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Abstract
Polycystic ovary syndrome (PCOS) is one of the most common fertility disorders, affecting
several million women worldwide. Women with PCOS manifest neuroendocrine, ovarian, and
metabolic defects. A large number of animal models have evolved to understand the etiology of
PCOS. These models provide support for the contributing role of excess steroids during
development in programming the PCOS phenotype. However, considerable phenotypic variability
is evident across animal models, depending on the quality of the steroid administered and the
perinatal time of treatment relative to the developmental trajectory of the fetus/offspring. This
review focuses on the reproductive and metabolic phenotypes of the various PCOS animal models
that have evolved in the last decade to delineate the relative roles of androgens and estrogens in
relation to the timing of exposure in programming the various dysfunctions that are part and parcel
of the PCOS phenotype. Furthermore, the review addresses the contributory role of the postnatal
metabolic environment in exaggerating the severity of the phenotype, the translational relevance
of the various animal models to PCOS, and areas for future research.
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More than 70 million people globally experience infertility.1 Among couples of childbearing
age seeking medical help, in ~30 to 40% of the cases, it is exclusively a problem with the
woman. Infertility disorders such as premature ovarian failure leading to early estrogen
deficiency may lead to adverse consequences such as osteopenia, cardiovascular risk, and
cognitive deficits. Because infertility can negatively impact quality of life and psychosocial
well-being, approaches to prevent/overcome infertility must be developed.

Among fertility disorders, polycystic ovary syndrome (PCOS) is one of the most common.
Economic burden of PCOS exceeds several billion dollars annually in the United States. A
large percentage of women with PCOS do not respond to ovulation induction protocols.2

Even if successful ovulation is induced, conception rates are low and the percentage of
pregnancies ending in spontaneous miscarriages is high.3,4 Women with PCOS are also at
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risk for ovarian hyperstimulation and multiple gestations.4–6 They are more likely to
develop gestational diabetes and preeclampsia6 and show psychological disturbances.7,8

Overall, they have a lower degree of satisfaction about health and sexuality.7,8 About 70%
of these women manifest insulin resistance,9 and insulin-lowering drugs reduce hyper-
androgenism implicating a metabolic component in the etiology of PCOS.10–12 An increased
risk of cardiovascular disease, dyslipidemia, hypertension, diabetes mellitus, and
endometrial cancer in PCOS13,14 emphasizes the need not only to address the issues of
infertility but also the long-term goals of preventing debilitating diseases and most
importantly the transgenerational transfer of unwanted traits to the offspring. The etiology of
PCOS is unknown and remains a topic of intense research.

Increasing evidence suggests that adult dysfunctions may result from abnormal
programming of developing systems during intrauterine life.15 Some believe that androgen
excess early in life may lead to the manifestation of PCOS in adulthood.16,17 In support, the
PCOS phenotype is associated with conditions such as classical 21-hydroxylase deficiency
in which the fetus has been exposed to high concentrations of sex steroids before birth.18

Several animal models have evolved to determine the impact of perinatal exposure to
steroids on the development of adult reproductive and metabolic pathologies.19 Many of
these animal models that manifested the PCOS phenotype involved perinatal treatment with
testosterone (T). These perinatal T-treated models are often referred to as androgenized
models, overlooking the ability of T to be aromatized to estrogen and then exerting its
effects via estrogenic programming. Other models involve perinatal exposure to
dihydrotestosterone (DHT), a nonaromatizable androgen, or estrogenic agents. This review
focuses on animal models that have evolved in the last decade to (1) compare and contrast
the reproductive and metabolic phenotypes of these animal models relative to women with
PCOS and the nonhuman primate model for PCOS, (2) delineate the relative roles of
androgens and estrogens in facilitating the various disruptions, (3) address the relative
strengths and weaknesses of the different models, (4) pinpoint the translational significance
of these animals to human PCOS, and (5) point to future directions to be taken.

