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Abstract

Agent-based simulation models provide a viable approach for developing applied models of species and systems for
predictive management. However, there has been some reluctance to use these models for policy applications due to
complexity and the need for improved testing and communication of the models. We present the development and testing
of a comprehensive model for Skylark (Alauda arvensis) in Danish agricultural landscapes. The model is part of the ALMaSS
system, which considers not only individual skylarks, but also the detailed dynamic environment from which they obtain the
information necessary to simulate their behaviour. Population responses emerge from individuals interacting with each
other and the environment. Model development and testing was carried out using pattern-oriented modelling. The testing
procedure was based on the model’s ability to represent detailed real world patterns of distribution and density,
reproductive performance and seasonal changes in territory numbers. Data to support this was collected over a 13-year
period and comprised detailed field observations of breeding birds and intensive surveys. The model was able to recreate
the real world data patterns accurately; it was also able to simultaneously fit a number of other secondary system properties
which were not formally a part of the testing procedure. The correspondence of model output to real world data and
sensitivity analysis are presented and discussed, and the model’s description is provided in ODdox format (a formal
description inter-linked to the program code). Detailed and stringent tests for model performance were carried out, and
standardised model description and open access to the source code were provided to open development of the skylark
model to others. Over and above documenting the utility of the model, this open process is essential to engender the user
trust and ensure continued development of these comprehensive systems for applied purposes.
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Introduction

In western European countries, agricultural intensification over

the latter half of the 20th century has been strongly implicated in

declines of farmland birds [1–3]. This intensification has involved

many concurrent changes, but has largely manifested itself in

higher yields as well as in a simplification of agricultural landscapes

both in terms of crop diversity and landscape structure.

As a result of the Convention on Biological Diversity most

countries, including the European Union, are committed to

manage areas under agriculture in sustainable manner by 2020,

ensuring conservation of biodiversity (CBD 2012). One of the

focus groups comprises farmland birds. However, although there is

strong evidence that agricultural intensity has played the major

role in the farmland bird decline, it is not feasible to simply reverse

this process. Nevertheless, a number of strategies are being

implemented for mitigation of effects of agriculture. This includes

national programmes, such as the UK Biodiversity Action Plans,

which typically involve agri-environmental schemes with a variety

of management options e.g. [4,5]. However, due to the plethora of

interacting drivers and the need for immediate action, there is a

demand for a quick and flexible approach to assessing feasible

options.

Agent-based simulation can cope with this complexity, at least if

sufficient data is available to construct comprehensive models.

However, there has been some reluctance to use this form of

modelling, notably by policy makers. According to Smith et al

there are three main objections to the use of models for policy

development [6]. These are: that unbelievable results may arise

from errors in the model; a lack of validation; and that a model

may be thought to be ‘‘too complex’’, or maybe ‘‘does not include

some critical component’’. To overcome these issues, it is

necessary to improve communication and testing of complex

models, making them if not more approachable, at least better

understood and accepted by those capable of evaluating them.

This study addresses some of these concerns by documenting

the development and detailed testing carried out for a skylark

(Alauda arvensis) model. The skylark is an excellent example of a

farmland bird species which has undergone widespread declines, is

subject to conservation management plans, and for which the
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drivers of decline are complex [7]. Here we describe the extensive

field data collected for the purpose of model evaluation and

resulting successful real world emulation. The skylark model was

developed within the Animal Landscape and Man Simulation

System (ALMaSS) [8]. ALMaSS is a spatially and behaviourally

explicit simulation model, incorporating dynamic modelling of the

biotic and abiotic components of the organism’s environment,

together with agent-based models of the organisms themselves.

The combination of detailed environmental simulation with a

mechanistic agent-based modelling approach results in a system

that is capable of handling at the population level the hitherto

largely intractable problems associated with the spatio-temporal

dynamics and non-equilibrium properties of the interactions

between organisms and their environment. Models developed as

part of this framework have previously been applied to risk

assessment e.g. [9–11] as well as for population genetics [12],

impact assessment e.g. [13,14] and behavioural and landscape

ecology e.g. [15–17].

In common with other models of this type, ALMaSS models

tend to be large, parameter rich and data hungry. On the other

hand they represent some of the most output-signal rich agent-

based simulations available, capable of including highly detailed

farm management, spatial structure and individual-based ecology.

As a consequence, traditional approaches to model testing using

uncertainty and sensitivity analysis are cumbersome, and recourse

has to be made to other methods. One such method is pattern-

oriented modelling (POM) [18]. POM refers to the multi-criteria

design, selection, and calibration of models of complex systems

[19]. This approach uses real-world data patterns that characterize

the system of study to elucidate the mechanisms that create these

patterns, and thus provide key elements in the model used to

represent the system [18]. The approach taken to test and improve

the model followed the post-hoc POM tests described by Topping

et al [20], simultaneously develop and calibrate the model.

Modifications made to the original version of the skylark model

[11,21] are detailed as the results of this testing procedure. The

final model structure and documentation is the primary result of

the present study, hence a comprehensive model description is

provided as online supplementary material (see Supporting

Information S1).

Methods

All animal work was conducted according to relevant national

and international guidelines. No permits were required for the

described study, which complied with all relevant regulations, and

no protected species were sampled. Permission was obtained from

all landowners prior to carrying out this work.

3.1. ALMaSS
3.1.1. Animal Models. All animals in ALMaSS are modelled

using the agent-based approach, meaning that the individuals

‘sense’ information from their local environment and can act on it

to make ‘decisions’. These decisions may be complex behaviour

(e.g. finding a territory) or simple consequences (e.g. probability of

nest destruction due to mowing). All animal modelling in ALMaSS

is based on a state-machine concept, with states defined as time-

variable behavioural or physiological states linked by condition-

based transitions. Each agent has a set of behavioural rules

defining the state-machine together with a set of interface

functions that define its interactions with its environment. The

resulting models are scaled to the information level available, with

the aim of representing the current state of ecological knowledge

for the species modelled as far as practicable.

