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Abstract 
 
Background 
Cancer monitoring and prevention relies on the critical 
aspect of timely notification of cancer cases. However, the 
abstraction and classification of cancer from the free-text of 
pathology reports and other relevant documents, such as 
death certificates, exist as complex and time-consuming 
activities. 
 
Aims 
In this paper, approaches for the automatic detection of 
notifiable cancer cases as the cause of death from free-text 
death certificates supplied to Cancer Registries are 
investigated. 
 
Method   
A number of machine learning classifiers were studied. 
Features were extracted using natural language techniques 
and the Medtex toolkit. The numerous features 
encompassed stemmed words, bi-grams, and concepts from 
the SNOMED CT medical terminology. The baseline 
consisted of a keyword spotter using keywords extracted 
from the long description of ICD-10 cancer related codes. 
 
Results 
Death certificates with notifiable cancer listed as the cause 
of death can be effectively identified with the methods 
studied in this paper. A Support Vector Machine (SVM) 
classifier achieved best performance with an overall F-
measure of 0.9866 when evaluated on a set of 5,000 free-

text death certificates using the token stem feature set. The 
SNOMED CT concept plus token stem feature set reached 
the lowest variance (0.0032) and false negative rate 
(0.0297) while achieving an F-measure of 0.9864. The SVM 
classifier accounts for the first 18 of the top 40 evaluated 
runs, and entails the most robust classifier with a variance 
of 0.001141, half the variance of the other classifiers. 
 
Conclusion 
The selection of features significantly produced the most 
influences on the performance of the classifiers, although 
the type of classifier employed also affects performance. In 
contrast, the feature weighting schema created a negligible 
effect on performance. Specifically, it is found that 
stemmed tokens with or without SNOMED CT concepts 
create the most effective feature when combined with an 
SVM classifier. 
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What this study adds: 
This paper evaluates automatic feature extraction for the 

automatic machine learning classification of documents 

from a wide range of tumour streams within a single 

application. The authors identified salient factors in the 

composition of machine learning systems and 

demonstrated the achievement of high classification 

performances, with the potential to improve workflows for 

the coding of cancer notifiable free-text death certificates. 

 
 

 
Background 
Cancer notification and reporting remains an essential and 
fundamental process for providing an accurate picture of 
the impact of cancer, the nature and extent of cancer, and 
to direct research efforts for the cure of cancer. Cancer 
Registries collect and interpret data from a large number of 
sources, helping to improve cancer prevention and control, 
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as well as treatments and survival rates for patients with 
cancer. 
 
The manual coding of documents, such as pathology reports 
and death certificates, with respect to notifiable cancers 
and corresponding synoptic factors (such as primary site, 
morphology, etc.) exist as a laborious and time consuming 
process. Cancer Registries strive to provide timely and 
accurate information on cancer incidence and mortality in 
the community. These databases receive large quantities of 
information from a range of sources, such as hospitals, 
pathology laboratories and Registries of Births, Deaths and 
Marriages (which issue release death certificates, among 
others). In addition, there exist cancer mortality cases 
where only death certificates are available, i.e. no previous 
pathology or hospital documents reporting cancer were 
recorded for those individuals. A recent study has reported 
cases of cancer  incidence

1
 with death certificates only 

(DCO) amount to 1.0% and 1.8% in New South Wales and 
Victoria, respectively (1). Delays in the processing of this 
data potentially cause underestimation of the incidence of 
cancer. Computational methods for the automatic 
abstraction of relevant information possess the ability to 
enhance a Cancer Registry’s workflow, generating time 
efficiency and costs savings with timely reporting of cancer 
incidence and mortality information. However, an 
automatic process is a challenging task, related to the 
complex nature of the language used in the reports, and the 
high level of recall and accuracy required. 
 
Previous endeavours attempted to provide automatic 
cancer coding from free-text pathology reports collected by 
Cancer Registries. For example, Nguyen et al. employed 
natural language processing techniques and a rule-based 
system to automatically extract relevant synoptic factors 
from electronic pathology reports (2). Likewise, Zuccon et 
al. demonstrated how these techniques deal with character 
recognition errors generated by scanning free-text 
pathology reports stored in paper form (3). Previous 
research has considered machine learning approaches; for 
instance, D’Avolio et al. tested approaches based on 
supervised machine learning (Conditional Random fields 
and Maximum Entropy) and revealed its effectiveness for 
the classification of pathology reports in the domains of 
colorectal, prostate, and lung cancers (4). 
 