DEVELOPMENTAL PROGRAMMING OF PCOS PHENOTYPE WITH
PERINATAL T EXCESS

Studies assessing developmental effects of T focused on three species, Rhesus monkeys,
sheep, and rats. Monkey and sheep studies have addressed the effects of T excess starting at
two different gestational time points, early and late gestation. Rat studies have addressed
exposure during prenatal and early postnatal periods (Table 120–71). These studies have
found that developmental exposure to T excess leads to neuroendocrine, ovarian, and
metabolic deficits (Fig. 1), the details of which are discussed next.

Neuroendocrine Studies
A common consequence of prenatal T excess is the induction of leuteinizing hormone (LH)
excess in early-treated monkeys,34,35 early-treated sheep,48–50 and prenatal-treated rats.66,67

Detailed characterization of LH pulse dynamics performed in ovary-intact early-treated
sheep found disruption of all three feedback systems, namely estradiol (E2)-negative,50 E2-
positive,49,60 and progesterone (P4)-negative feedback. 61,62 A late shorter duration of
treatment (gestational day [GD] 60 to 90) induced less severe disruptions at the E2- positive
feedback level.49 Studies in early-treated monkeys (GD: 40 to 60 to 55 to 120) found
reduced LH responsiveness to E2.34,40 Prenatal-treated rats (GD: 16–19)66 and early-treated
sheep49 also manifest compro- mised E2 positive feedback responses. In-depth studies
testing E2-negative and -positive feedback responses have not been undertaken in women
with PCOS. Early-treated sheep61,62 and early- and late-treated monkeys41 manifest reduced
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sensitivity to P4-negative feedback, a feature seen in women with PCOS.25,26 More recent,
neuroanatomical studies have found that kisspeptin/neurokinin-B/dynorphin neuronal
population may be involved in altered negative feedback sensitivity.72 At the pituitary level,
as in women with PCOS,25 pituitary sensitivity to gonadotropin-releasing hormone (GnRH)
is increased in prenatal T-treated sheep48 and monkeys34,40 but not in rats.66 These
differences may be a function of the study design; only studies in sheep,48 but not rats66 and
monkeys,34 were undertaken after ablation of endogenous GnRH action.

Ovarian Studies
At the ovarian level, prenatal T excess leads to polycystic ovarian morphology with
increased ovarian weight/volume in monkeys35,38 and sheep.56 Morphometric studies and
serial ultrasonography studies undertaken in sheep provide evidence in support of increased
ovarian follicular recruitment/depletion57 and persistence.52,53 An increase in antral follicle
number following prenatal T excess was also evident in monkeys38 and rats.67 However, the
measures in rats and monkeys38,67 as well as in women with PCOS23 are based on a single
time point evaluation unlike serial ovarian stereology57/ultrasound52 undertaken at multiple
developmental time points in sheep. It should also be recognized that rodents are polyovular
and hence manifest polyfollicular morphology even when untreated. Furthermore, in
addressing ovarian developmental programming, it is crucial to take into account the
differences in the trajectory of ovarian differentiation. Sheep and subhuman primates are
precocial with follicular differentiation completed in utero. In contrast, differentiation gets
completed in rodent models only postnatally (Table 273–78). In-depth evaluations performed
only with ovaries of sheep model of PCOS have revealed disruptions in androgen/estrogen
receptor ratios,47 growth factor expression such as activin and follistatin,56 and insulin
receptor signaling79 such as those seen in women with PCOS.80,81

Hyperandrogenemia
Studies conducted thus far document that prenatal T excess induces functional
hyperandrogenism in monkeys manifested as enhanced responsiveness to human chorionic
gonadotropin.33,34 Prenatal T-treated sheep also manifest functional hyperandrogenism
reflected as increased ovarian47 and hypothalamic82 androgen receptor expression, and
polyfollicular morphology.56,57 Studies in prenatal T-treated Sprague-Dawley rats are
inconsistent in that hyperandrogenism was reported in one study67 but not the other.66 Both
studies used the same regimen of T treatment both in terms of timing and dosage.

