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Connectivity is the key process that characterizes the structural and functional properties of social networks.
However, the bursty activity of dyadic interactions may hinder the discrimination of inactive ties from large
interevent times in active ones. We develop a principled method to detect tie de-activation and apply it to a
large longitudinal, cross-sectional communication dataset (=19 months, =20 million people). Contrary to
the perception of ever-growing connectivity, we observe that individuals exhibit a finite communication
capacity, which limits the number of ties they can maintain active in time. On average men display higher
capacity than women, and this capacity decreases for both genders over their lifespan. Separating
communication capacity from activity reveals a diverse range of tie activation strategies, from stable to
exploratory. This allows us to draw novel relationships between individual strategies for human interaction
and the evolution of social networks at global scale.

any different forces govern the evolution of social relationships making them far from random. In recent

years, the understanding of what mechanisms control the dynamics of activating or deactivating social

ties have uncovered forces ranging from geography to structural positions in the social network (e.g.
preferential attachment, triadic closure), to homophily'. These finding are pervasive in empirical analyses across
cultures, communication technologies and interaction environments*"'.

However, the incorrect assumption that time, attention and cognition are elastic resources has blurred the
study of how individuals manage their social interactions over time'*™'*. Understanding such social strategies is
not only of paramount importance to make progress in the characterization of human behavior, but also to
improve our current description of social networks as evolutionary objects against the (aggregated) ever-growing
or static pictures of the social structure.

Several reasons have hampered the observation of tie activation/deactivation dynamics in social networks at
large scale: on the one hand, studies of diffusion based on datasets from pre-electronic eras have safely assumed
that tie activation/deactivation is a much slower process than interactions within a tie, and thus their dynamics
might be safely neglected'*"”. However, the current ability to communicate faster and further than ever accel-
erates tie dynamics in an unprecedented manner to the point that tie activation/deactivation may rival in time
with processes like information spreading. On the other hand, available data about how ties form or decay were
restricted to egocentric, small social networks and/or short periods of time which made it difficult to assess the
universality of the results obtained and their extension to other situations®. Finally, although in some online social
networks there are explicit rules for the establishment of social ties, in most cases activity is the only way to assess
the existence of the tie'*'"”. Online social networks are plagued with this problem due to the cheap cost of
maintaining “friends” which are in fact already deactivated relationships*. However, using activity as proxy
for tie presence is a problem in most communication channels like mobile phone calls, emails, electronic social
networks etc., since tie activity is very bursty*' and so far there is no clear method to discriminate those social ties
that are already inactive from large-inter even times within active relationships*.

Results

Detection of tie activation/deactivation. To study the formation and decay of communication ties, we study the
Call Detail Records (CDRs) from a single mobile phone operator over a period of 19 months. The data consists of
the anonymized voice calls of about 20 million users that form 700 million communication ties. After filtering out
all the incoming or outgoing calls that involve other operators, we only consider users that are active across the
whole time period and retain only ties which are reciprocated. We refer to Methods Section and the Supplementary
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Figure 1| Detection of tie activation/deactivation. Schematic view
of the time intervals considered in our database and the different situations
of tie activation/deactivation and the interplay between the tie
communication patterns and tie activation/deactivation for a given
observation time window Q of length T'= 7 months (shadowed area). Each
line refers to a different tie while each vertical segment indicates a
communication event between i <> jand 0t is the inter-event time in
the i <> j time series.

Information (SI) Section 7 for further details about the processing and
the sampling of the datasets and for the comparison with another
(smaller) database of Facebook communication through wall posts.
In most studies of communication networks a tie is assumed to be
present if it shows any activity in the observation window?>.
However, since communication is bursty®', large inter-event times
between interactions are likely and thus they might be unobserved or
mistaken as tie decay or formation, specially if the observation win-
dow is short (see Fig. 1 and SI Section 1). For example, in our call
database we find that the average time between tie communication
events is (0t;) = 14 days (with ¢ = 18 days) and thus we might get
spurious effects if the observation window is of the order of months,
as repeated interactions may fall outside the observation window?.
To overcome this we propose a different method to assess whether
a tie has been activated/deactivated in the observation window Q.
The method is based on the observation of tie activity in a time
window before/after Q: if tie activity is observed in the 6 months
before Q then it is considered an old tie [cases (a) and (d) in
Fig. 1]; on the other hand, if activity is observed in the 6 months
after Q we will assume that the tie persists [cases (b) and (d) in Fig. 1].
In any other case, we will consider that the tie is activated and/or
deactivated in Q [cases (a), (b) and (c) in Fig. 1]. Of course, it is
possible that even if there is no communication before/after the
observation window, the tie is still active after/before our database.
This would require that the tie has an inter-event time Jt;; bigger than
7 months, i.e. case (e) in Fig. 1. However, in our database, only 3.5%
of the links have such a long inter-event time which validates the
accuracy of our definition of tie activation/deactivation. See Methods
Section and SI Section 1 for details on our discrimination method.

