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OVERVIEW

This tutorial is intended for pharmacometricians with a good 
grounding in the basic concepts of pharmacokinetics, phar-
macodynamics, and population modeling.1 It links these 
concepts to the principles of time-to-event (TTE) analysis. 
The idea of the hazard is essential to understand why and 
when events occur. Simple mathematical operations con-
vert the hazard into quantities such as the survivor function 
and likelihood that are useful for graphical representation 
and parameter estimation. The ideas will be explained using 
statistical and mathematical theory only to the extent nec-
essary to understand the quantitative applications to clinical 
pharmacology. An excellent guide to the statistical aspects of 
survival analysis can be found in Collett’s textbook.2 A more 
light-hearted historical view can be found in chapter 7 of 
Senn’s book.3

THE HAZARD: THE BIOLOGICAL BASIS OF SURVIVAL
What is an event?
Events are things that happen at a particular time. The tradi-
tional biomedical example of an event is death. The descrip-
tion of the times of death in a population is known as survival 
analysis and has been the motivating factor for statistical 
theory and methodology. More generally, the description of 
event times is called TTE analysis. Death (except in cats) 
occurs only once for an individual, but there are many other 
kinds of biomedical events that may occur more than once, 
e.g., epileptic seizures, myocardial infarctions, bone frac-
tures, and kidney transplant rejections.

The description of multiple events in an individual is called 
repeated TTE analysis. If many events occur in the same 
individual, then the average of the number of events over a 
convenient interval is described by the event frequency, e.g., 
epileptic seizures and episodes of angina pain. Although 
these frequency measures are simple to understand, the 
underlying biological and pharmacological basis for predict-
ing the frequency may be concealed by ignoring the time of 
each event and only recording the number of events. An addi-
tional aspect of an event is that it may be associated with a 
severity score that may be combined with a model for the 
frequency of events.4 This tutorial will confine itself to models 
for single events.

Why and when do events happen?
Why events happen is often poorly understood, but there are 
two main mechanisms that might be considered. An event such 
as death is typically related to the things that have happened 
throughout life. It is the cumulative effect of living that can be 
used to predict the time to death. On the other hand, death may 
occur without any obvious connection to previous lifestyle, e.g., 
being struck by lightning (although that will be more common 
in those who live more in the outdoors). Such apparently ran-
dom times of events can be described in terms of frequency by 
distributions such as the Poisson distribution, but because they 
are random, they are not very interesting from the viewpoint of 
understanding biology, disease, and the influence of medical 
treatment. This tutorial focuses on those kind of events that are 
predictable from things happening before the event.

Pharmacokinetics and survival: biological brothers
The bread and butter of pharmacometrics is the science of 
pharmacokinetics. In the simplest case, the time course of 
drug disappearance from the body may be described by an 
elimination rate constant. The elimination rate constant (k) 
defines the relationship between the amount of drug in the 
body and the instantaneous rate of elimination (Eq. 1).

(1)

There is an exact parallel between this well-known equa-
tion and the basic equation of survival analysis (Eq. 2).

(2)

The number of people alive corresponds to the amount of 
drug in the body (which is directly proportional to the number 
of molecules still in the body). The number of people dying 
corresponds to the rate of elimination (which is directly pro-
portional to the number of molecules being lost (“killed”)).

The elimination rate constant, k, is simply the proportional-
ity constant connecting amount to elimination. In the num-
ber dying expression (Eq. 2), the constant h is the hazard. 
It has exactly the same meaning as k in the rate of elimina-
tion expression (Eq. 1)—the proportionality constant relating 
people who are alive to the death rate. Understanding what 
the hazard means is at the heart of TTE analysis.