An animal in ALMaSS is assigned to a life-stage associated with

certain species and life-stage specific behaviours. These behaviours

are described as a set of states and transitions, and each individual

is described as a set of properties. As in the real world, conspecifics

form part of the environment of any individual; hence social

behaviour is an important component of the agent’s rule base

permitting the simulation of processes such as mate selection and

territoriality. Since organisms are modelled at the individual level,

and have individual attributes such as body size or condition,

typical population model components such as vital rates must be

implemented mechanistically, e.g. by linking mortality to local

habitat factors such as agricultural operations. The resulting

population dynamics, such as population fluctuations, are emer-

gent properties of the sum of the organism’s daily activity and their

interactions with their local environment, rather than pre-

programmed population-level behaviours. Hence, the model can

also be used to predict how demographic parameters behave in

transitory periods (e.g. climate change), or with other spatio-

temporal factors such as predators.

3.1.2. Landscape model. The landscape model in ALMaSS

is an environment in which the modelled animals behave. What

differentiates the ALMaSS landscape model from most other

ecological simulation models is that here the environment is

modelled in a highly dynamic way. The landscape model is based

on a very detailed map of habitat types modelled at a resolution of

1 m2, allowing narrow linear habitats (e.g. field margins), to be

simulated. The model is typically simulated in an area of

10610 km and comprises a detailed reproduction with 35

landscape elements such as woodlands, hedgerows, field edges,

fields, roads, buildings, lakes and streams and almost 70 vegetation

types e.g. crop types and semi-natural vegetation types. All

vegetation types in the landscape were subject to daily growth,

which is a function of weather and management [22]. A weather

simulator based on historical records is linked to the growth

model. Farm management (and to a lesser extent other human

activities e.g. mowing roadside verges, traffic) is modelled in detail.

Each field in the landscape is associated with a farm based on

management information obtained from EU subsidy claim

information, and each farm has a specific farm type. Farms can

select from over 50 crop variants to construct a crop rotation

applied to the farm’s fields. Each crop variant has a detailed

management plan comprised of up to 50 different farming

operations (e.g. sowing, harvesting, spraying, ploughing etc.). In

order to create realistic management of fields, farming operations

are made probabilistically dependent on weather, crop growth, soil

type and previous farming; they also feedback to affect crop

growth, weed biomass and insect biomass. Should detailed

information be available, farms in the landscape can be simulated

individually or otherwise as generally defined farm types (typically

conventional pig farm, arable, dairy, or mixed, and organic

variants of these). The landscape model is linked to the animal

models by the presence or absence of farming operations and

habitat variables such as vegetation height. For instance mechan-

ical weeding may destroy skylark nests with a certain probability,

or the lack of spraying results in fewer tramlines (tracks where the

tractors drive through the crop) which provide useful skylark

foraging habitat [23,24]. It also removes plant biomass and thus

affects the available insect food for the skylarks. Landscape

heterogeneity is therefore controlled spatially by the topography

and by cropping choices of the farmer, as well as temporally by

weather, vegetation development and management.

For this study virtual skylarks were simulated in copies of two

real farmland landscapes from Denmark, the area around

Bjerringbro (56u22939 N, 9u39919 E), a 10610 km area, and

Developing an Agent-Based Model for Skylarks
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Kalø (56u17958 N, 10u29957 E), a 767 km area. The landscape

model was provided by a digitisation from orthophotos and the

national field block maps used at the time to administer EU arable

area payment schemes. A field inspection was carried out to

correct for possible errors and inconsistencies in the digital data.

Further information on height and structure of individual

hedgerows was also incorporated as attributes to the hedgerows

was collected during field inspections.

3.1.3. Overview of the skylark model. The final detailed

model description is provided in Supporting Information S1,

however a short overview is provided here to aid reading. The

individual model skylarks are categorised as being members of five

life-stages, clutch, nestlings, pre-fledglings, males, and females.

The main drivers of the skylark model are the topography and

habitat quality of the landscape elements being modelled, farming

activities (crop choice, physical disturbance), crop growth, and

weather. Available insect food biomass is determined by vegetation

structure in each landscape element and type, see [25], and by its

availability in terms of physical accessibility to the birds. It is

updated daily in the model. During the breeding period, defined

here as incubation and care of young up to 30 days old, the model

considers the energetic balance of the adults, the food require-

ments for maintenance, requirements of young, and the weather

constraints both as a limit to foraging success and as increased

energetic costs for cold weather. The initiation of breeding

depends upon firstly finding a suitable territory, and secondly,

upon vegetation structure being suitable for a nest site. Breeding

success depends on the habitat being able to fulfil the energetic

requirements of the birds during the breeding period and the

survival of eggs and nestlings. Birds may also be disturbed during

nesting e.g. by farming activities, but this is rare during the

breeding season.

3.2. Post-hoc Pattern-Oriented Model (POM) testing
Post-hoc POM development of a model is an iterative

procedure comprising two basic phases, which are iterated until

a satisfactory result has been achieved (see POM testing below for

testing criteria used). The first phase is to contrast and test different

potential sub-models or mechanisms; the second is to provide

calibration and sensitivity analysis of the resultant model. Overall

this approach is similar to ‘‘inverse modelling’’ or ‘‘Monte Carlo

filtering’’ techniques used in other disciplines. Here we need to: 1)

identify the mechanisms to be tested or the parameters to be

calibrated; 2) observe the model in the same way as the real-world

data was generated, for example using the approach of the virtual

ecologist [26]; 3) finally run the model varying the parameter

values in order to determine the best fit between the model output

and real world patterns. If the fit reached is acceptable then the

process stops, otherwise steps 1 to 3 are repeated. Whilst this

approach for a single output is relatively weak in terms of

significance of the resulting fit, the POM use of multiple pattern

fitting based on the same model configuration rapidly reduces the

possible parameter space. However, it is important to distinguish

here between emergent patterns from the model and those that are

pre-determined. POM testing is only concerned with patterns that

emerge via interactions between model inputs and modelled

mechanisms.