Communication capacity and activity. The procedure described
above allows us to determine the tie activation and deactivation
events for each individual along the observation period of 7
months (see Fig. 2). With those events, we build her instantaneous
communication capacity x(t), defined as the number of active ties at
any given instant f. In principle, k;(f) is very different from k(t), the
aggregated number of revealed ties up to time ¢, which is usually what
is taken as a proxy for social connectivity”. Because of the bursty
nature of interactions, k;(f) has a fictitious nontrivial time dynamics
at the beginning of the observation period which is typically ignored
in observations (see SI Section 1 for its implications). However, if we
aggregate the number of activated (deactivated) ties up to time ¢,

R N DR () S
L g ki(t) e il
£, i)
= -
Z _ |5 o . .
\ T Tt Ur t Tl il 1] B
2 (1] 1 l I'I”
o Hl [Il] I| III II mn |I [} I|I ! ll:I“ (] : o : II
.-9 ~ 1 1T I II| [N 1"
GJ I|| II||| " - I' ) :
i: IIII ll IIII 1 : =Tl | I [ : [l : l| ] [} 1 | .
IIIII;I I] IIIII IJII I : 1 IIIIII:IIII I| : n IIII:I I:Il:llllhllll| III" = l ”I Illlll illl%!'“"l“lm : = II| II ! "1: 1] :I -
- - IH n |Illlll IIIIII || IIII {LLLHO T [T AR |||III IIIIJI [ IIJI LI IR TTLH T T T T T lIIIIlIII e A
(I) 3]0 Gb Qb 1 éO 1 éO 1 éO 2 Jl 0
Days

Figure 2 | Communication capacity and evolution of activity. Panel (A)
shows the communication events of a given individual in our database with
all her neighbors in the observation window Q. For each tie id, a vertical
line represents a call with the corresponding neighbor. Grey horizontal
rectangles are drawn from the first to the last observed communication
event in each tie, considering also events before and after Q. Panel (B)
shows vertical up/down arrows for each tie activation/deactivation events
detected within Q. Using those events, panel (C) shows the aggregated
number of active ties as a function of time x,(0) + n,;(¢) and the
aggregated number of deactivated ties 7, ;. Dashed line is the apparent
growth in the social connectivity k() obtained by the cumulative number
of observed activity in ties up to some time, while red line is the number of
active connections at a given instant x;(f).

denoted by n,,(t) [n,,(t)], we get that at the end of Q we have
k(T) = ki0) + ny,(T). Thus k(T) is a combination of the
communication capacity and communication activity in Q. In our
database we find a large heterogeneity in n,,(T) and n,,(T) [see
Fig. 3a]: while on average people activate/deactivate about 8
(reciprocated) ties in a period of 7 months, 20% of users in our
database activate/deactivate more than 15 ties in that period. Note
that on average n, ,(T) and n,, ;(T) almost equals k;(T)/2, (see Fig. 3a),
which suggests that a large fraction of the revealed aggregated social
connectivity k,(T) is given by newly activated or deactivated
connections; similar ratio of activation/deactivation is found in
the Facebook database (see SI Section 7). Thus, k;(T) usually
overestimates the instantaneous human communication capacity
of maintaining active social ties.