Rate of Elimination = Amountk × 

Number of People Dying = Number of People Aliveh × 

Models for time to event provide the link between standard pharmacokinetic–dynamic models disease progression, and clinical 
outcome events. The biological basis for events may be expressed quantitatively in terms of a hazard function. This tutorial 
explains hazards and how doses can be linked to events predicted from hazard functions.
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Hazards, exactly like elimination rate constants, have units 
of 1/time. Death rates are usually reported in a standardized 
way, e.g., deaths per 100,000 people alive, but this is just for 
convenience of representing the numerical value. If the death 
rate was standardized per person alive, then this would be 
the value of the hazard.

Pharmacokineticists who understand the properties of 
elimination rate constants should soon feel comfortable with 
hazards. The simplest elimination mechanism for drug mol-
ecules is first order in which the elimination rate constant 
does not change. In terms of death rate (“elimination rate”), 
the simplest case occurs with a constant hazard (first-order 
dying).

To predict the time course of amount of drug (A(t)) in the 
body, the elimination rate can be integrated that leads to an 
exponential equation (Eq. 3) with an initial amount A0:

(3)

The same form of equation (Eq. 4) predicts survival, Sn(t), 
where the survival has an initial value (S0) representing the 
number of people alive at time 0.

(4)

The time course of the probability of survival, S(t), is called 
the survivor function when the value of S0 is standardized to 
one person.

This simple product of hazard h and time t to predict the 
survivor function in Eq. 4 only works when the hazard is 
constant.

More generally, the survivor function is calculated from the 
integral of the hazard with respect to time—a quantity called 
the cumulative hazard (cumhaz) as shown in Eq. 5.

(5)

The cumulative hazard is sometimes known as the risk. 
Although the term risk is widely used in daily life, it does 

not have a clearly accepted meaning in the TTE analysis 
literature.

In this example, it should be clear that the pharmacokinetic 
elimination rate constant in a pharmacokinetic model is iden-
tical to the hazard in a survivor function model. Both the rate 
constant and the hazard have dimensions of 1/time and can 
be interpreted to have the same meaning.

Despite the name, the elimination rate constant may not be 
constant. Indeed, it may change due to a variety of factors, 
e.g., with concentration if elimination is mixed order. Code 
illustrating models for the amount in the body is shown in 
Eq. 6 using a pharmacokinetic model and in Eq. 7 using a 
survival model.

(6)

(7)

The code shows what seem to be quite different 
approaches to calculate either the amount or the survival. 
Yet both approaches give identical results for first-order or 
mixed-order elimination (Supplementary Table S1 and 
Supplementary Data online).

The likelihood of observing an event at a particular time is 
predicted by the probability density function (pdf). When the 
exact time of the event is observed, the likelihood is the prod-
uct of the survivor function and the hazard at that time (Eq. 8).

(8)

In general, the pdf for the distribution of survival times is 
obtained from the product of the survivor function and the 
hazard. When the hazard is constant, the shape of the pdf is 
exponential. This is because the exponential survivor func-
tion shape does not change when multiplied by the constant 
hazard. In this special case of a constant hazard, the event 
times are described as having an exponential distribution.

A TTE view of a drug with first-order elimination illustrates 
the hazard (rate constant), cumulative hazard, survivor func-
tion (amount/initial dose), and pdf (Figure 1). By definition, the 
rate constant with first-order elimination is constant over time. 
The cumulative hazard increases linearly with time and the 
survivor function, which corresponds to the amount of drug 
remaining divided by the dose, decreases exponentially as 
expected for amount in the body. The likelihood of a molecule 
being eliminated at a particular time is described by the pdf.

A comparison of the hazard and survivor function for drugs 
with either first-order or mixed-order elimination is shown in 
Figure 2. In this example, the mixed-order elimination pro-
cess reaches half of its maximum capacity when the survivor 

A t A( ) = 0    × − ×e k t

Sn t S e( ) = 0  × ×−h t 

S t e( ) = −cumhaz

rateconstant = if (mixedorder) then
 + amount

 else 
v vmax m

km
aax

km
init(amount) = dose

amount
 = rateconstant  amou

d

dt
( )

− × nnt

( ) = amount ( )A t t

init (cumhaz) = 0

cumhaz
 = rateconstant

( ) = dose e

d

dt
Sn t

( )

× xxp cumhaz ( )− t( )

pdf( ) = ( ) ( )t S t h t× 

Figure 1  First-order (FO) elimination is the same as a constant 
baseline hazard. The hazard, cumulative hazard, survivor function 
(survival), and probability density function (pdf) are shown. The 
survivor function is equivalent to the amount but standardized to 
the initial dose.