3.3. Data collection for POM-testing
A comprehensive data collection was undertaken for the POM

procedure. In the Bjerringbro area, skylark territories were

mapped eight times in 16 plots (each 35–59 ha) within a

10610 km area during each of the three breeding seasons (mid-

April to late July), 1998, 1999 and 2000 (Fig. 1). The mappings

were carried out during favourable weather conditions and

comprised data from 150 mainly conventionally farmed fields

with an average size of 3.9 ha. Each mapping involved two

observers who walked across fields in parallel at a distance of 25 to

100 m dependent on field topography, ensuring total coverage of

individual fields. In order to locate skylarks accurately, markers

were placed in the fields to provide smaller field units and

reference points. Observers recorded mating status of the territory

owner and breeding behaviours to establish the number of

breeding pairs. If a territory covered fields outside the plots, the

proportion of the territory that was inside the plot was assessed to

the nearest 25%. The number of pairs recorded during the

mappings in each breeding season defined the number of breeding

pairs, which was then averaged across years and divided by plot

size to establish overall pair densities in the 16 plots. Crops were

recorded on each field for incorporation into the simulation of the

farm types over the three study years.

In the Kalø area, the model predictions of the length of the

incubation period (days), fate of non-hatched nests (predation,

other mortality), the length of the period that chicks spent in the

nest, referred to as the nestling period (days) and the fate of non-

fledged chicks (predation, other mortality) were tested with field

data from 1992–1995 and 2003–2005 from spring barley fields.

During the first period, the area held a mixture of pesticide treated

and untreated fields, whereas from 2004 and onwards all fields

were organically farmed. In order to provide the necessary field

data for the model testing, nests were located by means of

observations of nest-building, flushing of incubating females or

adults feeding the nestlings, obtained during systematic morning

searches on foot or from a vehicle in potential breeding areas.

When a nest was located, the position was drawn on a field map

and a thin plastic rod was placed 12 m away from the nest in a

selected compass direction in order to avoid predators using the

rod as a food associated cue. The fate of the located nest, mainly

found during egg-laying and incubation, was determined during

daily visits until the end of the incubation period. Hatched clutches

were checked regularly, see [27], until the end of the nestling

period in order to record chick growth rates, and if the brood died,

to determine the cause. Incomplete data or instances where

predation or death was thought to be due to experimental

disturbance were removed from the analysis. While the length of

the incubation period was defined as the number of days from the

first day of incubation to the day of hatching (both days included),

the length of the nestling period comprised the number of days

from hatching to the day when the chicks left the nest.

Data were also collected to describe the within field effect of

providing skylark scrapes. Skylark scrapes comprised 100 unsown

plots of an average of 40 m2 (Odderskær et al. 1997), placed in a

22 ha field of spring barley. The densities of breeding pairs were

obtained from this field and a larger spring barley field (35 ha)

without scrapes in the Kalø study area during 1991. Territory

mapping followed the same protocol as in the Bjerringbro study

site, except that they were carried out approximately weekly

during the breeding season.

3.4. POM testing procedure
In order to simplify the POM procedure and description, we

developed a set of three tests for fit against the three data sets

constructed for this analysis. As in previous ALMaSS POM-testing

[20,28,29], a summary statistic was created as the mean of the

statistics used to test the fit for each individual pattern. This

statistic was used to guide the fit since maximising fits to all

patterns simultaneously may not be possible and trade-offs may be

needed.

Developing an Agent-Based Model for Skylarks
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Because the data used for the patterns came from three separate

real world data sets (Bjerringbro 1998–2000, Kalø 1992–1995 &

2003–2005, and Kalø 1991), pattern fitting required running three

concurrent but independent simulations for each parameter set

generated (see ‘General procedure for guided fitting’ below). For

each set two overall measures of fit were created resulting in six

statistics (Table 1), which were then scaled and combined in the

overall fit statistic. The procedure for each set was:

3.4.1. Pattern Set 1: Bjerringbro landscape densities. A

detailed copy of the 10610 km landscape from which the skylark

data was obtained was used as map input. Weather input was

based on the years of sampling 1998–2000 from the Tranebjerg

weather station (55u509N, 10u379E), and was looped repeating

every three years. Farm management was based on a previous

study from this area, and used farms classified as either pig farms,

arable farms or mixed/hobby farms [30]. The 16 study areas from

which skylark data was sampled were handled separately. For each

of these areas the crops that were grown during the study period

and their areas were used to create specific crop rotations.

ALMaSS is not capable of recreating the exact pattern of crop/

field usage for each year, but over a period of years the mean crop

area can be made to match. To achieve this, the rotation is used

on each field, and thus over a period of simulated years all fields

will experience all crops in the correct proportion. The disadvan-

tage here is that in the real world crops are not rotated round all

fields because of soil, field size, aspect, or other constraints.

The simulation was run for 60 simulated years for each

parameter combination tested. To avoid possible error due to a

burn in period, only the last 20 years of simulation data were used

to create 20-year means of the numbers of maximum number

skylark pairs holding territories located with the centre inside any

of the study areas.

The measure for goodness of fit were slope and coefficient of

determination (R2) obtained by fitting a linear regression forced

through the origin to a plot of densities predicted by the model

against densities measured in the real world (n = 16). Both slope

and R2 were given equal weight in the overall fitting. For slope, a

fit statistic was used, calculated as the absolute values of (1-b)/M

and (1-M), where M is the range over which the slope (b) varies in

scenarios with stable populations. For R2 the same approach was

Figure 1. Map of the landscape around the town of Bjerringbro, showing the 16 study areas (shaded) in which data on skylark
breeding densities were collected and virtual skylarks were sampled using ALMaSS.
doi:10.1371/journal.pone.0065803.g001
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used but M was the highest R2 observed. In both cases, the scaling

in this way increased sensitivity to central (close to best fit) values

and better described the range of possible outcomes when

excluding extreme parameter value responses. In these and all

other comparisons between model and observed data, the general

expression for coefficient of determination was used to ensure a

consistent measure of goodness of fit, given the fact that some

comparisons were based on linear regression through the origin

and others were direct comparisons of proportions or number of

pairs (see pattern set 2 and 3). Thus, the coefficient of

determination is expressed as R2 = 12(SSerr/SStot), where SSerr

is the sum of the squared residuals between observed and modelled

data, and SStot is the sum of the squared difference between the

observed data and the mean of the observed data.