Cyclic Function and Fertility
Oligo-anovulation is a common feature of all three species (monkeys, sheep, and rodents)
treated prenatally with T34–36,51–53,62,67 with the degree of disruption depending on the
timing of treatment, with late-treated sheep and monkeys revealing lesser disruptions than
the early-treated ones.34,51 Studies in monkeys, the only model where oocyte competence
has been assessed, found that prenatal T excess reduces oocyte competence.39 Fertility tests
following natural mating have been undertaken only with late-treated sheep (early-treated
animals are virilized) and reveal a 60% reduction in pregnancy rates.55 Compromised
fertility/fecundity is also a feature of women with PCOS.20,83

Cardiometabolic Studies
Developmentally, early-treated sheep manifested intra-uterine growth restriction (IUGR)
and compensatory postnatal catch-up growth.54 An increase in postnatal growth rate was
also evidenced in early-treated monkeys before menarche,36 although they did not manifest
IUGR. Metabolic perturbations programmed by prenatal T excess include insulin resistance
in late-treated monkeys,42 early- and late-treated sheep,63,64 and post-natal-treated rats70,71

Padmanabhan and Veiga-Lopez Page 3

Semin Reprod Med. Author manuscript; available in PMC 2013 June 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



but not prenatal-treated rats.68 Early-treated older monkeys have been reported to develop
pancreatic β cell dysfunction.42,43 Increased visceral fat is another feature of early-treated
older monkeys45 and prenatal-treated rats.68 Postnatal T treatment also increases fat mass in
Wistar rats,70 although it has no effect in Sprague-Dawley rats.71 Both prenatal- and
postnatal-treated rodent models manifest increased serum triglycerides and cholesterol68,70

suggestive of an extended critical period. Telemetry studies performed only in sheep found
early treatment leads to hypertension.65 As such, prenatal T treatment has an impact on
cardiometabolic aspects with the nature of disruptions differing between the species studied
and possibly stemming from differences in timing of insult relative to organ differentiation.

Overall, the prenatal T-treated models manifest reproductive and metabolic features of
PCOS consistent with the National Institutes of Health (NIH) 199084 (chronic anovulation
and clinical and/or biochemical signs of hyperandrogenism), Rotterdam European Society of
Human Reproduction and Embryology/American Society for Reproductive Medicine
(ESHRE/ASRM) 200385 (oligo- and/or anovulation, clinical and/or biochemical signs of
hyperandrogenism, and polycystic ovaries; two of three), Androgen Excess and Polycystic
Ovary Syndrome (AE-PCOS) 200686 (oligo- and/or anovulation with clinical and/or
biochemical signs of hyperandrogenism) criteria, and the cardiovascular disease risk AE-
PCOS statement.87 Information is incomplete in the early postnatal T-treated rodent
model70,71 to assess if they meet any of these criteria.

DEVELOPMENTAL PROGRAMMING OF PCOS PHENOTYPE WITH
ANDROGEN EXCESS

The nonaromatizable androgen DHT was used as the programming agent in three prenatal
models and two postnatal models (Table 3). The prenatal models include sheep (GD: 30 to
90), Sprague-Dawley rats (GD: 16 to 19), and mice (GD: 16 to 18), and the two postnatal
models involve Wistar rats treated either 3 hours after birth (single dose) or 21 days after
birth (duration: 90 days). Although the potential for estrogenic effect of DHT via conversion
to 3β-diol and action through estrogen receptor-β exists,95 considering that the degree of
such conversion in specific tissues/species remains unknown and is expected to be minimal,
for the purpose of this review, DHT effects are discussed relative to its androgenic potential.

Neuroendocrine Studies
Detailed LH dynamics have been undertaken in sheep and rats and show that prenatal DHT
treatment increases LH pulse frequency and amplitude.66,88 Single time point measures in
mice also show that prenatal DHT treatment increases plasma LH levels.89 Detailed E2-
negative feedback studies with prenatal DHT treat- ment have only been performed in
sheep, and these show that E2-negative feedback responses are reduced,88 similar to that of
prenatal T-treated sheep.50 E2-positive feedback is disrupted in DHT-treated rats66 but not
sheep.88 At the pituitary level, prenatal DHT treatment, similar to findings with prenatal T,
increased pituitary sensitivity to GnRH in sheep48 but not rats66 possibly due to the test
being conducted without blocking endogenous GnRH input in rats.