0
0 1 2

Time

Hazard FO Survival FO pdf FO Cumulative hazard FO

3 4 5
0

2

4

6

C
um

ul
at

iv
e 

ha
za

rd8

10

12

0.5

1

1.5

H
az

ar
d,

 s
ur

vi
va

l, 
pd

f

2

2.5



www.nature.com/psp

Time to Event
Holford﻿

3

function is 0.1 (Km). The hazard for mixed-order elimination 
is equivalent to the rate constant for elimination at a particular 
amount remaining. The survivor function starts at 10 times 
the Km with a hazard of 0.33 as compared with the first-order 
hazard of 2. As the amount left in the body approaches zero, 
the hazard for the mixed-order process approaches the first-
order value (after time unit 5).

TTE distributions
The simplest TTE distribution is the exponential distribu-
tion that arises when the hazard is constant. A family of 
exponential hazard models are obtained from extensions to 
the constant hazard case summarized in Supplementary 
Table S2 online. When the hazard increases with time, 
this may be expressed with the Gompertz function (Eq. 9). 
Gompertz is considered as the father of survival analysis, 
and he called this function the “law of mortality” when it was 
published in 1825.5 The corresponding event time distribu-
tion is called the Gompertz distribution.

(9)

The Weibull hazard function is often written as shown in 
Eq. 10:

(10)

But may also be written with a different parameterization 
as shown in Eq. 11 λ λ γ β γ0 1= × =( )   ;  − :

(11)

This hazard is exactly equivalent but shows more clearly 
the relationship to other exponential hazard functions (Sup-
plementary Table S2 online). The resulting TTE distribution 
is called the Weibull distribution. The Weibull hazard function 
(Eq. 10) requires some care because when time is zero, the 
hazard is zero, but this cannot be computed from the usual 
functions (ln(0) or 0γ−1). In practice, Eq. 11 should only be used 
when t > 0. When t = 0, the Weibull hazard is 0. It is debatable 
what biological meaning can be attached to a hazard of zero. 

In real life, the time of zero is at entry into a clinical study, 
and it is unrealistic to imagine that at exactly that instant, the 
hazard of an event such as death plunges to zero.

When there are no time-varying covariates involved, there 
is often an analytical solution to obtain the cumulative hazard 
(e.g., the Weibull), and from that, it is easy to predict the sur-
vivor function and the pdf. These simple cases (with others 
such as log normal and log logistic) are the standard survival 
distribution choices available in common statistical software. 
For more flexible hazard functions involving time-varying 
covariates, these analytical solutions are not usually avail-
able. With software that is able to numerically integrate the 
hazard function, there is no restriction on the way the hazard 
is expressed except the user needs to ensure that the hazard 
does not go negative. If the hazard is negative, this gives rise 
to the Lazarus distribution, which has been predicted6 but not 
yet observed. The exponential forms of the hazard are use-
ful because they avoid negative hazards as long as λ0 is not 
negative. The generalized exponential hazard (e.g., Eq. 12) 
may have any function in the exponential term.

(12)

Other forms of the hazard that do not use an exponen-
tial may be more convenient, but the exponential form has 
an advantage for interpretation of the parameters in the 
exponent.

(13)

Eq. 13 includes a parameter βSEX and a SEX covariate 
(female = 0 and male = 1). The value of βSEX is easily inter-
preted by exponentiation. If the value of βSEX is 0.693, then 
exp(0.693 × 0) for women is 1 and exp(0.693 × 1) for men 
is 2. The hazard for men is 2 relative to women. This is 
called the hazard ratio. In real life, the male hazard ratio 
changes with age (e.g., see page 139 in ref. 3 with a value 
of 2 around the age of 20 years and again at 30 years in a 
UK population).