Cancer Registries possess access to a number of data 
sources beyond pathology reports. Death certificates 
provide one such data supply as a rich source of data that 
supports cancer surveillance, monitoring and reporting. 
These certificates contain free-text sections that report the 
cause of the death of an individual. Figure 1 and 2 provide 
examples of the free-text content of death certificates 
where cause of death entails notifiable and non-notifiable 
cancer types. 
 
 

                                                 
1
 The study considered only invasive, primary, malignant neoplasm 

of the colorectum, lung, breast, or ovary. 

Figure 1. De-identified death certificate where cause of 
death is a notifiable cancer. 

(I)A) MAXILLARY TUMOR, 2 YEARS B) PULMONARY 
OEDEMA, 1 WEEK (II) CEREBROVASCULAR 
ACCIDENT/DYSPLASIA, 20 YEARS ASTHMA 

 
Figure 2. De-identified death certificate where cause of 
death is not a notifiable cancer. 

I(A) CEREBROVASCULAR ACCIDENT 48 HOURS (B) CEREBRAL 
ARTERIOSCLEROSIS YEARS (C) HYPERTENSION YEARS II 
CHRONIC ALCOHOLISM YEARS 

 
Limited research focused on computational methods for 
automatically classifying death certificates regarding the 
cause of death. The SuperMICAR system and its related 
tools provide a semi-automatic coding of the cause of death 
in death certificates. The system identifies keywords and 
expressions from the free-text documents that indicate 
possible causes of death; researchers accomplished this 
through the use of a standard set of expressions encoded in 
a predefined vocabulary. Extracted free-text expressions 
translate to one or more ICD-10 codes which undergo 
aggregation into a single ICD-10 underlying cause of death 
through the use of a rule-base. While doctor reported death 
certificates can be fed directly into the system, Coroner 
documented deaths require additional pre-processing. A 
consistent number (between 15 and 20 percent according 
to a US study) of death certificates cannot be coded through 
SuperMICAR and related tools, and thus require manual 
coding (5). Recent research successfully classified death 
certificates related to pneumonia and influenza using a 
natural language processing pipeline and rule-based system 
(6). However, to the best of our knowledge, no previous 
research investigated fully automatic methods that go 
beyond keyword spotting of standard cause of death 
expressions to classifying death certificates, in particular 
focusing on certificates with cancer as the main cause of 
death. Furthermore, while Australian Cancer Registries 
acquire free-text death certificates on a fortnightly basis 
from the Registry of Births Deaths and Marriages, coded 
causes of death produced by SuperMICAR (and related 
products) come from the Australian Bureau of Statistics on a 
yearly basis. Using computational methods with the ability 
to tackle the fast identification of death certificates with 
notifiable cancer as the cause of death potentially produces 
enhancement of cancer reporting and monitoring 
capabilities of Cancer Registries. 
 
In this paper, we focus on the problem of automatically 
identifying death certificates with cancer as the main cause 
of death. This problem evolves as a binary classification 
task, i.e. death certificates undergo classification as 
containing a death cause related to cancer or vice versa as 
not containing a death cause related to cancer. Several 
machine learning classifiers are investigated for this task. 
These include Support Vector Machine, Naive Bayes, 
decision trees, and boosting algorithms. A state-of-the-art 
information extraction tool (Medtex) is used to create 
different set of features to train the classifiers;(7) a number 
of feature weighting schemas are also considered. Features 
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encompass stemmed tokens, n-grams, as well as SNOMED 
CT concept ids and tokens from fully specified names of 
SNOMED CT concepts, among others. SNOMED CT exist as a 
medical ontology which formally describes in detail the 
coverage and knowledge of topics and terminology used in 
the medical domain (8). 
 