Ovarian Studies
The effect of perinatal DHT treatment in the development of polycystic ovarian (PCO)
morphology is species specific. Although both prenatal and postnatal DHT-treated rats
display PCO morphology,67,91 this is not the case with sheep.57 Similar studies with prenatal
DHT have not been undertaken in monkeys or mice. Ovarian morphometric and serial
ultrasonography studies performed only in sheep support a transient increase in follicular
recruitment57 but not follicular persistence.53
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Hyperandrogenism
It remains to be resolved whether hyperandrogenism is a consistent feature of prenatal DHT-
treated mice. Hyperandrogenism was reported as a consequence in one study conducted at 4
to 6 months of age.89 In the second study performed by the same group, hyperandrogenism
was not evident at 5 months of age.90 Authors attributed the lack of hyperandrogenism in 5-
month-old animals in the second study to the age when hyperandrogenism was examined
(although there is overlap in age between this and the first study) or differences in the
sensitivity of the T assay used (different assays were used in the two studies). The effect of
prenatal DHT in Sprague-Dawley rats is also controversial, with one study manifesting
hyperandrogenic status67 and another not.66 Hyper-androgenism is not a feature of postnatal
DHT-treated rats.70,91 Prenatal DHT-treated sheep are functionally hyperandrogenic only
during fetal life (manifested by increased androgen receptors in granulosa and stromal
compartments) but not during adult life.47 These findings differ from the prenatal T-treated
sheep, which shows evidence of hyperandrogenism both during fetal and adult life.47

Cyclic Function and Fertility
Cycle disruptions are evident in all models but differ in their attributes.53,67,89–91 The
preovulatory E2 rise and LH surge dynamics studied only in prenatal DHT-treated sheep are
not disrupted.88 Fertility tests have not been performed in any of the pre- or post-natal-
treated models possibly due to their virilized phenotype.

Cardiometabolic Studies
Reduced insulin sensitivity is also a feature of prenatal DHT-treated sheep64 and the
postnatal-treated rat models70,91 but not the prenatal DHT-treated mice,90 which display
glucose intolerance.90 Increased visceral fat was a feature of late91 but not early70 postnatal
DHT-treated rats or DHT-treated mice.90 No changes in lipid profiling were evident in both
postnatal-treated rat models.70,91

The prenatal rat models show opposing findings with one meeting NIH, Rotterdam ESHRE/
ASRM and the AE-PCOS criteria (cycle anomalies, PCO morphology, and
hyperandrogenism)67 and the other showing only cycle disruptions (there is no evidence of
hyperandrogenism and the ovarian phenotype has not been tested).66 The late postnatal
rodent model91 fits only the Rotterdam ESHRE/ASRM criteria by virtue of the cycle
anomalies and PCO morphology. The prenatal DHT-treated sheep model manifests only
cycle disruptions53 but not hyperandrogenism or PCO morphology57 and therefore does not
fit any of the PCOS criteria. The jury is still out on the prenatal DHT-treated mouse model
in view of the discrepancy seen in the hyperandrogenic phenotype between the two
studies.89,90 If hyperandrogenism is part of the consequence, the prenatal DHT-treated
mouse model would meet the NIH, Rotterdam ESHRE/ASRM, as well as the AE-PCOS
criteria.

DEVELOPMENTAL PROGRAMMING OF PCOS PHENOTYPE WITH
ESTROGENS

Two different paradigms have been used to address the role of prenatal E2 programming.
These include E2 valerate (EV) treatment beginning day 14 of neonatal life94 or
administration of letrozole, a nonsteroidal aromatase inhibitor, to block conversion of
androgen to estrogen (estrogen ablation approach) beginning either at postnatal day 21 for 3
months (early91) or at postnatal day 42 for 3 weeks (late92,93).
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Neuroendocrine Studies
Detailed neuroendocrine investigations have not been performed with these models. LH
excess (studies performed without controlling for cycle stage) is a feature of the late
letrozole-treated model.92,93 This has not been studied in the early-treated model. In
contrast, the EV model manifested low LH levels.94

Ovarian Studies, Cyclic Function, and Fertility
All three models display PCO morphology91,92,94,96 but disagree relative to ovarian weight
(high in early letrozole,91 normal in late letrozole,92 and low in EV94).