The power of the hazard function becomes evident in phar-
macometric applications when factors changing the hazard 
vary with time. An obvious example would be if drug treatment 
influenced the hazard. The effects of the drug will depend on 
concentration and thus, the hazard in the drug-treated arm 
will vary with the time course of drug concentration.

A series of simulations are used to demonstrate the 
concepts of hazard, cumulative hazard, survival, and likeli-
hood of an event by comparing what might be observed in 
a placebo-controlled trial of a drug that reduces the hazard.

Figure 3 illustrates a constant baseline hazard in the 
placebo arm. The drug effect on the baseline hazard, λ

0, is 
assumed to be linearly related to concentration, C(t), with a 
proportionality constant βC (Eq. 14). For a treatment effect 
that reduces the hazard, the sign of βC is negative. As noted 
above, the user must take care that this does not lead to a 
negative hazard, e.g., by using an Emax model with Emax con-
strained to be not greater than −1.

(14)

h t 0
t( ) = λ β ×  × e

h t t( ) = λ γ γ ×  ×  − 1

h t 0
t( ) = ln(λ β ×  ×e )

h X X e X X
1

× × ⋅⋅⋅⋅ ⋅ ⋅    1 2, ,2( ) = ×λ0
β β1 2   +   + 

h eSEX SEX SEX( ) = × ×     λ0
β

h C t( )( ) = + ( )( )λ β0 × ×1 C C t

Figure 2  The hazard (rate constant) and survivor function (amount/
dose) for first-order elimination (FO) and mixed-order (MO) 
elimination.
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For simplicity, the drug input rate is assumed to be constant 
with concentration approaching steady state after 10 time 
units. The drug washes out over a similar period when treat-
ment is stopped at time 52. The cumulative hazard reflects 
the total number of events with a decreased number of events 
in the drug treatment arm. When treatment has washed out, 
the cumulative hazard curve is parallel in both the groups. 
This pattern is similar to a disease-modifying effect of drug 
treatment on a linear disease progression model.7 The survi-
vor function for the placebo arm is exponential but deviates 
from this shape for the drug treatment arm during treatment 
wash-in and washout. The likelihood of observing an event 
as a function of time is shown in the pdf plot. Note the tran-
sient increased likelihood of an event after stopping treat-
ment. This might be interpreted as a form of rebound, but the 
cumulative hazard plot shows that the cumulative number of 
new events is approximately the same in both the groups. 
This increase in the pdf is inevitable because the hazard 
increases as drug concentration washes out so the likelihood 
of having an event in the previously drug-treated group must 
increase albeit transiently.

A similar series of plots is shown for a baseline Gompertz 
hazard function (Figure 4). The exponential increase in haz-
ard in the placebo arm is clearly different from the constant 
hazard in Figure 3. The treatment effect uses the same 
pharmacodynamic model and the same value for βC with an 
increasing reduction in hazard (Eq. 15). Note that the like-
lihood (pdf plot) of observing an event in the placebo arm 
increases with time then drops. This is quite different from 
the constant hazard likelihood that decreases monotonically. 

There is a very marked “rebound” in the likelihood of an 
event after stopping treatment, but no excess of events in the 
cumulative hazard plot.

(15)

When a Weibull baseline hazard is assumed with the same 
drug effect (Eq. 16), the shape of the hazard is again quite 
different (Figure 5).

(16)

Like the Gompertz, the Weibull hazard increases with time, 
but the slope decreases while the Gompertz increases. The 
likelihood of an event reaches a peak relatively earlier in the 
placebo arm, and the apparent rebound in the likelihood is 
smaller.