The machine learning classifier approaches being studied 
underwent testing on 5,000 de-identified death certificates 
acquired from an Australian Cancer Registry, using 10-fold 
cross validation to allow for robust training and testing. Our 
experimental results demonstrate that the choice of 
weighting schema fails to be critical for achieving high 
classification effectiveness. Instead, the features chosen to 
represent the content of death certificates emerge as the 
primary factor in high classification effectiveness; classifier 
type appears as a significant secondary factor. Specifically, 
stemmed tokens arise as the single most important feature 
set among those extracted. Furthermore, this study found 
that SNOMED CT features provide consistent increments in 
classification robustness if used along with stemmed 
tokens. Although not providing a large increment in 
classification, the combined use of stemmed tokens bigrams 
and SNOMED CT concepts provide the lowest range, 
variance and false negative rate in these experiments. 
 
Next, the methods adopted in this study and an outline of 
the empirical evaluation methodology are described; 
classification results obtained by the investigated 
approaches are presented in the Results section. An analysis 
of these results materialises in the Discussion section. The 
paper concludes with a summary of the main contribution 
and directions for future research. 
 

Method 
In this paper, supervised machine learning approaches are 
employed for the detection of death certificates with 
notifiable cancer as the cause of death. Three main 
variables characterise these approaches: 1) the features 
extracted from the documents (Automatic Feature 
Extraction), 2) the weighting schemas applied to the 
features to represent documents (Feature Weighting), and 
3) the specific binary classifier used to individuate 
certificates with notifiable cancer as the cause of death 
(Automatic Classification). A keyword spotter is described in 
Baseline and provides a reference for evaluation of the 
machine learning approaches. The Method section closes 
with a description of the data, and finally the evaluation 
strategy. 
 
Automatic Feature Extraction 
Machine learning algorithms require data to be represented 
by features, such as the words that occur in a text 
document. In this work, the information extraction 
capabilities of the Medtex system

2
 were used for obtaining 

                                                 
2
 Medtex comprises both information extraction capabilities 

(extracting both low level information such as word tokens and 
stems, punctuation, etc., and higher level semantic information 

a set of meaningful features from the free-text of the death 
certificates shown in Table 1. 
 
Table 1. Feature sets extracted from death certificates by 
the Medtex system. 

Feature Description 

stem a token stem, i.e. the stemmed 
version of a word contained in death 
certificates 

conceptFull the tokens of the fully specified name 
of the extracted SNOMED CT concepts 

concFullBigram the bigram formed by two adjacent 
tokens in the fully specified name of 
concepts extracted from SNOMED CT 

stemBigram the bi-gram formed by two token 
stems, i.e. a pair of adjacent stemmed 
words as found in death certificates 

concept SNOMED CT concepts identified in the 
free-text of the certificates using the 
Medtex system 

concBigram the bigram formed by two adjacent 
SNOMED CT concept ids 

concFullMorph the tokens of the fully specified name 
of extracted SNOMED CT concepts 
that are morphologic abnormalities or 
disorders 

 

 
While features like stem and stemBigram commonly classify 
free-text documents, previous research has not considered 
characteristics based on SNOMED CT concepts and their 
properties, such as tokens from the fully specified name. 
SNOMED CT provides a standard clinical terminology used 
to map various descriptions of a clinical concept to a single 
standard clinical concept. In this work, the SNOMED CT 
ontology is used as the underlying mechanism to classify 
free-text using semantically matching SNOMED CT concepts. 
 
In addition, pair-wise combination of features that showed 
promising results on preliminary experiments were 
considered. Results reported for all features used singularly 
(except for concFullMorph), and for the combinations 
concept + stem, concept + stemBigram, concFullMorph + 
stemBigram, and concBigram + stemBigram, showed 
promise in initial exploration. 
 
Next, consider the example death certificates given in Figure 
1 and Figure 2 for describing the composition of a feature 
set. To build the feature representations, each death 
certificate is examined, and a value of 1 is assigned for each 
time a feature occurred in a certificate; while, the absence 
of a feature receives a value of zero. Note that these values 
are subsequently modified according to the feature 
weighting functions, as we shall describe in Feature 
Weighting. After all certificates have been processed in this 
manner, a final feature cancerNotifiable is added, whose 
value is obtained from ground truth judgements supplied 
with the data. Table 2 shows an extract of the feature data 

                                                                                   
such as UMLS and SNOMED CT concepts) and classification 
capabilities integrated via its rule-based engine (2). 
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constructed for the two example death certificates. The task 
of the machine learning classifiers is to predict the value of 
the cancerNotifiable feature, given the learning data 
supplied. 
 