3.4.2 Pattern Set 2: Reproduction data (nest period). To

create model data comparable to the reproductive data collected

in the field experiments, it was necessary to generate data from a

spring barley crop to match the field conditions. This was achieved

by using a landscape map from the Kalø area (in this case

767 km), but assuming that all crops were spring barley. Weather

input was based on data from the Tranebjerg weather station from

1992 to 1995 and 2003 to 2005, to match the periods during

which the field data was collected. The length of incubation for all

clutches and their fate if not hatching (i.e. either predated or other

mortality) was recorded for 20 years from a sixty year simulation.

Similarly, from the same simulations, the length of time a nestling

spent in the nest or its mortality cause was also recorded for the

same period. These measurements were converted into two

summary statistics describing the summed squared difference

between real world and modelled proportions of incubation time

(9–17 days), and nest leaving day (6–11 days), or otherwise the

cause of death (predated or other mortality). The summary

statistics were scaled to a 0–1 range to be comparable to the range

in variation for Pattern Set 1.

3.4.3. Pattern Set 3: Skylark scrapes. The impact of

skylark scrapes was tested using data from two fields during 1991.

These fields were mapped within the Kalø map used for Pattern

Set 2, and the experiment with and without scrapes was

reconstructed in ALMaSS using weather station data for 1991.

As in the real experiment, the two fields were assumed to grow

spring barley. In the first field, tramlines were kept open and

skylark scrapes were provided, while in the other one, tramlines

were allowed to close and no scrapes were provided. The

simulations were run for 60 years and the last 20 years data used

to calculate means for the number of breeding pairs in each of the

two fields on the dates when the territories were mapped in the

real world. This data was then compared to field data.

Comparison statistics were mean squared differences between

the two data sets for each field. To enable direct comparison with

the other pattern fit statistics, the resulting values were scaled by

the score given by an extinct population (the maximum negative

deviation possible).

3.4.4. General procedure for guided fitting. The proce-

dure for guided parameter fitting followed the strategy adopted by

Topping et al. [20]. This is an iterative procedure whereby the

model parameters are adjusted ad hoc until a suitable fit is obtained

to all pattern data, or if a fit is not considered possible, the model is

altered structurally. In theory, determining the stopping rule (when

a fit is accepted), should be a case of achieving a pre-defined

minimum deviance between real world and model output. In

practice, however, due to the use of an overall fit statistic, the

stopping rule became the best fit that was achievable in terms of

minimising the overall mean deviance. The resulting fit needed to

be acceptable to the modeller and biologists involved, if not, the

model was modified and the cycle restarted. Although this sounds

somewhat imprecise, the overall aim is to maximise the fit as much

as possible, and probably it is more conservative than accepting an

arbitrary deviation.

In the iterations where a satisfactory fit was not achievable, the

model structure itself was modified; the modifications being

dependent upon an analysis of the cause of failure to fit. After

modification the fitting procedure was repeated.

3.4.5. Sensitivity analysis. Following the calibration and

model development phases, a sensitivity analysis was carried out to

determine which of the parameters varied in the fitting had the

greatest impact on the results. All in all, 30 parameters were

evaluated in this process (Table 2). Each was altered by 65, 10,

20, and 40% either side of the chosen fitted parameter value, while

keeping all other parameters at their fitted value. In the cases

where parameters were small integers, these were varied by 61, 2,

4, and 8. All six pattern-fit tests were carried out, and the six fit

statistics and the overall fit statistic calculated and graphed (see

Supporting Information S2). Those parameters that created no

more than 60.1 variation in the overall fit statistic (e.g. parameter

SK_HQTALL, Supporting Information S2) were considered to be

insensitive and were not considered further.

3.4.6. Secondary predictions. One of the best methods of

evaluating model performance is the use of secondary predictions

Table 1. Overview of the fit statistics used to determine the fit to the observed real world pattern data.

Statistic Name Pattern Set Description

Bjerringbro (slope) 1 Bjerringbro landscape slope of the regression of model predicted skylark pairs against
observed skylark pairs

Bjerringbro (R2) 1 Bjerringbro landscape r2 of the regression of model predicted skylark pairs against
observed skylark pairs

Hatch Fit 2 Summed squared difference between real world and modelled proportions of
incubation time (9–17 days), or otherwise the cause of death (predated or other
mortality).

Nest Leaving Fit 2 Summed squared difference between real world and modelled nest leaving day (6–11
days), or otherwise the cause of death (predated or other mortality).

Density No Scrapes 3 Summed squared differences between real world skylark pair density in a large spring
barley field without skylark scrapes and the model predicted density.

Density With Scrapes 3 Summed squared differences between real world skylark pair density in a large spring
barley field with skylark scrapes and the model predicted density.

doi:10.1371/journal.pone.0065803.t001
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[31]. These are predictions made by the model which can be

evaluated against real-world data, but which were not part of the

original model fitting procedure. Whilst not considered as

powerful as the detailed POM testing, they do provide further

indications of the models performance.

In this case, secondary predictions were evaluated in three ways.

Firstly, by carrying out further comparisons between fitted values

of selected parameters obtained in the calibrated model and those

found in the literature. This comprised parameters for incubation

temperature and the threshold for physiological development of

eggs, which were all obtained from a study on house sparrow [32].

Secondly, although it was not possible to extract within season

variation in number of pairs for other fields, data did exist for the

total number of territories in the field used for Pattern Set 2

without scrapes in 1991, but with scrapes being provided in 1992–

1995. This provided the opportunity to test the prediction for

Table 2. Description of the input parameters modified during the pattern-oriented modelling procedures and subsequent
sensitivity analyses with each parameter assigned to the biological mechanisms that they are related to: E = Energetics,
R = Reproduction, M = Mortality and T = Territory quality.

Parameter Name Major Mechanism Parameter Description

EXTRACTION_RATE E Rate of food extraction per arbitrary unit food m22 minute21

HINDCONSTH_B E The linear rate of decrease of accessibility (expressed as 0 to 1.0) as a result of
increasing height about a threshold (HEIGHTCONST_C)

HINDCONSTD_B E The linear rate of decrease of accessibility (expressed as 0 to 1.0) as a result of
increasing height above a threshold (DENSITYCONST_C)

MAXFEEDRAIN E Precipitation level (mm day21) at which foraging is assumed to be prevented.