These three baseline hazard models (exponential, Weibull, 
and Gompertz) will have a constant hazard ratio for a unit 
change in concentration. This is because the parameters of 
the baseline hazard models do not change with time. The 
time course of the Gompertz and Weibull likelihoods may 
represent the biology of tumor metastases. There may be a 
relatively rapid increase in metastases after initial diagnosis, 
but the incidence of metastases observed in the surviving 
population drops quite markedly with time. This means that 
drug treatments may show an important benefit in reducing 
events earlier in the disease but with much less benefit later. 
Drug treatments may be approved based on this marked early 
benefit, but there may be a poorer justification for continuing 

h C t( )( ) = + ( )( )λ β0
β × × ×× e C tt 1 C

h C t t( )( ) = + ( )( )λ β0
β × × ×× e C tln(

C
) 1

Figure 3  Constant baseline hazard with time-varying drug effect linearly related to concentration. Treatment starts at time = 0 and stops 
at time = 52. Plots show the time course of concentration, hazard, cumulative hazard, survivor function (survival), and probability density 
function (pdf).
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Figure 4  Gompertz baseline hazard with time-varying drug effect linearly related to concentration. Treatment starts at time = 0 and stops 
at time = 52. Plots show the time course of concentration, hazard, cumulative hazard, survivor function (survival), and probability density 
function (pdf).
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Figure 5  Weibull baseline hazard with time-varying drug effect linearly related to concentration. Treatment starts at time = 0 and stops at time 
= 52. Plots show the time course of concentration, hazard, cumulative hazard, survivor function (survival), and probability density function (pdf).
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use when decreasing benefits are weighed against adverse 
effects and costs of treatment. The usual assumption is that 
the magnitude of treatment benefits observed in a clinical 
trial will continue indefinitely, but this is rather naive if the 
benefit of treatment is expressed as a constant hazard ratio if 
in fact it decreases with time. Clinical trials that report hazard 
ratios almost always report a single value and rarely attempt 
to investigate if the benefit is sustained over time.

Pharmacometricians who are familiar with covariate model 
building and time-varying covariates applied to pharmacoki-
netic parameters, e.g., ref. 1, will be able to apply exactly the 
same ideas to parameters of the hazard function. The hazard 
function approach, with numerical integration to obtain the 
cumulative hazard and the survivor function, removes many 
of the constraints associated with TTE analysis imposed by 
standard statistical software.

Biomarkers and clinical outcome
Common approaches to TTE analysis only use the baseline 
value of an explanatory factor such as age or smoking, but 
when this factor changes with time, the approach needs to 
be carefully considered. Age is clearly a factor that changes 
with time, but it is usually used as a constant baseline age 
factor for the hazard, and a separate time function (e.g., 
Gompertz baseline hazard) is used to describe how the haz-
ard changes after adjusting for baseline age. A smoking his-
tory, however, will have cumulative effects on outcome, and 
a baseline smoking history would not describe the hazard as 
well as one that includes the time course, e.g., pack years of 
cigarettes increasing and perhaps decreasing. Similar con-
siderations apply when a treatment may change over time, 
e.g., in terms of dose size or periods of stopping and starting 
treatment.

For example, an increase in mortality with selegiline treat-
ment was noticed in a randomized comparison of levodopa 
alone with levodopa plus selegiline in patients with Parkin-
son’s disease.8 An exploratory analysis of the use of sele-
giline in a different cohort of patients receiving a variety of 
treatments failed to confirm an increase in mortality. Critically, 
this analysis used an intention-to-treat approach that did not 
take into account the actual use of selegiline, which included 
periods on and off treatment.9

One of the goals of clinical pharmacology is to link drug 
dose to clinical benefit. When the benefit of drug treatment 
is described in terms of a change in the time-to-clinical out-
come event, then the link between dose and benefit also 
involves the time course of a biomarker, which in turn influ-
ences the event hazard. The term biomarker is used here in 
a general sense for any quantity that is linked to drug effect. 
A biomarker may include drug concentration but is more 
commonly used to refer to measurements of physiological 
variables such as blood pressure, serum cholesterol, elec-
troencephalogram frequency, or pathological variables such 
as tumor size or disease severity. Any of these biomarkers 
may be used as explanatory variables in a hazard function. If 
a treatment affects a biomarker, then the biomarker change 
itself may be sufficient to describe the treatment effect on the 
clinical outcome.