Note that the text receives no further processing, for 
example, for removing punctuation, identifying section or 
list labels, or for removing or correcting typographical errors 
present in the free-text. While adequate text pre-processing 
may enhance the quality of the text itself and thus the 
extracted features, this is left for future research. Instead, 
weighting schemas for the selected features and binary 
classifiers are investigated next. 
 
Feature Weighting 
A number of weighting schemes for capturing the local 
importance of a feature in a report were investigated. In the 
first scheme, Binary coefficients encoded the presence or 
absence of a feature. This schema is referred to as binary. 
 
The weighting schema composed by the feature frequency 
f(F) of feature F captured the number of times a specific 
feature appeared within a document. This schema is 
referred to as freq. 
 
Variations of the frequency weighting schema were 
investigated. These schema directly translate feature 
frequencies into weights, i.e. weights linearly derived from 
frequencies. Other variations considered non-linear 
functions of the frequency of a feature. 
 
A first variation involved scaling the appearance of feature F 
in a free-text death certificate by the function 1+log(f(F)) if 
f(F)=1, and 0 when absent. This function captures the fact 
that subsequent appearances of a feature F in a document 
receive little importance: the logarithm of a number greater 
than one plateaus rapidly. This schema is referred to as 
logF, i.e. logarithm of the frequency. 
 
A second variation encompasses assigning increasing 
weights to features that appear with high frequencies 
within the death certificate. To this aim, the appearance of 

feature F is weighted according to the function e
f(F)

, while 
absent features are assigned the value zero. It is suggested 
that, given the short length of the death certificates under 
consideration, the unexpected multiple occurrence of a 
feature would provide strong evidence that feature is 
important for the document. Using the exponential function 
to weight occurrences of a feature assigns dominating 
scores to features that occur frequently in a document. This 
schema is referred to as expF. 
 
Note that scores were assigned to features by using only 
local weighting functions, that is, weights were computed 
only by taking into account the frequencies of appearance 
of a feature within a single text. Thus, the distribution of a 
feature on a global level, i.e. across the dataset, was ignored 
when computing the feature weight. The incorporation of 
global occurrence statistics within the weighting schemas 
was left for future research. 

Automatic Classification 
A number of common classifiers were evaluated in this 
study. These comprised statistical models (Naive Bayes), 
support vector machines (SPegasos), decision trees (C4.5), 
and boosting algorithms (AdaBoost). The implementations 
of these algorithms provided in the Weka toolkit were used 
in this work (9). 
 
The multinomial Naive Bayes classifier determines the class 
of a death certificate according to the independent 
occurrence of features in the text and their weights. The 
SPegasos classifier uses a stochastic gradient descent 
algorithm and a hinge loss function to produce the 
separation hyperplane used by the linear support vector 
machine. In the C4.5 classifier, information gain provides 
the choice at each level of the decision tree for the most 
effective feature able to split the data into the two binary 
classes considered here (i.e. cancer-related and not cancer-
related death certificates). AdaBoost minimises a convex 
loss function built from the prediction of a base weak 
classifier. The investigators utilized a simple one-level binary 
decision tree as the base classifier for AdaBoost.  
Parameters of all classifiers were set to the default values 
described in Witten et al (9). 
 
Baseline 
A simple keyword spotting classifier was used as a baseline 
method for the evaluation of the machine learning 
approaches. The creation of the keyword list came from 
automatically extracting the set of unique terms from the 
long description of all ICD-10 cancer codes, and then 
manually filtering out the non cancer-specific words. A 
death certificate classification refers to cancer notifiable if it 
contains one or more terms from the keyword list, 
otherwise the classification becomes not notifiable. 
 