PEMAX E Maximum growth rate of nestlings (g day21).

RAINHINDPOW E The power of the curve relating feeding hindrance to rainfall.

TRAMLINE_FORAGING E Reduce hindrance proportion as a result of tramlines or skylark scrapes.

ADULTRETURNMORT M Mortality associated with overwintering and return to breeding area for adults.

CLUTCH_MORT_PROB M Daily probability of predation mortality for a clutch.

JUVRETURNMORT M Mortality associated with overwintering and return to breeding area for
fledglings.

NEST_MORT_PROB M Daily probability of predation mortality for a nestling.

COOLING_RATE_EGGS R The cooling rate of eggs when not incubated (uC hr 21 uC 21)

EGGTEMP R Incubation temperature (uC).

MD_THRESHOLD R Threshold for physiological development of eggs (uC).

MINDAYSTOHATCH R Minimum incubation time assuming optimum incubating temperature (days).

NESTLEAVECHANCE R The probability of leaving the nest when reaching minimum nest leaving age.

TRIPLENGTH R The interval of time in minutes when a female is not incubating the clutch due
to a feeding trip.

DENSITYCONST_B T Exponent for the reduction in habitat score due to increasing vegetation
density for vegetation between 0.03 m and 1.1 m but above a threshold given
by DENSITYCONST_C.

HEIGHTCONST_B T Exponent for the reduction in habitat score due to increasing vegetation
height for vegetation between 0.03 m and 1.1 m above a threshold
(HEIGHTCONST_C)

HQBAREEARTH T The quality value/m2 per square metre of habitat with vegetation below 3 cm
tall.

HQHEDGE T The quality value/m2 associated with hedgerows, forests etc. (above 3 m or
other tall objects).

HQTALL T Territory quality score/m2 for vegetation between .1.1 m and ,2 m.

HQTALLVEG T The quality value/m2 associated with vegetation between 2 m and 3 m high.

MINFEMACCEPTSCORE T The minimum total habitat score before the female will accept a territory (used
by both sexes).

PATCHYPREMIUM T The extra score/m2 for habitats assumed to be patchy and accessible to
skylarks and less than 2 m tall.

SKSCRAPESPREMIUM T The extra score/m2 or fields with skylark scrapes.

TRAMLINEPREMIUM T The extra score/m2 or fields with open tramlines.

DENSITYCONST_C T/E Threshold for a reduction in quality due to increasing vegetation density for
vegetation between 0.03 m and 1.1 m.

HEIGHTCONST_C T/E Threshold for a height mediated reduction in quality for vegetation between
0.03 m and 1.1 m.

TRAMLINE_DECAYTIME T/E The length of time the tramlines are assumed to be open in days.

doi:10.1371/journal.pone.0065803.t002
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number of pairs for this field but with scrapes. Finally, the length

of time the female spends off the nest during incubation was

recorded by additional field observations and compared to the

fitted parameter value for the same behaviour.

3.4.7. Feeding trip duration observations and

analysis. In order to determine the number and duration of

foraging trips, temperature loggers were placed under skylark nests

found in two fields at the Kalø study area during incubation.

Temperatures were logged every two minutes and recorded to the

nearest 0.1uC. While the daily variation in temperatures was

reflected in regular sine curves, the presence or absence of

incubating females resulted in within day irregular patterns of

temperature increases and drops of smaller magnitude than the

daily pattern. When egg hatched and nestlings were present, the

daily variation in temperature became less prominent.

In total seven nests were followed during incubation during the

period 17 June to 1 August 2005. Temperature logging was only

interrupted shortly by battery check and change. Two control

loggers were placed at random near the nests and covered with a

thin layer of soil (3 cm) to resemble the environment in a skylark

nest as much as possible. As the micro-climate differed between

locations and affected the local temperatures, absolute tempera-

tures were not comparable, and hence the drops in temperatures

were used in the determination of the time when females left the

nest.

The analysis procedure was as follows: 1) Visual inspection of

the temperature curves from each logger from skylark nests in

order to determine the extent of the incubation period; 2)

Determination of the duration of significant temperature drops in

skylark nests defined as at least two consecutive two-minute

periods with temperature drops of at least 0.2uC, excluding short

temperature drops during a two-minute period e.g. due to egg-

turning; 3) Determination of significant ‘‘natural’’ temperature

drops during at least two consecutive two-minute periods recorded

by the control loggers, using the same definition as for the

‘‘skylark-loggers’’; 4) Calculation of the daily rate of significant

temperature drops, broken into the periods of 4, 6, 8 etc. minutes;

5) Subtraction of the ‘‘natural’’ occurrence rate of temperature

drops from the overall occurrence rate of temperature drops in

order to determine the daily rate of female absence from the nest,

assumed to be feeding trips; 6) Calculation of the arithmetic mean

duration of the feeding trips based on the discrete distribution of

feeding trips .

Results

4.1. Results of POM testing
4.1.1. Model modifications & final model

description. The final model is definitively described by the

ODdox documentation. ODdox is a method for providing both an

overview of an individual-based model as well as access to the

source code [29]. It is html-based and provides a useful alternative

to long written documentation for larger models such as this. It

also has the advantage that the reader can navigate through the

program code. However, for ease of reading a short overview is

provided in Supporting Information S1.

The overall model structure remains close to the original version

from 2004 [21], but the POM testing altered a number of model

implementation details in order either to simplify the model, or to

improve the model performance (see Supporting Information S3).

4.1.2. Final Fits to Pattern Sets. Naturally it was not

possible to precisely fit all the POM testing patterns, however,

acceptable fits were obtained for all patterns used. The overall best

fit model and parameterisation produced a good fit to the

predicted densities of skylarks in the Bjerringbro study area. A

linear regression, of the modelled within season maximum

territory density against the same metric measured from the field

had a slope of 1.00 (R2 = 0.553, n = 16) (Fig. 2A). Using actual

numbers of territories the slope was comparable (1.03), however,

the fit increased slightly (Fig. 2B) (R2 = 0.622), suggesting that the

major determinant of numbers was not simply area. This was

confirmed by regressing observed number of pairs against area,

which resulted in a significant (t = 8.20, P,0.0001), but poor

relationship (R2 = 0.221). There was, however, one clear outlier in

the data, representing farm 14. This farm was also the farm with

the largest field sizes and largest area at 48 ha, with only three

fields.