This was shown for the effect of levodopa on mortal-
ity in Parkinson’s disease when the time course of disease 

status was used as the biomarker. Treatment with levodopa is 
associated with an improvement in disease status10,11 and a 
decrease in mortality.12 By contrast, selegiline has also been 
shown to improve disease status, but after accounting for 
the effect of disease status progression, there was an inde-
pendent increase in mortality associated with selegiline.12 
Simply using selegiline treatment in the analysis showed no 
significant effect on mortality,13 but this result is confounded 
by the beneficial effects on mortality arising from improved 
disease status caused by selegiline. Selegiline alone has 
a higher hazard of death because it has a relatively small 
symptomatic and disease-modifying effect on disease sta-
tus, which is insufficient to offset the independent effect that 
increases the hazard. A combination of levodopa and sele-
giline has a higher hazard than untreated patients, but after 
about 1.5 years, the hazard of death is lower as compared 
with untreated patients.12

Simulations linking disease progression with effects of drug 
treatments on progress and hazard allow different treatment 
strategies to be understood. This is a special opportunity for 
pharmacometrics to bring an integrated approach to under-
stand the link between dose and outcome. For example, an 
alternative strategy for the treatment of Parkinson’s disease 
would be to delay treatment with selegiline until levodopa has 
produced a substantial symptomatic and disease-modifying 
effect at approximately 2 years. The effect of such a strategy 
on the time course of disease status in untreated patients, 
those treated with levodopa alone, and then in combination 
with selegiline is shown in Figure 6. The predicted hazard of 
death (Figure 7) for patients with Parkinson’s disease shows 
the benefits of this delayed start of selegiline treatment in 
reducing mortality (Figure 8). If treatment with selegiline is 
started 2 years after levodopa, then there is only a small 
increase in mortality compared with an untreated patient, 
but the substantial additional disease-modifying benefits of 
selegiline obtained with levodopa lead to overall better func-
tion and, eventually after 6 years of selegiline, a lower haz-
ard of mortality than levodopa alone (Figure 7). This kind of 
understanding of the link between disease progress, treat-
ment effects on disease status, and consequent effects on 

Figure 6  The time course of Unified Parkinson's Disease Rating 
Scale (UPDRS) in Parkinson’s disease showing effects of treatment 
with levodopa and selegiline on disease status.
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mortality cannot be understood from time invariant hazard 
ratios. It is unlikely that any clinical trial would ever prospec-
tively test this strategy with selegiline. Simulation based on 
pharmacological understanding can help guide decisions 
that cannot be made with traditional clinical trial results.

The missing data problem
It is usually the case that the time of an event is not observed 
in all subjects. This can happen for two quite different reasons.

If a subject is not followed up long enough, then the event 
is never observed. This is because the subject drops out from 
the trial before its end or the trial finishes at some predefined 
time. This kind of missing event time is called right censored 
because if one were to imagine a distribution of event times, 
then the right hand end of the distribution is truncated at the 
end of a trial. The same term is applied to data that is missing 
when subjects drop out from a trial.

The other kind of missing data is due to the exact time of 
the event not being known. For example, the time of death is 
usually only recorded in clinical trials on the day of death, and 
the clock time when death was pronounced is not recorded. 
Therefore, the exact time of the event is not known except 
that it occurred in a 24-h interval. This kind of missing data is 

known as interval censored. All TTE data is subject to some 
degree of interval censoring, which is often ignored if the time 
interval in which the event occurs is short. The time of drop-
out from a clinical trial is itself of interest for TTE analysis. 
Quite commonly, the time of dropout is not known because 
subjects may be seen at one visit and then not appear at the 
next scheduled time. In this case, the interval containing the 
actual time of dropout may be quite long, e.g., several weeks 
or months.