The imbalance between the number of activated and deactivated
ties measures how communication capacity changes. At the end of
the observation period the change is x,(T) — x4{0) = n,(T) —
n;,(T). Interestingly, we find that for most users in our database
we get 1,;(T) ~n,,;(T) (see details in Fig. 3b). This means that there
is a conservation principle in social communication, where the num-
ber of deactivated ties equals the number of activated ties in our
observation window Q such that the total number of active ties
remains almost constant after T = 7 months. This conservation of
communication capacity not only happens at this particular time
scale T but also instantaneously: as seen in Fig. 2¢ for a particular
user (and SI Section 3) we find that for around 90% of the users tie
activation/deactivation happens linearly in time so that n, ;(¢) ~o;t
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Figure 3 | Characterization of communication capacity and activity. (A) Probability distribution function (pdf) of the aggregated social connectivity
k;, number of created ties n,; and number of deleted ties n,,; at t = T, compared with the pdf for the average communication capacity k; over the

observation window. (B) Relationship between the number of formed 7, ; and decayed n,,, ties in the observation window for the users in our database:
the results form the PCA indicate that the 93% of the variation can be explained by the first component in the (0.70, 0.71) direction, i.e. almost the black
line n, ; = n,, ;in the plot. Furthermore, the box plot shows the 25% and 75% percentiles (filled box) and 5% and 95% percentiles (whiskers) and the blue
curves correspond to the 5% and 95% percentiles of the corresponding Poisson null model for our data (see Supplementary Section 5). (C) Density plot
p(log w;, log o;) for users with more than 5 ties formed and decayed. Dashed line is the o; = w; relationship and the curves correspond to the contour lines
p = 0.01 for the density of actual values of rates (red) and the ones obtained in the Poissonian null model (blue, see Supplementary Section 5 for further

information).

and n,,; ~ ;t, where o; and o; are the rates of tie activation/deac-
tivation and a; > w; (see Fig. 3c and SI Section 4). These two facts have
aremarkable consequence: despite ties are activated/deactivated con-
tinually, the communication capacity for each individual remains
almost constant throughout the observation period x;(t) ~ k;, signal-
ing that people tend to balance the activation/deactivation of ties in
such a way that the number of active relationships remains stable
over time. The conservation of social capacity is the root of many
observations in the literature (see for example***) that the distri-
bution of connectivity in social networks seems to be stable in time
but the neighbors of a given node change from one time window to
another one. Specifically, we find that the average user social persist-
ence p;, measured as the fraction of neighbors present at the begin-
ning of the observation window €2 that remain active until its end, lies
around 75%. This means that users renew their social circle slowly, in
line with studies in off-line social networks®. This value is much
larger than what is expected in a model where all ties have the same
probability to be activated or deactivated, in which case we obtain
p';=50% (see SI Section 5). Our results corroborates that the way in

o p g
S

which people activate and deactivate ties from their social network is
not random; instead, some existing ties are more probable to be
deactivated than others.

Thus, individual communication can be characterized in terms of
his communication capacity k; and his communication activity n,;
(or rate o;) in a time window. These two quantities give information
about two related although not equivalent features of social com-
munication. While the capacity is a measure of the number of rela-
tions that a user manages instantaneously, the activity is instead
related to the number of relations a user establishes and at what rate.
However, as shown in Fig. 4, we observe for a large part of the
individuals that n,; ~ fi&; with f = 0.75, meaning that the number
of created connections tends to be proportional to the communica-
tion capacity. This correlation resembles the preferential attachment
process by which tie activation is more probable for more connected
individuals. Note however that we find that tie activation is here
proportional to a conserved quantity and thus grows linearly in time
for £>>1; and on top of that, there is a corresponding preferential de-
attachment mechanism meaning that individuals with large i; are

2.5e-2

- 2.9e-3

3.2e-4

3.5e-5

log k;

Figure 4 | Variability of communication capacity and activity. (A) and (B) show different snapshots of the neighborhood of two different individuals
(in red) at 4 equally spaced times in the observation time window t = 52, 105, 158, and 211 days. Each black (grey) line corresponds to an active

(inactive) tie at that particular instant. (C) Log-density plot of the communication activity n,,; as a function of the communication capacity x; for each
individual in our database. Solid line corresponds to the line 71, ; = 0.75k; obtained through PCA. Dashed curves are the iso-connectivity lines k; =%; 4 n,,;

for k; = 10, 20, 50.

| 3:1950 | DOI: 10.1038/srep01950



- - |
.S,\ N I
g (<< T R 60 7 A A
18 & i
?_‘)‘gféissjzo !
L 24 !
¥V 64 !
T T T T T T
11 12 13 14 15 16 17