Hyperandrogenism
Hyperandrogenism is a common feature of both letrozole models,91–93 whereas the EV-
treated94 showed the opposite, namely hypoandrogenism.

Cyclic Function and Fertility
Cycle dysfunction is a common feature of the EV as well as the early- and late-treated
letrozole models, although they differed in their attributes.91,92,94

Cardiometabolic Studies
Insulin sensitivity, visceral fat, and lipid profile were normal in the early letrozole-treated
rats.91 Metabolic measures have not been studied in the other two animal models.

The EV model, which manifests cycle disruption and polycystic ovaries in the face of
hypoandrogenism, meets the Rotterdam ESHRE/ASRM criteria of PCOS. Both letrozole
models meet the NIH, Rotterdam ESHRE/ASRM as well as AE-PCOS criteria manifesting
cyclic disruptions, hyperandrogenism, and PCO morphology. It should be noted that the
adult phenotype of the two letrozole-treated models are similar in spite of differences in the
timing of onset and duration of treatments. In the context of reprogramming, a limitation of
the letrozole-treated model is that studies were performed immediately after stopping the
treatment. As such, reported disruptions may be activational and dissipate after cessation of
treatment.

ANDROGENIC VERSUS ESTROGENIC PROGRAMMING
The models discussed point to some aspects of the perinatal programming of the PCOS
phenotype being driven by excess androgen and others by excess estrogen in a species-
specific manner. In prenatal T-treated models, there is obvious potential for both androgenic
and estrogenic programming. Sheep studies show that gestational T treatment increases both
T and E2 concentrations in female fetuses,97 providing support that the resultant PCOS
phenotype is likely the culmination of androgenic as well as estrogenic programming.
Elevated fetal T levels but not estrogens were characteristics of gestational T-treated
monkey fetuses.44 Similar information is lacking in the small animal models.

To discern whether each of the reproductive and metabolic disruptions previously discussed
arise from androgenic or estrogenic effects, animal models that compare the quality of
steroids spanning the same developmental time points provide the only valid comparisons.
Four models fit this criteria: sheep treated from GD 30 to 90 with T or DHT, rats treated on
GD 16 to 19 (prenatal) with T or DHT, rats treated 3 hours postnatal with T or DHT, and
rats treated 21 day postnatal with DHT or letrozole (Table 4). Because the monkey model of
PCOS involved only T treatment and the mouse model only DHT, such comparisons are not
possible in these models.
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Comparison of studies conducted with prenatal T- and DHT-treated sheep suggest that PCO
morphology, follicular persistence, ovarian hyperandrogenism, oligo-anovulation, and the
E2-positive feedback disruptions seen in adults are likely programmed by estrogenic actions,
whereas LH excess, enhanced follicular recruitment, reduced sensitivity to E2-negative
feedback, increased GnRH sensitivity, and reduced insulin sensitivity are programmed via
androgens. Studies in prenatal T versus DHT rat models66,67,70 are in agreement with the
sheep model48,63,64 relative to androgenic programming of LH excess and reduced insulin
sensitivity. For comparison with women with PCOS and other models, discussion of the
sheep model in this review has focused on the ovary-intact model. It needs to be recognized
that dissection of androgenic and estrogenic programming of E2-positive and P4-negative
feedback systems were delineated first using the ovar- iectomized E2-replaced prenatal T-
treated model. 98,99

In contrast to findings in the sheep model,73 PCO morphology, oligo-anovulation, and E2
positive feedback disruptions in both prenatal- and postnatal-treated rats66,67,91 point to
programming via androgens. Paradoxically, hyperandrogenism is an inconsistent finding
between the two rat studies, which used identical paradigms in the same strain of rats.66,67

Similarly, androgenic programming achieved via DHT or ablation of estrogen with letrozole
yielded inconsistent metabolic outcomes, the former being insulin resistant and having
increased visceral fat but the latter not.91 Visceral adiposity and abnormal lipid profile in
postnatal T- but not DHT-treated Wistar rats70 is supportive of estrogenic programming of
these variables.