Estimation of the parameters of a hazard function using 
maximum likelihood methods uses the likelihood of an event 
at an exact time, or within a known interval with interval 
censoring or after a known time due to right censoring. The 
likelihoods of these three possibilities are obtained simply 
from the survivor function and the hazard (Supplementary 
Table S3 online).

An informative application of interval censoring is described 
by Hu and Sale14 who link the concepts of a time-varying 
hazard of dropout to estimation of the hazard function when 
event times are censored. Using the predicted time course 
of progression in a joint model of disease status and time to 
drop out, they were able to show that dropouts may not occur 
completely at random but depend on the time course of dis-
ease progression. They also demonstrated that using the last 
disease status, observation carried forward as a covariate 
for the dropout hazard function did not describe the dropout 
time distribution as well as using the predicted progress of 
the disease.

Estimation and diagnostics
Algorithms for obtaining initial estimates of the survivor func-
tion and the hazard function are described in Collett,2 and 
software may be found at http://cran.r-project.org/web/views/
Survival.html. The density of the TTE data is usually rather 
low and this may make it difficult to interpret the shape of the 
hazard function. Equally because the survivor function is a 
representation of the cumulative hazard, the time course of 
the hazard is integrated out, and it is hard to glean informa-
tion about the hazard time course.

Nonlinear mixed-effect modeling packages that are widely 
used by pharmacometricians (e.g., NONMEM) are easy to 
use for modeling TTE data.15,16 The hazard function is writ-
ten by the user and integrated by the software. The likelihood 
is then calculated from the cumulative hazard. Parameters 
included in the hazard function are estimated in the usual 
way.

Residual based methods of model evaluation are highly 
subjective and offer no good guidance for understanding the 
hazard function. Collett2 discusses various residual based 
diagnostics and points out their limitations.

A form of visual predictive check for predictions of the haz-
ard function can be created by comparing a Kaplan–Meier 
plot with 95% CI from the original data to the simulated 
median and 95% CI obtained by simulating many replicates 
of the event time distribution and performing a Kaplan–Meier 
plot on each replicate.12,17

In all cases, it is interesting to note that the least informa-
tive plot is the survivor function. Although differences between 
placebo and drug treatment are visible, the changes related 
to the time course of drug effect are more subtle and would 

Figure 7  Hazard of death in Parkinson’s disease with levodopa and 
selegiline.
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Figure 8  Survival probability in Parkinson’s disease with levodopa 
and selegiline.
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be difficult to observe in nonparametric graphical displays of 
the survivor function (e.g., the Kaplan–Meier plot) that are 
commonly used in the biomedical literature.

Conclusion
Pharmacometrics provides the scientific concepts and tools 
for understanding pharmacology in a quantitative manner. It 
brings together basic principles of pharmacology with statisti-
cal methods to describe and predict the effects of drug treat-
ments. Clinical trials designed to observe outcome events 
are often expensive in both time and money. TTE analysis 
informed by pharmacology and physiology can reveal more 
than what is typically found in published reports. It is hoped 
that this tutorial will encourage a deeper understanding 
of how drugs work and improve the way they can change 
clinical outcome.

Acknowledgments. The author thanks Lewis Sheiner for 
teaching him the fundamental importance of the hazard func-
tion, David Collett for his textbook guide to parametric sur-
vival modeling, Marc Lavielle for challenging everything and  
Stephen Senn for dicing with death.

Author Contributions. N.H. wrote manuscript.

Conflict of Interest. The author declared no conflict of 
interest.

1.	 Mould, D.R. & Upton, R.N. Basic concepts in population modeling, simulation, and model-
based drug development. CPT: Pharmacomet. Syst. Pharmacol. 1, e6 (2012).

