye spots had any discernible effect on behaviour, by
eye, or as measured by the motion of the ball; (1) the distribution of
pitch motion in the floating ball, (2) the intervals between bursts of
pitch motion in the floating ball and (3) the auto-correlation
properties of ball pitch motion, for flies that were unilluminated by

the laser and unmarked with the dye, fell within the range seen for
dyed and illuminated flies (and near their median; Fig. 2).

Representative data is shown in Fig. 1f (see Supplementary
Fig. S1g and Supplementary Methods), including instances of
grooming and running behaviours. From this data, we can reiterate
previous gait analysis findings, such as identifying when the animal’s
gait includes two or three legs simultaneously in swing phase
(defined as tetrapod and tripod gaits, respectively). We find that fast
running comprises primarily tripod gait3 with brief excursions into
tetrapod and non-canonical gaits6, the detection of which is largely a
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consequence of high temporal resolution (Fig. 1g). In addition to
directly observing single leg strides via the dye and optics, the
sphere itself was also responsive to single leg strides (Supplementary
Fig. S1h).

Automated classification of behaviour. As our method records
the position of legs at all times, we wanted to characterize
behaviours other than running, such as grooming. Because of the
volume of data collected (15 vectors per frame at 80þ Hz), we
wanted to develop an automatic method for scoring behaviour.
Non-linear classifiers have been quite successful at categorizing
ethological data (see, for example, Dankert et al.4, Branson et al.5,
Belongie et al.16, Veeraraghavan et al.17, Jhuang et al.18 and
Burgos-Artizzu et al.19). After exploring support vector machines
and neural network classifiers, we chose to pursue k-nearest
neighbours (KNN) analysis (Fig. 3a; Supplementary Methods)20,
which had the advantage of conceptual simplicity and
performance comparable to the other methods. Briefly, KNN
works by placing an unclassified data point into a space with all
the data points whose classifications are known (the training set).
The classification applied to the plurality of the k neighbours
(from the training set) nearest to the unclassified point is taken as
the label of that point. To train the classifier, two investigators
independently scored, frame-by-frame, movies recorded
concurrently with leg tracking (Fig. 3b). The training set
consisted of data from three male and two female flies; across
these and all other animals examined, we observed no
conspicuous sex-dependent behavioural differences. Training
data needs to be generated only once and can be used to score
all future trials.

Hand scoring consisted of assigning to each frame of the movie
one of the 12 possible behavioural labels (Fig. 3c). The definitions
of these behavioural labels were not explicitly enumerated before
scoring so that we could assess the degree of labelling
discrepancies between investigators working independently—the
appropriate benchmark for the automated training methods to
follow. The two investigators achieved an unbalanced accuracy of
71%—that is, assigning the same score to 71% of frames, setting
the goal for classifier performance (Fig. 3c). The greatest
discrepancies between manual scorers appear between pairs of
behaviours only distinguishable by arbitrary cutoffs (for example,
complex motion versus forward/backward motion), as well as
between abdominal and L3 grooming. The latter ambiguity
reflects biological reality—we have observed flies to perform both
of these behaviours simultaneously, stroking their abdomen as
well as their hind legs. There was also a trend that rarer

behaviours were scored less consistently between manual scorers.
Classifiers trained on the original 15 vectors (the raw data)
were mediocre (47% accuracy). However, augmenting the raw
data with higher-order features, specifically the derivatives and
local standard deviations of each of the 15 raw data vectors
substantially improved performance (to 61% accuracy, see
Supplementary Methods for calculations). Lastly, applying a
low-pass filter to the classifier predictions further improved
their accuracy. In the end, the classifier had an error rate only
5% greater than that seen between independent manual scoring
(66% accuracy, Fig. 3d,f, see Supplementary Methods and
Supplementary Movie 1). The accuracy was quite good (91%), if
errors between behavioural categories that are only distinguishable
by arbitrary cutoffs (the most common discrepancies in the manual
scores) are ignored (see ‘plausible accuracy’ in Fig. 3d).