Ki

B
- F
10 - I .M
5._
0_ S U
1

K;_i Nai

)

Figure 5 | Sociodemographic dependence of the capacity and activity. (A) Average value of the social capacity &; and the activity 7, for groups of users
with different age and gender. Dashed lines correspond to the average of k;and #, ;in the complete database and the solid line is the line 1, ; = fx; obtained
through the PCA in the complete database. (B) Average values for the activity and capacity of users grouped by gender.

also more likely to deactivate ties. Although the dependence
1y~ fK; explains most of the observed behavior (80% of variance
in PCA), there is a still a large variability in our database so that tie
evolution cannot be explained solely by i;. As shown in Fig. 3, for a
given number of people contacted in the observation period ki(T)
there are many possible combinations of social activity n,; and capa-
city i; which yield to the same k(7).

Lifetime evolution and sex differences. Although the communication
capacity and activity remain mostly stable over the observation time
window €, they tend to change gradually during the individual life
course. Specifically, as shown in Fig. 5, we observe that as people get
older the size of their social circle (k; = n,; + ;) decreases. This
decrease in both the communication capacity and activity observed
in Fig. 5 is in line with previous studies on the lifetime evolution of
the cognitive and communication capacity of individuals®*™.
Specifically, changes in egocentric network size across the individual
lifespan are usually associated to both experiencing age-specific life
events and social goals®. Other studies relate the decrease in the
social engagement (number of social contacts, interaction activity,
frequency of communication) across the individual lifespan, to a
decrease in the cognitive capacity”’ . Our decomposition of k; as a
combination of n, and k; allows us to better understand the change in
social network size across the individual lifespan and its relation with
individual communication strategies.

Although the trend in vital trajectories does not change signifi-
cantly with the gender of the individual, interesting differences are
observed between men and women social strategies (Fig. 5). First, in
line with recent studies using mobile phone records®**, we found
that on average women maintain smaller social circles than men,
which seem to happen regardless to their age. Interestingly, com-
munication activity and capacity have a gradual change over the
lifetime of men, with no significant drop before the 60 s. On the
other hand, women have a clearly marked difference between ado-
lescence (<16 years) and the rest of their lifetime.

Social strategy. As we show in Fig. 4, there are many different
combinations of communication capacity k; and activity n,; which
yield to the same number of tie activations/deactivations in the
observation window k;. We encode that disparity in the ratio
Vi =Ny,i/K; which we dub as social strategy and gives information
about the balance between the communication capacity and the
communication activity for a given node: for y;~f (the average
behavior), users have a normal or balanced social strategy between
their communication capacity and activity. Outside this group we
find those users with y;<f} that activate/deactivate a small number of

connections compared to their communication capacity, or users
with ;> who have a large communication activity compared to
their communication capacity. We refer to these two strategies as
social keeping (y;<f3), meaning that these individuals keep a very
stable social circle, and social exploring (y;>>f), meaning that these
individuals activate new ties and deactivate existing ones at a high
pace.

In the following we study how such different social strategies relate
to topological properties and impact the local and global network
dynamics as they operate in the time-scales relevant for viral
information diffusion.

Relation to topological properties. We find a significant correspond-
ence between social strategy and individuals’ local network topology.
As mentioned above, users show on average a 75% persistence in
their ties in 7 months, where the persistence is measured as the
fraction of initial ties that remain active during the whole Q (see SI
Section F). However, as shown in the SI Section F this value rises up to
90% for social keepers with y; < 0.2 and is only 52% for social
explorers with y; > 2. A similar dependency is found for the (aggre-
gated) clustering coefficient c;: as shown in the SI Section F for a fixed
k;, the clustering coefficient for social keepers doubles that of social
explorers, meaning that for equal k; the former have less distinct
social contexts or structural diversity** than the latter. Finally, we
find that along with the assortativity of k; in the social networks we
get a large assortativity of social strategies with a Pearson coefficient
P(Vi Yuni) ~ 0.3 (see SI Section 6 for further details). This means that
social explorers/keepers tend to gather. These findings render a
dynamical picture of the network with very different evolution
rhythms: highly clusterized and almost static areas of social keepers
live together with extremely volatile groups of social explorers.

Our analysis of the Facebook communication dataset shows that
these patterns also hold for users interacting online (see SI Section 7).