An excellent fit (R2 = 0.993) was obtained to the distribution of

egg hatching times, and the associated mortality if not hatching

(Fig. 3). Hatch date distribution and mortality causes were

accurately predicted by the model, although it was not possible

to maintain this fit and have any model birds hatching on day 10.

Fits to the nest leaving date were also good (R2 = 0.896), but not

as close as egg hatch day (Fig. 4). In particular, it was difficult to

match mortality caused by other factors with the best fit resulting

in an over-estimate of nestling mortality of 6.4%.

Fits to the within season patterns for the two Kalø fields with

and without scrapes were surprisingly good (R2 = 0.906 and 0.898,

respectively) considering that the number of pairs present were low

(5 & 6), and hence variation of only one pair would have altered

the fit dramatically. Without scrapes the model birds increased in

numbers between day March 16th and May 2nd, remained

constant until day June 2nd, then began to give up their territories

until day June 24th (Fig. 5A). With scrapes the pattern was similar

up to day May 2nd, at which point there was another increase in

pair numbers, which was maintained until the end of the

observations on day July 3rd (Fig. 5B). In this case, model

predictions tended to overestimate numbers in early season.

4.1.3. Sensitivity Analysis. Of the 29 parameters tested for

responses to all six patterns, 13 were found to be relatively

insensitive (mean response deviation less than 0.1). Of the 16

remaining parameters, 13 had overall fit statistic responses

between 0.1 & 0.4, the remaining three parameters were more

sensitive with fit statistic values of over 0.5 (Table 3).

Model responses were not universally sensitive to all parameters,

but the method of scaling the results to the overall parameter

variability results in all response variables being sensitive to at least

one parameter. This does not, however, result in high overall

sensitivity scores for a parameter if other response variables are

insensitive. Examples of these parameters are HQBAREEARTH

and PATCHYPREMIUM, which both affect the slope of the

Bjerringbro pair density regression, but have minimal impacts on

other response variables (Supporting Information S2). Thus,

parameters listed as sensitive affect multiple response variables.

The six most sensitive parameters produce complex response

patterns across the size response variables (Fig. 6). Slope and R2 of

the Bjerringbro regression are the only response variables that vary

over the full range for all six parameters. No response variables

showed monotonic trends, but two parameters (DENSITY-

CONST_C Fig. 6C and EXTRACTION_RATE Fig. 6F) are close

to having a threshold response with increasing values above the

fitted point affecting the response variables only slightly, but

decreasing values result in strong response variable changes. Most

other response patterns are roughly U-shaped indicating that we

have an optimum fit around the central parameter value.

However, responses due to changes in MINFEMACCEPTSCORE

(Fig. 6D) are more complex, with no clear pattern for the

Bjerringbro R2 and ‘Density No Scrapes’ for values above the
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fitted minimum, but with significant variation. The overall feature

of this model is therefore that one of interacting parameters

produces complex emergent responses.

Two parameters control the impact of skylark scrapes,

SKSCRAPESPREMIUMNEST and TRAMLINE_FORAGING. The

latter also affected other response variables, whereas the former

could only affect patterns measured where scrapes were used, i.e.

‘Density with Scrapes’, and hence was not evaluated using all

seven patterns.

4.2. Secondary Predictions
4.2.1. Fit to literature parameter values. Two parameters

were available from the literature, although not directly for

skylarks, and thus were allowed to vary freely. The final values

used were close to literature values in all cases: EGG_TEMP,

36.1uC [32], fitted 35.0; MD_THRESHOLD, 26uC [33], fitted

25.8uC. Whilst this is not a strong test, EGG_TEMP and

MD_THRESHOLD were both found to be sensitive parameters,

and hence the fitted values are not arbitrary. Both parameters

emerge from interactions between environmental temperature,

female incubation activity, and energetic mechanisms controlling

Figure 2. The relationship between the modelled mean densities (A) and pairs (B) of skylarks in the 16 study areas in Bjerringbro
derived from the ALMaSS skylark model and the mean observed densities (A) and pairs (B) obtained from surveys carried out 1998
to 2000. * is Farm 14 referred to in the text.
doi:10.1371/journal.pone.0065803.g002
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egg development resulting in the patterns of egg hatch fitted by the

POM fitting procedure.

4.2.2. Feeding trip duration. The original 2004 model

assumed 30 trips per day, and calculated trip length according to

the amount of time required to obtain enough energy to fulfil the

skylark’s requirements during incubation. The current version

replaced this with a parameter for the length of each trip and thus

trip number became emergent. The mean trip-length was

therefore a result of the requirement for food to maintain the

female’s energy balance with the availability of food from the

home range, and the rate of nutrient extraction determined by

weather and vegetation structure on a day to day basis. Thus,

TRIPLENGTH was a fitting parameter allowed to vary freely, and

its optimum fit point was established to be 10.5 minutes. The

independent analysis of field data indicated that the length of trips

Figure 3. Comparison of the hatching day of successful clutches (minimum one egg hatched), and causes of nest failure observed in
the Kalø study area and those predicted by the ALMaSS skylark model.
doi:10.1371/journal.pone.0065803.g003

Figure 4. Comparison of the nest-leaving day of fledglings and causes of nestling mortality observed in the Kalø study area and
those predicted by the ALMaSS skylark model.
doi:10.1371/journal.pone.0065803.g004
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in reality was a mean of 10.3 minutes, with most feeding trips

lasting from 10 to 12 minutes (Fig. 7).

4.2.3. Skylark scrapes on 2nd field. The number of

territorial pairs for the field without scrapes in the model in

1991 was five, fitting with numbers observed in the real world

(Pattern Set 3; see also Fig. 5A). For 1992–1995, the observed

values with scrapes were 8, 17, 17, and 13, giving a mean of 13.75.

Model predictions for the same period varied for any particular

year, but the mean of 10 replicates of 60-year simulations was 12.1

pairs with a range of single-year pair number of 10 to 15. The

mean was therefore close, but a little lower in the model than in

the real world, with slightly less variation in year-to-year numbers.