The inconsistencies seen between species are likely a function of the timing of treatment
relative to timing of organ differentiation. However, inconsistencies in outcome such as seen
in the DHT- and letrozole-treated models, both enforcing androgenic programming within
the same strain of rats using similar exposure periods, suggest that the degree of steroid
excess or imbalance in the estrogen-to-androgen ratio might be the underlying cause in the
reprogramming of reproductive and metabolic dysfunction and development of the PCOS
phenotype. Information on endogenous levels of various androgens and estrogens during the
programming windows are required across species to sort out differences in outcomes.

METABOLIC AMPLIFICATION OF STEROIDAL PROGRAMMING
Evidence to date suggests that PCOS women have an increased propensity toward ovulatory
dysfunction in the presence of increased adiposity.31 The prenatal T-treated monkeys19,45

and rats,68 similar to women with PCOS,31 manifested increased visceral adiposity. Obesity
induced by overfeeding also exaggerated reproductive defects in the sheep model of PCOS
culminating in anovulation,100 suggestive of metabolic amplification of disruptions.
Increasing prevalence of childhood obesity101 might therefore provide a metabolic platform
for uncovering or amplifying prenatally experienced developmental insults. Given the high
prevalence of obesity and its comorbidities, diabetes, cardiovascular diseases, and metabolic
syndrome, in the United States, more studies with various animal models are required to
substantiate the detrimental effects of overfeeding/excess weight gain in the development of
the PCOS phenotype.

ROLE OF HYPERINSULINEMIA IN THE DEVELOPMENT AND
AMPLIFICATION OF THE PCOS PHENOTYPE

From a metabolic perspective, obesity and prenatal T excess both cause insulin resistance
and compensatory hyperinsulinemia. A higher percentage of women with PCOS manifest
insulin resistance and are at risk for developing type 2 diabetes.9 Lifestyle changes and
weight loss that improve insulin sensitivity were found to improve ovulatory function in
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these women.102 A recent Cochrane review of 31 clinical trials found that insulin sensitizers
enhance ovulation rates and improve menstrual patterns with success rates differing between
studies,103 possibly due to the heterogeneity of the PCOS population being studied and the
timing of initiation of treatment relative to when the pathology was established.

Studies conducted in prenatal T-treated sheep and Rhesus monkeys also point to beneficial
effects of insulin sensitizer treatment.104,105 Treatment with rosiglitazone, an insulin
sensitizer, begun during postpubertal life prevented further deterioration of reproductive
function in prenatal T-treated sheep (cycles monitored over a 2-year period).104 Studies
performed with an older cohort of prenatal T-treated monkeys also found that treatment with
pioglitazone, another insulin sensitizer, improved cyclic function.105 In sheep, the beneficial
effects of insulin sensitizer in improving reproductive function were evident at two levels:
prevention from further deterioration of the reproductive axis and a reduction in the number
of abnormally long cycles.104 In the older monkeys the beneficial effects of insulin
sensitizer were evident as normalization of menstrual cycle length.105 Similar studies have
not been undertaken with rat and mouse models.

Although improvement in reproductive function is clearly evident in prenatal T-treated
sheep and monkey models,104,105 as is the case with PCOS women,103 the success rate has
not been 100%, possibly because treatment was initiated after the pathology was established.
In prenatal T-treated sheep, reproductive dysfunctions are evident postpubertally,51,52

whereas defects in insulin sensitivity are evident much before during neonatal life.63,64

Early insulin sensitizer treatment beginning when insulin sensitivity defects are manifested
may prove to be more effective in achieving better success rates.