Data 
A set of 5,000 free-text death certificates was acquired from 
Cancer Institute NSW, the institutional entity responsible for 
maintaining the Central Cancer Registry in New South 
Wales. Ethics approval came from the NSW Population & 
Health Services Research Ethics Committee for this study 
including use of the de-identified data. The free-text death 
certificates were short in length, containing on average 
13.08 words; the (unstemmed) vocabulary contained 3,751 
unique words (including section headings and labels). 
 
Cause of death classifications based on ICD-9 and ICD-10 
codes accompanied the reports. This coding set came from 
the Australian Bureau of Statistics, who release coded data 
yearly. These ICD coding determined the class to which each 
death certificate belonged to. The list of notifiable cancer 
ICD codes was obtained from the neoplasms table in 
chapter 2 of the International Statistical Classification of 
Diseases and Related Health Problems 10th Revision (ICD-
10), version for 2010

3
. 

 
The 5,000 death certificates extracted from Cancer Institute 

                                                 
3
 http://apps.who.int/classifications/icd10/browse/en#/II 
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NSW archives such that 3,111 (62.2%) certificates were 
coded with ICD codes from the cancer notifiable list 
according to the neoplasms table. The remaining 1889 
(37.8%) contained non-cancer notifiable ICD codes. The 
coded cause of death for the 3,111 cancer notifiable death 
certificates represents more than 370 unique ICD cancer 
related codes. 
 
Evaluation 
Many strategies exist that can be employed in the 
evaluation of machine learning approaches for classification 
of cancer notifiable death certificates. A 10-fold cross 
validation becomes applicable in this scenario as the large 
training set, small test set split at each iteration reflects 
accurately the application domain, since Cancer Institute 
NSW possess a large database of coded death certificates 
from which to build a production quality classification 
system. 
 
The 10-fold cross validation evaluation strategy was thus 
used to train and test the classifiers. In this methodology, 
the dataset is randomly divided into 10 stratified

4
 folds of 

equal dimensions. A model for each classifier is then learnt 
on nine of these folds, leaving one fold out for testing. The 
process is repeated by selecting a new fold for testing, while 
a new model is learnt from the remaining folds. The 
classifier constructed at each iteration is run against the fold 
left out for testing and the result is recorded. Once all folds 
are complete, classification effectiveness is averaged across 
all test fold results, and this measure is reported herein. 
 
F-Measure (F-m) was used as the primary metric to evaluate 
the efficacy of the implemented classifiers; accuracy, recall 
(sensitivity, Rec) and precision (positive predictive value, 
Prec) were also recorded, along with the number of true 
positive (TP), false positive (FP), true negative (TN), and 
false negative (FN) classifications. 

 
Results  
The combination of 10 features, four weighting schemas, 
and four classifiers requires the evaluation of a total of 160 
classifier settings (referred to as runs in the following) on 
the dataset consisting of 5,000 death certificates. While all 
combinations of features, weighting schema and classifiers 
were evaluated, due to the large number of combinations it 
is unfeasible to report the individual results for each of the 
runs. Thus, only the settings of the 40 most effective runs in 
terms of F-measure, the primary evaluation metric (Table 
3), are reported. 
 
The F-measure of each classifier over all experimented 
settings is graphically shown in Figure 3. Later in the paper, 
a summary evaluation of the variability of results provided 
by features, weighting schemas, and classifiers is reported. 
This analysis considers the results from all runs. 
 

                                                 
4
 Folds were automatically stratified with respect to the two 

target classes, not the ICD-10 codes. 

The results reported in Table 3 offer strong suggestion that 
the tested approaches produce highly effective results in 
discriminating between those death certificates that contain 
a cancer notifiable cause of death and those death 
certificates that contain a non-cancer notifiable cause of 
death. A reference comparison can be made with the 
performance of the baseline keyword classifier presented in 
Table 4. Overall, the support vector machine 
implementation provided by SPegasos emerged as the best 
classifier when used on the stem feature set, weighted 
using binary coefficient. SPegasos happens to be very 
effective also when other combinations of weighting 
schemas and features come under consideration, 
accounting for 20 of the presented top 40 results, of which 
it occupies the first 18 positions. Additionally, the SPegasos 
classifier shows lower variance across all settings compared 
to Naive Bayes, C4.5 and Adaboost, being 47.7%, 61% and 
61.9% lower respectively (Figure 3 & Table 5). 
 