Information diffusion. Finally we investigate whether social strategies
have an impact in an individual’s capacity to access information
being propagated in a network. To address this, we have run the
Susceptible-Infected model on the real sequence of CDRs. In a way
analogous to previous works*>*, we start the simulation by infecting
a random node at a random time instant and considering all other
nodes as susceptible. At each call, if either involved nodes is infected,
the susceptible one will be infected too. This maximal spreading
process generates a viral cascade which continues until all reachable
nodes are in the infected state. We repeat the simulation for 10*
randomly chosen seeds. For each individual we then measure the
infection time ¢, as the time difference between the time at which
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Figure 6 | Infection time and social strategies. (A) Relation between average infection time and y; for the different connectivity groups k; = 10, 20, 50
(the Pearson coefficient between t;,r and log(y;) is 0.13 with confidence range [0.12,0.14]). (B) For the connectivity group k; = 20 we show the
dependence of the average infection time on the total number of exchanged calls w; and the social strategy ;.

she received the information and the time at which the correspond-
ing cascade was initiated. Obviously, for a given individual, the infec-
tion time decreases with her total connectivity k; and the total
number of communication events w;: the more connections an indi-
vidual has and the more she interacts, the sooner she receives the
information. But when we control for k; and w;, we observe that on
average there is a dependence between how stable the social strategy
is and the infection time (see Fig. 6b). Interestingly, we observe
that social explorers (y; > 2) have a relatively larger infection
time (roughly 2-3 days of difference) compared to social keepers
(y; <0.2).

We observe that only some combinations of node strength and
social strategy are possible. With low to moderate levels of explora-
tion in social strategies (y;<<p) it is possible to reach a wide range of
node strengths, with a sweet spot in connectivity that allows indivi-
duals to lower their time to access information. However, with y,>>f8
the number of nodes with high strength decreases exponentially:
highly exploratory individuals display a very low level of commun-
ication events and therefore a very large time to receive information
circulating in the network. This result suggests that the information
access benefits of diverse ties are outweighted by their short time
lifespan, resulting in a net delay in access to information from the
individuals activating them.

Discussion

Our insights can be seen, in essence, as the individual-level dynam-
ical version of the tie-level static results reported by Onnela et al.>>.
The authors analyzed 18 weeks of mobile phone call records from 7
million people and showed that, in terms of information diffusion,
ties with low cumulative communication time (strength in our con-
text) are ineffective at information transfer. Our results clarify that
these ties are disproportionally generated by social explorers, and
that they are mostly activated and deactivated in a short time span.
In fact, we find that the average tie weight of each individual w
(measured in terms of average number of exchanged calls per tie)
is negatively correlated to the social strategy y; with a Pearson coef-
ficient p(log 7;, log ;) ~ —0.3240.01, indicating that on average
weak ties belong mostly to social explorers. Note that these highly
time-localized communications differ from the conventional wis-
dom about weak ties. Typically, in fact, weak ties are seen as bridging
connections that span remote parts of the network permanently,
since they are considered active over the whole observation per-
iod***. In our dataset, instead, this happens with low frequency.
Although a detailed analysis of what constitutes a weak ties is beyond

our scope, we find that of all ties with less than 10 calls (correspond-
ing to 50% of the whole population of ties), only almost 20% of them
remain active during the entire observation window. This is also
consistent with the “Diversity-Bandwidth Tradeoffs” observed in
corporate email communication datasets from two medium sized
firms (107 people over 10 months; 214 over 12 months). The authors
found empirical evidence that people who form ties to disparate parts
of the social network at the cost of reducing their band-width of
communication can have disadvantaged access to novelty they
receive’®*!. Our simulation results support this result for a large scale
social network and connect it to measurable individual strategies.

Although, as we have seen, the adoption of social strategies does
not seem to depend on the magnitude of activity and capacity, we
have found them to be assortative. In addition, despite we cannot
establish causality with our methodology and observational period, it
is an interesting question whether social strategies can be behind the
homophily in static topological properties, which has been observed
in a wide range of real social networks™.