GENETIC VERSUS ENVIRONMENTAL INTERACTION IN PROGRAMMING
THE PCOS PHENOTYPE

Clarification of underlying mechanisms by which developmental reprogramming of
physiological function occurs is essential for targeting new strategies toward prevention.
Both genetic and environmental factors have been implicated in the etiology of the PCOS
phenotype.106 Familial clustering in first-degree relatives of PCOS subjects107 and higher
prevalence of PCOS symptoms in monozygotic compared with dizygotic twins108 provide
support for a genetic contribution. However, to date, no gene has been implicated in the
development of a PCOS phenotype. But heterogeneity of phenotypic features in different
PCOS families and even within the same family points to the importance of the
environmental contribution. It is becoming increasingly apparent that environmental insults
during development induce persistent changes in the epigenome leading to altered gene
expression and increased risk of adult diseases.109 Interestingly, an epigenetic change,
manifested as nonrandom X chromosome inactivation, has been reported in women with
PCOS.110

Although maternal and environmental factors during development have been found to
induce epigenetic alterations and reprogram the developmental ontogeny of the offspring,
the interplay of epigenetics with genetics is likely the key determining factor in an
individual’s susceptibility to pathology. The lower than 50% prevalence of inheritance in
first-degree relatives does provide support for such gene by environment interactions.107 An
understanding of the epigenetic mechanisms involved in models of PCOS would likely
provide novel avenues for the prevention and treatment of PCOS and help reduce
transgenerational susceptibility for acquiring the disrupted phenotype.

Padmanabhan and Veiga-Lopez Page 8

Semin Reprod Med. Author manuscript; available in PMC 2013 June 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



STRENGTHS OF DIFFERENT ANIMAL MODELS
All PCOS animal models discussed offer differing strengths. The highly compressed
developmental time scale of developing rats and mice allows studies of transgenerational
transfer of PCOS traits within a reasonable time frame. The transgenic approaches available
in murine models are beneficial in pinpointing the site-specific role of suspected mediators.
For instance, the green fluorescent protein–GnRH mouse has been a valuable resource in
elucidating the direct effects of androgen and estrogen at the level of the GnRH neuron.89

The strengths of the sheep model of PCOS are that they are amenable to a wide variety of
procedural manipulations including performance of detailed/repetitive hormonal profiling,
noninvasive sequential monitoring of ovarian follicular dynamics via ultrasound, multiple
neurotransmitter measures in the same animal (due to the large size of the brain), studies in
natural settings with behavioral interactions intact, and its cost effectiveness. The subhuman
primates are closer to humans from an evolutionary perspective and share similar
placentation and hence would be an optimal model. However, the number of years taken to
achieve reproductive maturity and the enormity of resources required restrict feasibility of
studies spanning from the time of developmental insults to adult pathological outcomes in
the same animal within a reasonable time frame.

While translating the findings from any of these animals to humans, it is important to
interpret the findings relative to the developmental trajectory of the organ system being
studied as to whether differentiation gets completed prenatally or postnatally and the
similarity of regulatory mechanisms. For instance, sheep and subhuman primates complete
their ovarian differentiation in utero, but it occurs ex utero in rats and mice (Table 2).
Therefore, the ovarian reprogramming that occurs in utero in sheep, primates, and humans
would be subject to influence from changes in both fetal and maternal milieus, which is not
the case in the postnatal rodent models. Similarly, in understanding neuroendocrine
disruptions, it should be recognized that progesterone blocks generation of the LH surge in
sheep, monkeys, and humans, but it is a facilitator in rodents.111–113 In addressing studies
focusing on the maternal-fetal interface, it should be taken into consideration that the
placentation in sheep, rats, and mice differs from humans.

CLINICAL TRANSLATION AND PUBLIC HEATH RELEVANCE
The PCOS phenotype is associated with conditions such as classical 21-hydroxylase
deficiency in which the fetus has been exposed to high amounts of sex steroids before
birth,18 suggesting that androgen excess early in life may lead to manifestation of this
phenotype in adulthood. Levels of T in 40% of human female fetuses are elevated to levels
similar to that of male fetuses at 19 to 25 weeks of gestation.114 Interestingly, the gestational
T-treated sheep female fetuses that manifest the PCOS phenotype are exposed to T at levels
found in the male fetuses.97