The keyword spotting baseline classifier produced an F-
measure of 0.8837, precision of 0.9736 and recall of 0.8071 
(Table 4). The top 40 machine learning classifiers presented 
here have 7-10% higher F-measure than the baseline 
classifier. 
 

Discussion 
To better understand the role of specific feature sets, 
weighting schema and classifiers on the effectiveness of the 
tested approaches, we performed an analysis of the 
empirical results with independent designation of each of 
the three key characteristics as controlled variables. 
 
Table 4. Baseline keyword classifier result. 

Prec Rec F-m TP FN FP TN 

0.9763 0.8071 0.8837 2511 600 61 1828 

 
Figure 3. Boxplot summarising F-measure of the 
investigated classifiers over all considered settings. 

 
 
Classifiers 
We start by examining the impact of each classification 
model on the overall effectiveness of the approaches. Table 
5 reports maximum (Max), minimum (Min), difference (∆), 
and variance (Var) of F-measure over all runs of each 
classifier model. SPegasos appeared as the classifier 
achieving the highest maximum F-measure (0.9866), highest 
minimum F-measure (0.8944), lowest difference (0.0922) 
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and lowest variance (1.14E-03), extending the observations 
made on this classifier when examining the results of Table 
3; all SPegasos results emerged with higher readings than 
the keyword classifier baseline. The Naive Bayes classifier 
failed to be amongst the most effective classification 
models in our experiments; however, its robustness comes 
second only to that of SPegasos, with difference and 
variance of only 0.1178 and 2.18E-03 in F-Measure 
respectively. A classifier that exhibits low values of 
difference and variance across its different settings (i.e. 
weighting schema, feature sets, etc.) indicates it may be less 
susceptible to variances in effectiveness when applied to 
unseen data. In our experiments, this is the case for 
SPegasos and Naive Bayes. However, while C4.5 achieves 
higher values of F-measure than Naive Bayes, its difference 
and variance are greater. AdaBoost showed the worst 
performance overall with 28 of its 40 runs performing worse 
than the baseline. 
 
Table 5. Classification effectiveness of all four classifiers 
using F-measure, ordered by increasing variance. 

Classifier Max Min ∆ Var 

SPegasos 0.9866 0.8944 0.0922 1.14E-03 

Naive Bayes 0.9571 0.8393 0.1178 2.18E-03 

C4.5 0.9748 0.8458 0.129 2.92E-03 

AdaBoost M1 0.9093 0.7639 0.1454 2.99E-03 

 
Weighting Schema 
We continue by analysing the influence of weighting 
schemas on the classification effectiveness (see Table 6). 
The simple binary coefficient schema achieved the highest 
F-measure. However, no weighting schema appears to be 
significantly better than another: while binary achieves the 
best performance with an F-measure of 0.9866, the highest 
F-measure of the worst performing schema, expF, came to 
0.9821; just 0.46% lower than binary. Furthermore, all 
weighting schema exhibit the same effectiveness when 
considering the worst performing settings. Thus the range 
of performance differences and their variance do not 
significantly differ across weighting schema. Weighting 
schema shows the highest average variance at 3.77E-03, in 
comparison to Classifier and Feature set average variance of 
2.31E-03 and 1.70E-03 respectively. This may be due to the 
fact that death certificates appear in general short 
documents, where features occur uniformly and thus 
different schemas to produce feature weights do not 
sensibly differ. 
 
Table 6. Classification effectiveness across the four 
weighting schema using F-measure, ordered by increasing 
variance. 