Fly-behavioural idiosyncrasy. With the classifier in hand, we
categorized the behaviour of individual flies (for example,
Supplementary Movie 2) across 2-h trials. Flies spent most of
their time pausing or grooming and ran more at the start of trials
(Fig. 4a,b). We built ethograms21 to look at the direction and
frequency of transitions between the 12 behavioural types
(Supplementary Methods). We found that the most frequent
transitions were between the two types of foreleg grooming and
the two types of hind-leg grooming (Fig. 4d). As has been
reported in higher-level insect behaviours—for example, escape
response22 or phototaxis23, individual flies also showed variation
in their behaviours. For example, one animal transitioned
frequently from abdomen grooming to hind-leg grooming,
whereas another animal did so more rarely. In contrast, the
latter animal frequently alternated between abdomen grooming
and pausing, whereas the former did so rarely (Fig. 4d).

This individual-to-individual variation could be an artifact of
mounting bias. To examine this, we remounted the same
individual flies on subsequent days. We found that the
transition rates in the ethograms were significantly (P¼ 0.0022
and 0.0011 as estimated by t-test and bootstrap resampling,
respectively; see Supplementary Methods) more similar between
re-mountings of the same fly than between flies, suggesting that
much of the inter-trial variability comes from idiosyncrasies of
the flies that persist for at least a few days (Fig. 4e). This was not
observed (with statistical significance) in the simple percentage of
time spent doing each behaviour (Fig. 4c), suggesting that there
is more idiosyncrasy in the pairwise behavioural transition
rates than in the overall off-rate of each behaviour. Moreover,
the idiosyncratic nature of behavioural transitions is evident in
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fine-scale analysis of the mean positions of individual legs across
said transitions (Fig. 4f). Thus, we conclude that certain
ethological characterizations, namely the transitions between
behaviours, are robust to any mounting artifacts, persist for days
and vary across flies.

As the setup uses wavelengths invisible to the fly (Fig. 1e), we
can present controlled visual stimuli to the animal to study
behaviours such as phototaxis or optomotor responses24. As a
demonstration, we recorded animals’ responses to optic flow by
placing them in front of a liquid–crystal display monitor
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displaying vertical bars translating from a line of expansion under
either open- or closed-loop feedback control. We found that flies
showed less variance in their average running speed during
closed-loop trials relative to open-loop trials (P¼ 0.002, w2-test of
variance; Fig. 4g,h), an effect also seen in measures of flight
symmetry in ‘flight-simulator’ assays (Michael Reiser, personal
communication). This pattern was also present in the inter-fly
variability in leg-stride period, the intervals between bursts of
pitch motion in the floating ball, and to a lesser extent stride
length (Fig. 3h). We also observed that inter-fly variability
generally diminished as the experiment proceeded.

Discussion
This method provides unprecedented level of detail for the
characterization of walking behaviour, revealing rich and diverse
behavioural profiles of individual animals. Using two dyes, two
cameras and some optics, we were able to track each leg of a
spontaneously behaving fruit fly in real time. With this technique,
we observed that individual flies from the lab wild-type strain
behaved idiosyncratically. The behavioural personality of an
individual fly was consistent from day-to-day, at least over the
time frame we examined. We also found that under closed-loop
conditions, the flies behave more similarly to each other; perhaps
interactive stimuli engage circuitry that overrides their more
idiosyncratic preferences. The automatic classification of beha-
viour described here represents a general approach to developing
automatic ethological classifiers for the efficient collection of
statistically powerful data sets.

This method will be a powerful tool for descriptive and com-
parative studies, for analysing subtle mutant phenotypes, and will
reach its greatest potential upon integration with optophysiological
recording, i.e. for probing the activity of neural circuits as they
mediate individual behaviours. For example, the GAL4-targeted
expression25 of genetically encoded fluorescent physiological
indicators26 to neural subpopulations in the motor circuitry of
the brain and ventral nerve cord, in simultaneous combination with
leg and motion tracking, will be an effective technique for the
identification of central pattern generators and decision-making
circuitry.