Considering the experimental constraints in humans, animal models that manifest the PCOS
phenotype are valuable resources for delineating the mechanisms contributing to the
reproductive/metabolic disruptions seen in women with PCOS. More importantly, these
models can serve as a testing ground for developing effective early prevention/treatment
strategies to prevent/overcome reproductive/metabolic dysfunctions. The findings from
these animal models may also have public health implications in the context of
environmental exposures to steroid mimics. Human fetuses are subjected to abnormal
steroidal programming via endocrine-disrupting chemicals in the environment such as
bisphenol A and phthalates with estrogenic/antiandrogenic properties115 as well as during
disease states.116
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FUTURE DIRECTIONS
Future studies with animal models should capitalize on the identified strengths of various
models to discern the early causal signals involved in the development and progression of
PCOS. Studies should target time points during development that are comparable to time
points of organ differentiation in humans and strive to discover the relative fetal and
maternal contributions in programming the human PCOS phenotype. Because of the
potential for such PCOS traits to be carried forward to subsequent generations,
transgenerational studies that focus on causal mechanisms are very much needed to help
segregate genetic/epigenetic interactions and differences in individual susceptibility. If
prenatal steroid excess is indeed a contributing factor in the development of human PCOS
syndrome, it is conceivable that differences in timing of developmental exposure to
androgens/estrogens may account for the different PCOS phenotypes with subsequent
lifestyle patterns playing a role in revealing or amplifying the severity of phenotype
programmed early during development.

In parallel, clinical studies should target early gestational stages and gain information on
developmental changes at the maternal level and when possible capitalize on amniocentesis
and postmortem samples to assess fetal contribution. Term cord blood samples may not be
optimal because much of the programming on the ovary and brain may have occurred early
during gestation. These human studies should be expanded to analyze the relative
contribution of both androgens and estrogens because T has the ability to be aromatized to
estrogen and mediate estrogenic reprogramming. More importantly, studies should capitalize
on the strengths of these animal models to develop prevention and treatment strategies
aimed toward improving fertility and metabolic outcomes at the level of the individual.
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Figure 1.
Schematic showing the impact of perinatal testosterone excess on neuroendocrine, ovarian,
and metabolic programming and their contribution to infertility. GnRH, gonadotropin-
releasing hormone; LH, luteinizing hormone.
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Table 4

Androgenic versus Estrogenic Programming of the Polycystic Ovary Syndrome Phenotype*

PCOS Phenotype
Prenatal Postnatal

Sheep (GD 30–90) Rat (GD 16–19) Rat (3-hour PN) Rat (21 days PN)

Hyperandrogenism Estrogenic Inconsistent Not disrupted Inconsistent

LH excess Androgenic Androgenic Not studied Not studied

Oligo-anovulation Estrogenic Androgenic Not studied Androgenic

PCO morphology Estrogenic Androgenic Not studied Androgenic

Follicular persistence Estrogenic Not studied Not studied Not studied

Enhanced follicular recruitment Androgenic Not studied Not studied Not studied

Disrupted E2 positive feedback Estrogenic Androgenic Not studied Not studied

Reduced E2 negative feedback Androgenic Not studied Not studied Not studied

Increased GnRH sensitivity Androgenic Not disrupted Not studied Not studied

Reduced insulin sensitivity Androgenic Not studied Androgenic Inconsistent

Increased visceral fat Not studied Not studied Inconsistent Controversial

Abnormal lipid profile Not studied Not studied Estrogenic Not disrupted

*
In GD 30 to 90 (prenatal) T versus DHT-treated sheep, GD 16 to 19 (prenatal) T versus DHT-treated rat, 3-hour PN T versus DHT-treated rat, and

21-day PN DHT versus letrozole-treated rat.

Assessment of androgenic or estrogenic regulation is based on outcomes described in Tables 1 and 3.PCOS, polycystic ovary syndrome; GD,
gestational day; PN, postnatal; LH, luteinizing hormone; PCO, polycystic ovary; E2, estradiol; GnRH, gonadotropin-releasing hormone; DHT,

dihydrotestosterone; T, testosterone.
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