These findings document an important contrast between possible
social dynamics: for almost any given k; we can find social explorers
with that connectivity that navigate the network for new ties and thus
have larger structural diversity, as well as social keepers, more con-
servative individuals who focus attention to their stable social neigh-
borhood. In other words, individuals can exhibit exploratory or
stable strategies at multiple scales of connectivity, and these strategies
have more important impact in the resulting network properties,
ranging from cohesiveness to information diffusion, that the total
number of contacts they are able to initiative or receive. This result is
important as it provides conclusive evidence for the divergence
between the static and dynamic characterizations human interaction.
Fine-grained, longitudinal and cross-sectional data as the one pre-
sented in this study are then needed to fully understand processes
such as navigation, influence and information diffusion as they hap-
pen concurrently and possibly entangled to the unfolding of social
strategies in time.

Methods

We consider a large mobile phone communication database and for the sake of
comparison a small (although rather long) communication database through wall
posts in Facebook**. We refer the reader to the SI for the details and analysis on the
Facebook data.

Mobile phone data. The data used in this study has been obtained from the Call
Detail Records database of a unique mobile phone operator in a single country. We
focused exclusively on voice calls records, filtering out short text messages,

| 3:1950 | DOI: 10.1038/srep01950



multimedia messages and operator calls. Each subscription is anonymized such that it
is not possible to recover personal information of the users. We filtered out all the
incoming or outgoing calls that involve other operators due to the partial access we
have to the activity of other providers. To avoid business-like subscriptions, which
usually appear as users with a huge number of connections and calls never returned,
we only retain ties which are reciprocated, which leads to the removal of about the
50% of the total links in our database. This restriction also eliminates calls to wrong
numbers, telemarketing-type calls, customer service lines, etc. Within this approach,
we neglect the directionality of links and consider a call from i to j equivalent to a call
from j to i*>. The resulting mobile graph contains the communication of about 20 X
10° users over a period of 19 months from February 2009 to August 2010.

Data filtering. To disentangle the dynamics of ties creation/removal from their call
activity, we split the 19-months period into 3 subintervals (Feb09 - Jul09, Aug09 -
Feb10, Mar10 - Augl0), (see Fig. 1). We have only considered the evolution of the ties
and nodes that show any activity in the 7 months observation window Q (Aug09 -
Feb10). The resulting graph in Q contains 16 X 10° individuals and 130 X 10° ties.
The intervals before and after are used to assess respectively whether the ties exist
from before and/or persist after Q. Fig. 1 shows the different situations that can occur
for a given tie. In particular, in our database, the 12.5% of links belongs to the category
(a), the 14.5% to (b), the 22.2% to (c) and the 47.3% to (d), while only the 3.5% of the
links, which belong to category (e), will be missed in our analysis.

Since we are interested only in tie dynamics between individuals, we have to take
into account the problem of subscription and churn of users in our database. For
example, subscription of a new user and its communication with other users in our
database results into formation of many new ties for the new subscriber. The same
would happen for the decay of ties of a subscribe that churns from the company. To
mitigate this problem, we only keep active users in our data set: in particular, we only
consider those users who are involved (as calling or as called party) at least in one
communication event in each of the three subintervals in the 19 months and also if
they are present in the database at least one month before Q and are still active one
month after Q. This latter filter prevents spurious effects in the analysis of tie
dynamics just because individuals subscribe/unsubscribe just before/after Q; for
example, we could have observed an apparent rapid growth of their social network at
the beginning of the observation window or a fast dissolution at its end*. This results
in the removal of about the 17% of nodes and the 37% of reciprocated links within Q.

Finally, we would like to notice that although our database contains a large fraction
of mobile users in the country under consideration, there could be a potential bias in
the population sampled, in common with other studies reliant on mobile phone
networks**?»2**1-33742 However, since we obtain similar results also for the Facebook
database, we are confident that our main findings are not affected by a potential
sample bias.

Other information. In our database, we also have information on the age and gender
of users of a random fraction (40%) of them. This dataset contains approximately the
35% of female and 65% of male users, while the age distribution has a significant
higher mass in users between 20 and 60 than the country population, with a peak
around 25 years old. Nevertheless, our analysis is performed for different groups of
age/gender population, thus it is reasonable to assume that this sample bias does not
affect the observed outcomes. The minimum and maximum values of age are
respectively 0 and 97. However, we only keep users whose age lies between 16 and 70
years old in order to yield a more reliable dataset. This filtering led to the removal of
the 0.5% of users which demographic data.
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