Discussion

5.1. Predictive population modelling
Models are key components of wildlife management pro-

grammes as they provide a method to predict the outcomes of

alternative management strategies. As such the use of models is

becoming more commonplace. Traditionally, ecological models

have been relatively simple, with the emphasis on generality rather

than accuracy. In these models uncertainty is reduced in an effort

to improve the precision of their (general) predictions. A predictive

population ecology approach, however, is concerned with

modelling population impacts arising from complex systems

Figure 5. Comparison of the seasonal distribution of the number of territorial pairs observed in the Kalø study area on fields
without (A) and with (B) scrapes, and those predicted by the ALMaSS skylark model.
doi:10.1371/journal.pone.0065803.g005
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change, placing the emphasis on producing more accurate, if

somewhat imprecise predictions about likely future population

states in an uncertain world. This addresses what can be subtle,

but important, differences between the approach of design sciences

such as engineering and the traditional analytic scientific approach

to systems understanding.

These design-science agent-based models are generally com-

plex, requiring significant development time and testing, which

can be a significant cost, particularly against the policy require-

ment for models to be as simple and clear as possible. However,

once they are developed they can be very flexible due to their

modularity e.g. [34,35]. An advantage of this complexity is that a

wide range of novel questions can be asked of the model without a

need for re-writing, allowing the model to address a range of

research and policy requirements; but the cost is that there may be

some redundancy, i.e. parameters that are not important to

address the problem in hand.

The ALMaSS skylark model presented here has many of these

complex attributes, but we approach the problem from a synthetic

design science angle, rather than traditional analytic modelling.

Population responses are emergent as a result of interactions

between skylark ecology and behaviour, and the landscape, crops

and their management, the latter being model inputs. An obvious

future application of this model would be to evaluate the impact of

recent CAP reforms on skylarks in different agricultural systems.

However, regular use of this kind of model for management and

policy decisions requires greater confidence in the model and its

performance. Hence, exercises such as the one undertaken in this

study are required. This is not a case of ‘rubber-stamping’ the

model, but of describing its performance and providing a starting

place for improvement, ideally based on usage and model users’

feedback.

Table 3. Input parameters modified during the pattern-oriented modelling procedures and the subsequent fitted values,
sensitivity analyses with the overall fit statistic, and the biological mechanisms that each parameter is related to: E = Energetics,
R = reproduction, M = Mortality and T = Territory quality.

Parameter Name Value Maximum Overall Fit Deviation Major Mechanism

PEMAX 4.54 0.54 E

MINDAYSTOHATCH 10.2 0.53 R

DENSITYCONST_C 10 0.32 T/E

MINFEMACCEPTSCORE 300000 0.26 T

MD_THRESHOLD 25.8 0.25 R

EXTRACTION_RATE 0.00053 0.23 E

ADULTRETURNMORT 35 0.22 M

EGGTEMP 36.1 0.22 R

JUVRETURNMORT 35.0 0.20 M

RAINHINDPOW 4 0.20 E

MAXFEEDRAIN 4.7 0.18 E

CLUTCH_MORT_PROB 350 0.16 M

TRAMLINEPREMIUM 6 0.14 T

HEIGHTCONST_C 38.0 0.11 T/E

TRIPLENGTH 10.5 0.11 R

COOLING_RATE_EGGS 3 0.09 R

HEIGHTCONST_B 20.22 0.06 T

PATCHYPREMIUM 47 0.06 T

NESTLEAVECHANCE 23 0.05 R

HQBAREEARTH 3 0.05 T

NEST_MORT_PROB 23 0.05 M

DENSITYCONST_B 20.26 0.05 T

HQHEDGE 2250 0.04 T

HINDCONSTH_B 20.025 0.04 E

HINDCONSTD_B 20.22 0.04 E

HQTALL 22 0.04 E

HQTALLVEG 210 0.04 T

TRAMLINE_FORAGING 0.45 0.04 T

TRAMLINE_DECAYTIME 21 0.04 T/E

SKSCRAPESPREMIUM 0.24 NA T

The parameters are ordered from the largest to the smallest impact in the sensitivity analysis. Parameter-specific value precision indicates the precision of variability
considered during parameter fitting.
doi:10.1371/journal.pone.0065803.t003
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5.2. Model testing and sources of error
This study was facilitated by the very large data sets that were

available to test the model. Many of these (all post 1995) were

specifically created with model testing in mind. Because of this fact

the interpretation of the data used for POM testing was easier than

in a typical case where patterns are extracted from published data

sets or studies. This ensured that we were able to extract data from

the model in ways that made it comparative to that measured in

the field. This is a critical issue when developing these tests. The

study also benefited from the very long period over which data

were obtained resulting in a high volume of data, and the fact that

inter-annual variation in weather could be factored into the model

runs. As a result, many of the fits to the patterns were extremely

good; but does this make them correct? Naturally the answer is no,

these fits could probably be fitted just as well by other

combinations of parameters. However, the extent to which this

would have given a model substantially different behaviour is

perhaps debatable since experience with refitting of the model

during the POM testing suggests that the final fit is very stable, i.e.

goodness of fit and patterns of fit re-asserted themselves at each

model iteration with only minor variation. In addition, one

advantage of the complex agent-based models is that observations

Figure 6. Parameter sensitivity for the six most sensitive parameters using 7 fit statistics. Each panel represents the deviation in model
output relative to field data for particular parameters. Each point represents the deviation of model output from the corresponding field data pattern
averaged across replicates. Each line in each panel represents the response to variation (65, 10, 20, and 40%) in one particular parameter; hence lines
of the same colour come from the same simulations and can be directly compared between panels. The parameters presented are: maximum daily
growth rate of nestlings PEMAX (A), minimum incubation time MINDAYSTOHATCH (B), threshold for reduction in habitat quality due to increasing
vegetation density DENSITYCONST_C (C), minimum habitat score for female acceptance of a territory MINFEMACCEPTSCORE (D), the threshold for
physiological development of eggs MD_THRESHOLD (E), and food extraction rate EXTRACTION_RATE (F).
doi:10.1371/journal.pone.0065803.g006
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can be made at different hierarchical levels, such that a fit to

general patterns at a higher level that was achieved by unrealistic

behaviour at lower levels can normally be identified and

eliminated.