Weight Max Min ∆ Var 

expF 0.9821 0.7639 0.2182 3.58E-03 

logF 0.9858 0.7639 0.2219 3.77E-03 

freq 0.9848 0.7639 0.2209 3.82E-03 

binary 0.9866 0.7639 0.2227 3.89E-03 

 

Feature Sets 
Feature set is the final variable controlled for in our analysis, 
and arguably the one with the greatest impact on 
classification results (Table 7). The use of the stem feature 
set provides the highest F-measure (0.9866), while 
concBigram yields the lowest maximal F-measure (0.9171): 
a marked difference of 7.03%. The concept + stem (9.82E-
04) demonstrated the smallest variance, making it the most 
robust feature set in our experiment; in addition this 
feature yielded a maximal F-measure only 0.02% lower than 
the best value recorded in our experiments. The average 
variance of feature sets appeared as the lowest of the 
controlled variables at 1.70E-03, as noted previously.  These 
results provide strong indication that, of the variables 
analysed, the choice of feature provides the greatest 
contribution to the classification effectiveness, although 
careful selection of the classifier can provide significant 
improvement. To illustrate the importance of feature set 
selection, when the concept + stem feature set undergoes 
combination with the worst performing classifier in our 
experiment, AdaBoost, F-measure of the pair becomes 
0.9093, the highest recorded for AdaBoost. 
 
Related Work 
The results presented here showed improved performances 
over an earlier publication (10). Previous work considered 
the NSW Cancer Registry (NSW CR) business rules, which 
narrow the conditions for notifiable death certificates to 
both a) cancer related cause of death and b) issued for a 
NSW CR patient. The current work considers the more 
general rules applied by the Australian Bureau of Statistics 
(ABS), which only require that the death certificate 
possesses a cancer related cause of death. This study also 
extends the scope of the work to use ABS ICD-9 and ICD-10 
coded death certificates. 
 
Table 7. Classification effectiveness across all ten feature 
sets using F-measure, ordered by increasing variance. 

Feature Max Min ∆ Var 

concept + stem 0.9864 0.9085 0.0779 9.82E-04 

concept + 
stemBigram 

0.9825 0.8979 0.0846 1.04E-03 

stem 0.9866 0.901 0.0856 1.05E-03 

concFullBigram 0.895 0.7945 0.1005 1.35E-03 

conceptFull 0.9254 0.8266 0.0988 1.36E-03 

stemBigram 0.9801 0.8767 0.1034 1.59E-03 

 concFullMorph 
+ stemBigram 

0.9825 0.8766 0.1059 1.62E-03 

concept 0.9526 0.8376 0.115 1.77E-03 

concBigram + 
stemBigram 

0.9171 0.7639 0.1532 3.13E-03 

concBigram 0.9171 0.7639 0.1532 3.13E-03 

 
In this study, the use of the ABS rules is found to improve 
performance over that of the NSW CR rules used in the 
previous study (10). The difference in specificity between 
the ABS and NSW CR rules; the extended scope of this 
study; and the analysis of classifier predictions being applied 
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to this study were new contributions from this current 
study. 
 

Conclusion 
Timely processing of cancer notifications remains critical for 
timely reporting of cancer incidence and mortality. Death 
certificates create a rich source of data on cancer mortality. 
Cancer registries acquire free-text death certificates on a 
regular (e.g. fortnightly) basis. However, the cause of death 
information needs to be classified to facilitate reporting of 
cancer mortality. Cause of death information classified using 
ICD codes becomes available only on an annual basis. In this 
paper, the automatic classification of death certificates was 
studied to individuate cancer notifiable cause of death. The 
investigated approaches achieved overall strong 
classification effectiveness, with a support vector machine 
classifier trained with token stem features and weighted by 
a simple binary coefficient of appearance in the document 
yielding an F-measure of 0.9866. The choice of feature set, 
and of classifier, represented determining factors for high 
effectiveness. The weighting schema had no appreciable 
effect on classification effectiveness. The use of an 
automatic classification system of similar effectiveness to 
the description presented here possesses the potential to 
improve workflows for the coding of cancer notifiable free-
text death certificates. 
 
Future efforts need to be directed towards an in depth error 
analysis, in particular examining the distance between the 
prediction produced by a classifier and the decision 
threshold. Further work will be directed towards extending 
the current methods to predict the actual ICD-10 codes 
associated with a cause of death related to cancer, so as to 
further assist clinical coders in processing cancer 
notifications. 
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Table 2. Feature data built from two example death certificates. 
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Figure 1 1 0 ... 1 1 1 1 0 ... 1 1 1 ... 1 1 ... 1 0 ... 1 

Figure 2 1 1 ... 0 0 1 0 1 ... 0 0 0 ... 1 0 ... 1 1 ... 0 
 

 

Table 3. Top 40 results with respect to decreasing F-measure (F-m). 