Methods
Fly stocks. Flies (wild-type Canton S) were grown on standard cornmeal media
(BuzzGro from Scientiis) in 25 �C incubators with a 12/12 h light–dark cycle.
Behavioural experiments were recorded in an environmental room set at 23 �C,
40% humidity, with the lights off.

Apparatus design details and use. For the trackball, we used clear acrylic spheres
(1/40 0 ; McMaster-Carr) suspended on air. The spheres were scuffed with sandpaper
for better tracking by the infrared sensors. The two infrared sensors (Avago chip
no. ADNS-6090) were extracted from high-performance gaming mice. See
Supplementary Methods for additional design details. The x and y coordinates
acquired from the two sensors were transformed to generate the three motion
vectors of the sphere using trigonometry. See Supplementary Methods for details.

For mounting, a fly was glued on the notum to a stainless steel no. 0 insect pin
(Bioquip) using ultraviolet-cured adhesive (LED100 system from Electro-Lite
Corporation and KOA 300 adhesive from Kemxert Corporation). The pin was
glued to a flexible copper wire attached to a male audio jack. The male audio jack-
wire-pin module was designed to be small and mobile so that it can be used at the
dissecting scope. Once the fly was attached, the module press fits into a female
audio jack that was attached to the micromanipulators (Siskiyou Inc) of the larger
apparatus, which were used for fine adjustments to the animal’s position upon the
sphere. Animals were allowed to adapt to their positioning in the device for
approximately 20–40 min, in the dark, before data collection.

The leg dyes were excited by a HeNe laser (632.8 nm; Thorlabs). The fluorescent
light from the leg dye must pass through the clear trackball sphere to reach the
imaging cameras (Prosilica GigE cameras; Allied Vision Technologies). Because
this sphere will act as a lens, a second sphere is used to re-collimate the light before
it reaches the cameras. Images were typically acquired at 80 Hz. Each camera used a
band-pass filter (Edmund Optics) to optimize for the detection of one of the two
leg dyes. In addition, a short-pass filter (NT49-829; Edmund Optics) was used to

block stray light from the infrared tracking sensors and potential two-photon
sources. See Supplementary Methods for additional details.

Laser illumination warmed the fly and sphere slightly (0.6 �C), an effect less than
that of the GigE cameras, which warmed the stage by 3 �C. Temperature effects
were measured using a digital thermometer with a metal probe placed across the
floating-ball socket, before and after 60 min of laser illumination.

In real-time computational image processing, the 221ox image was masked out
from the julox image within custom LabVIEW interfaces (National Instruments),
so that the image from each camera now represented one specific tripod (that is, a
set of three alternating legs). Leg identity was assigned by simple positional logic,
for example, for the tripod consisting of the front-left, middle-right and back-left
legs, the right-most image dot was assigned the identity of a middle leg, and the
front-most of the remaining two dots a front-leg identity.

We used a digital microscope video recorder (ProScope; Bodelin Technologies)
for trials where movies were being simultaneously recorded for hand scoring. We
inserted a polyester film filter (Roscolux, medium-blue colour filter no. 83; Roscoe
Laboratories) over the microscope to block light from the HeNe laser while still
allowing visualization of the sphere, fly and fluorescent dye spots.

For the optomotor feedback experiments, we used a 15-inch liquid–crystal
display monitor positioned 6 inches from the fly to display alternating blue- and
black-coloured vertical bars. The trials comprised the conditions: 20 min in the
dark; 20 min closed loop; 20 min dark; 20 min open loop; and repeat from the
beginning once. Closed loop allowed the turns of the fly to control the position of
the line of expansion for the translating vertical bars. See Supplementary Methods
for additional details.