Unlike statistical analysis, with POM testing it is an advantage

that many of the parameters are not independent. For instance

PE_Max (the daily maximum nestling growth) is a highly sensitive

parameter linked to both foraging and growth, but perhaps most

importantly it is linked to fledgling mortality via mortality as a

result of delayed development. Fledgling mortality was identified

as the most sensitive parameter in the previous skylark model

version [36]. Since there is no furtFigher behaviour in the model

between nest leaving and returning that is not a probabilistic

mortality, it is not surprising that PE_Max is now identified as one

of the most sensitive parameters. Thus, variations in PE_Max

could by and large be compensated for by changing juvenile

return mortality, although at a cost of a poorer fit to Pattern Set 2

nest leaving data. Hence, if we trust our Pattern Set 2 data, then

we quickly refine the scope for parameter changes in other parts of

the model. This is therefore one of the strengths of this approach;

new hypotheses can be formulated and tested directly using field

data. Further refinements can be included iteratively as more

detailed ecological information becomes available, quickly reduc-

ing the parameter space further at each iteration.

Despite the acceptable performance of the model, there are a

number of clear sources of potential error in the procedure used

here. In Bjerringbro there are three issues which could have a

bearing on the residuals seen in Fig. 2. Firstly, obtaining a precise

match between crop and field and year is currently not possible in

ALMaSS, and thus only averages were used. This means any

interaction between field location and crop will be missed. For

instance, if in reality a very suitable crop was always grown by

woodland, it would be unattractive to the skylark, but in the model

the crop would be assumed to rotate through all fields and thus

skylark estimates would be increased compared to reality.

Secondly, it was not possible to account for precise crops and

crop management of surrounding fields which were not part of the

skylark study areas. Since skylarks’ territories overlap field

boundaries, we know that significant deviations here will have

an effect on the results. The effect of surrounding crop types may

also have been an issue with the skylark scrape tests. To get the

correct densities for Pattern Set 3, not only the field conditions

(crop, hedges etc.), but also the surrounding crops have to be

correctly set as they may alter the result. Since the surrounding

crops were not recorded, there is further potential for incorrect

parameter fitting. Thirdly, we do not take account of the

intensiveness of management in the current model, but this could

certainly have had an impact on the skylarks. For example, farm

14, with very large fields of 16 ha (mean of the study sites was 3.9

ha), had a low number of skylarks compared to the model

prediction. This ‘farm’ was part of a large estate managed very

intensively, which could easily explain the discrepancy. Individual

residuals notwithstanding, both the fact that the relationship

between skylark numbers and the total area in which they were

recorded was poor, and the fact that density and skylark numbers

were predicted acceptably suggests that the model could be useful

to predict changes in skylark numbers resulting from modifications

in crops and landscape structure.

Another general source of error that is difficult to deal with but

is probably very important is over-fitting in simulation models

[37]. Here the problem is that we believe implicitly in our field

data. A good example is the Pattern 3 Set (skylark scrapes). A

mean statistic was fitted, generated from many replicate model-

year runs. However, the field count data were from 1991, and

would probably have varied between years if we have had more

annual counts. This we can see from the second field where the

number of pairs varied between 8 and 17 during the next four

years. Thus, by precisely tuning the model to this pattern we may

in fact be missing the average case widely. This can of course be

true for all other patterns, although Pattern Sets 1 and 2 are built

on very substantial data sets and errors of this type are less likely.

This is also why, when creating the overall fitting statistic, the

Figure 7. Frequency distribution of the length of temperature drops measured with temperature loggers placed in seven skylark
nest and two control locations in the Kalø study area during the breeding season 2005 on which the frequency distribution of the
length of foraging trips of incubating females was estimated.
doi:10.1371/journal.pone.0065803.g007
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individual pattern fit metrics were scaled to be within the same

range, and then pattern sets 1 and 2 were weighted double

compared to pattern set 3. Given our assessment regarding the

reliability of the data, this is probably reasonable, but it is still

based on a somewhat subjective assessment.

5.3. Future and Open Development
There are two clear next steps to further improve the current

model’s performance. The first is to develop a more mechanistic

module for finding and maintaining skylark territories. The

current approach of developing grids is practical, but does not

match the reality of plastic territories changing with season and

conditions and allowing gradual entry for new birds if conditions

improve. For instance, the step-like response visible in Figure 5B

was due to a threshold for male territory splitting, and the fact that

the interiors of large fields are assumed to be homogenous. This

could be improved, which would also probably eliminate the

irregular shaped response curves resulting from changing the

threshold of territory quality acceptance (see Fig. 6D). The second

and more important improvement could come with re-fitting after

data collection from other crops. Ideally data on seasonal

development of skylark territories in a number of fields in a

similar format to that of Pattern Set 3 could be used to be more

certain that model skylark responses to different crop structures are

accurate.

Improving the usefulness of the model by expanding the

geographic area over which it can be used is much more difficult.

While it would be possible to take farming systems from another

country and use the skylark model directly, there would need to be

a number of calibration tests carried out to ensure that other co-

varying factors did not unduly influence the results (e.g. testing

submodels for vegetation growth and insect biomass), and in non-

migratory systems winter behaviour would also need to be

incorporated. Development of the model for policy/management

evaluation will also require similar data expansions and tests, but

in addition would need to involve a wider spectrum of disciplines

including socio-economic and political angles leading towards

adaptive management concepts [38]. Iterative testing and

development cycles would be ideal to tackle these issues [39],

but very difficult to maintain over a long period as a scientific

project. It may however, be possible as an internet community

function.

A major aim in presenting this paper with its model testing is to

provide an access point for more general usage, and further

improvement of the model. To this end we have provided the

model description in ODdox format and have opened the source

code for ALMaSS to the research community at http://ccpforge.

cse.rl.ac.uk/gf/project/almass/. This is done primarily because

we believe that predictive models used in real applied applications

are often necessarily complex and therefore require a long-term

commitment to development. Without this becoming a commu-

nity activity, these models will be difficult to build and maintain in

the future.
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