Classifier Feature Weight Prec Recall F-m TP FN FP TN 

SPegasos stem binary 0.9922 0.981 0.9866 3052 59 24 1865 

SPegasos concept + stem binary 0.9912 0.9817 0.9864 3054 57 27 1862 

SPegasos stem logF 0.99 0.9817 0.9858 3054 57 31 1858 

SPegasos concept + stem logF 0.9922 0.9791 0.9856 3046 65 24 1865 

SPegasos stem freq 0.989 0.9807 0.9848 3051 60 34 1855 

SPegasos concept + stem freq 0.9889 0.9775 0.9832 3041 70 34 1855 

SPegasos concept + stemBigram logF 0.9915 0.9736 0.9825 3029 82 26 1863 

SPegasos concFullMorph + stemBigram freq 0.9892 0.9759 0.9825 3036 75 33 1856 

SPegasos concept + stemBigram binary 0.9925 0.9724 0.9823 3025 86 23 1866 

SPegasos concFullMorph + stemBigram expF 0.9876 0.9765 0.9821 3038 73 38 1851 

SPegasos concFullMorph + stemBigram logF 0.9889 0.9752 0.982 3034 77 34 1855 

SPegasos concept + stemBigram freq 0.9896 0.9743 0.9819 3031 80 32 1857 

SPegasos concept + stemBigram expF 0.9886 0.9749 0.9817 3033 78 35 1854 

SPegasos concFullMorph + stemBigram binary 0.9895 0.9724 0.9809 3025 86 32 1857 

SPegasos stemBigram freq 0.9882 0.972 0.9801 3024 87 36 1853 

SPegasos stemBigram binary 0.9895 0.9701 0.9797 3018 93 32 1857 

SPegasos stemBigram logF 0.9892 0.9704 0.9797 3019 92 33 1856 

SPegasos stemBigram expF 0.9879 0.9717 0.9797 3023 88 37 1852 

C4.5 concept + stem binary 0.9814 0.9682 0.9748 3012 99 57 1832 

SPegasos stem expF 0.9827 0.9666 0.9746 3007 104 53 1836 

C4.5 stem binary 0.9849 0.964 0.9743 2999 112 46 1843 

SPegasos concept + stem expF 0.9792 0.9682 0.9737 3012 99 64 1825 

C4.5 stem logF 0.9808 0.9666 0.9736 3007 104 59 1830 

C4.5 stem expF 0.9808 0.9666 0.9736 3007 104 59 1830 

C4.5 stem freq 0.9808 0.9666 0.9736 3007 104 59 1830 

C4.5 concept + stem logF 0.9798 0.965 0.9723 3002 109 62 1827 

C4.5 concept + stem expF 0.9798 0.965 0.9723 3002 109 62 1827 

C4.5 concept + stem freq 0.9798 0.965 0.9723 3002 109 62 1827 

C4.5 concept + stemBigram logF 0.9647 0.9569 0.9608 2977 134 109 1780 

C4.5 concept + stemBigram expF 0.9647 0.9569 0.9608 2977 134 109 1780 

C4.5 concept + stemBigram freq 0.9647 0.9569 0.9608 2977 134 109 1780 

C4.5 concept + stemBigram binary 0.9662 0.955 0.9606 2971 140 104 1785 

Naive 
Bayes 

concept + stem logF 0.9569 0.9572 0.9571 2978 133 134 1755 

Naive 
Bayes 

stem logF 0.9599 0.9544 0.9571 2969 142 124 1765 

C4.5 stemBigram binary 0.9577 0.9531 0.9554 2965 146 131 1758 

C4.5 stemBigram logF 0.9577 0.9527 0.9552 2964 147 131 1758 

C4.5 stemBigram expF 0.9577 0.9527 0.9552 2964 147 131 1758 

C4.5 stemBigram freq 0.9577 0.9527 0.9552 2964 147 131 1758 

C4.5 concFullMorph + stemBigram binary 0.9556 0.9544 0.955 2969 142 138 1751 

 