Dyeing the fly legs. The dye 221ox (phenoxazin-5-ium, 3,7-bis(7-azabicy-
clo[2.2.1]hept-7-yl)-chloride) was prepared according to the method described
elsewhere13. The dye julox (1H,5H,11H,15H-diquinolizino[1,9-bc:1’,9’-
hi]phenoxazin-4-ium,2,3,6,7,12,13,16,17-octahydro-, chloride) was prepared
according to the method described elsewhere14. Leg tracking would likely work
using quantum dots27 instead of the dyes, by selecting dots based on their
diameters to match the emission spectra of the dyes, but we did not try this
approach.

The dyes were dissolved in methyl chloride and then mixed with clear nail polish
and spread out into a thin film upon a glass slide to dry. Small pieces were cut out
of the dye film with a scalpel. A small dab of ultraviolet-cured glue was placed on
each leg of the animal under CO2 anesthetization (Fig. 1b,c). A piece of dye film
was placed onto the glue drop and then exposed to several seconds of ultraviolet
light, thus securing the dye to the leg. Dye pieces were placed on the femurs of the
fore and hind legs and the tibias of the middle legs to better separate the dye signals
in space for easier tracking. Marked flies were allowed to recover and acclimate
overnight.

Raw data and analysis scripts. All data from this project, as well as all LabView
and MATLAB scripts, can be downloaded at: http://lab.debivort.org/leg-tracking-
and-automated-behavioral-classification-in-Drosophila/.

KNN classifier. After exploring several types of classifiers, we settled on the KNN
approach. Two researchers, independently, designated each frame of a movie as
falling into one of the 12 behavioural types. Five movies (representing five distinct
flies) comprising either 4,000 or 8,000 frames were scored. These behavioural
annotations, in combination with the corresponding 15 raw data vectors, were used
to train the classifier. Supplying higher-order features (such as the instantaneous
leg motion velocities, for example) in addition to the raw data improved the
classifier performance. See Supplementary Methods for more details on the
development of the classifier.

Data analysis. Ethograms were calculated by populating a 12� 12 transition
matrix at position Ma,b with the number of instances for which a frame of beha-
viour a precedes a frame of behaviour b. Self-transitions were ignored to focus on
inter-behavioural transitions, and because the pie chart representations pre-
dominantly reflect self-transitions. Rows of the transition matrix were normalized
by their totals to yield transition probabilities, which were visualized in a network
fashion.

Principle component analysis was performed on the (12) percentages of the pie
charts and (132¼ 12� 11) probabilities of the ethograms, with replicates con-
sisting of the 11 experiments done across five different flies over 2 days (or 3 days
in the case of two flies). In both cases, all input variables were z-score normalized
before principle component analysis, and the first two principle components were
found to explain a minority of the total variance. Statistical significance of the
clustering of each fly’s day-to-day replicates versus the overall distribution of the
trials in Fig. 4c,e was determined in two ways: by t-test comparing the mean intra-
fly distance in principal component (PC) space to the mean inter-fly distance; by a
resampling approach in which the fly identity labels on the trial data were shuffled
randomly and the intra-fly distances were re-calculated. The fraction of 50,000
trials in which the re-sampled mean intra-fly distance is less than or equal to
the observed intra-fly distance is the P-value for this method, and was found to
be in very close agreement with the t-test results. The intra-fly trials were not
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significantly clustered when total percentage of time in each behaviour was
considered (P¼ 0.39 and 0.11 by t-test and resampling, respectively; Fig. 4c), but
were clustered when the transition rates between behaviours were considered
(P¼ 0.0022 and 0.0011 by t-test and resampling, respectively; Fig. 4e).

The average position of each leg (Fig. 4f) was determined across behavioural
transitions by identifying target behavioural transitions from the sequence of KNN-
classified behaviours, and then averaging leg positions in a ±50 frame window
flanking the transitions, across all occurrences of the transition.
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