2.	 Collett, D. Modelling Survival Data in Medical Research. 2nd edn. (CRC Press, Boca 
Raton, FL, USA, 2003).

3.	 Senn, S. Dicing With Death: Chance, Risk and Health (Cambridge University Press, 
Cambridge, UK, 2003).

4.	 Plan, E.L., Karlsson, K.E. & Karlsson, M.O. Approaches to simultaneous analysis of 
frequency and severity of symptoms. Clin. Pharmacol. Ther. 88, 255–259 (2010).

5.	 Gompertz, B. On the nature of the function expressive of the law of human mortality, and 
on a new mode of determining the value of life contingencies. Phil. Trans. R. Soc. London 
115, 513–583 (1825).

6.	 Wheatley-Price, P., Hutton, B. & Clemons, M. The Mayan doomsday’s effect on survival 
outcomes in clinical trials. CMAJ 184, 2021–2022 (2012).

7.	 Chan, P.L. & Holford, N.H. Drug treatment effects on disease progression. Annu. Rev. 
Pharmacol. Toxicol. 41, 625–659 (2001).

8.	 Lees, A.J. Comparison of therapeutic effects and mortality data of levodopa and levodopa 
combined with selegiline in patients with early, mild Parkinson’s disease. Parkinson’s 
Disease Research Group of the United Kingdom. BMJ 311, 1602–1607 (1995).

9.	 The Parkinson Study Group. Mortality in DATATOP: a multicenter trial in early Parkinson’s 
disease. Ann. Neurol. 43, 318–325 (1998).

10.	 Vu, T.C., Nutt, J.G. & Holford, N.H. Progression of motor and nonmotor features of 
Parkinson’s disease and their response to treatment. Br. J. Clin. Pharmacol. 74, 267–283 
(2012).

11.	 Holford, N.H., Chan, P.L., Nutt, J.G., Kieburtz, K. & Shoulson, I.; Parkinson Study 
Group. Disease progression and pharmacodynamics in Parkinson disease - evidence for 
functional protection with levodopa and other treatments. J. Pharmacokinet. Pharmacodyn. 
33, 281–311 (2006).

12.	 Vu, T.C., Nutt, J.G. & Holford, N.H. Disease progress and response to treatment as 
predictors of survival, disability, cognitive impairment and depression in Parkinson’s 
disease. Br. J. Clin. Pharmacol. 74, 284–295 (2012).

13.	 Holford, N.H.G., Vu, T. & Nutt, J. Authors’ response to Marras & Oakes “Piecing together 
the puzzle of progression and mortality in Parkinson’s disease.” Br J Clin Pharmacol 
(2012); doi:10.1111/j.1365-2125.2012.04465.x

14.	 Hu, C. & Sale, M.E. A joint model for nonlinear longitudinal data with informative dropout. 
J. Pharmacokinet. Pharmacodyn. 30, 83–103 (2003).

15.	 Holford, N.H.G. & Lavielle, M. A tutorial on time to event analysis for mixed effect 
modellers Abstr 2281. PAGE 20, (2011). <http://www.page-meeting.org/?abstract=2281>.

16.	 Holford, N.H.G. Time to event analysis for pharmacokineticists. AAPS Webinar <http://
holford.fmhs.auckland.ac.nz/docs/time-to-event-webinar.pdf>. (2012).

17.	 Garnett, C. & Holford, N.H.G. Bone mineral density progression linked to dropout and 
time-to-fracture: application to postmenopausal women taking hormone replacement 
therapy. 5th International Symposium on Measurement and Kinetics of In Vivo Drug 
Effects, Noordwijkerhout, 26–29 April 2006.

CPT: Pharmacometrics & Systems Pharmacology is an  
open-access journal published by Nature Publishing 

Group. This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivative Works 3.0 License. To view a copy of 
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary information accompanies this paper on the Pharmacometrics & Systems Pharmacology website  
(http://www.nature.com/psp)




