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Abstract

As the molecular basis of signal propagation in the cell, proteins are regulated by perturbations, such as mechanical forces
or ligand binding. The question arises how fast such a signal propagates through the protein molecular scaffold. As a first
step, we have investigated numerically the dynamics of force propagation through a single (Ala)40 protein following a
sudden increase in the stretching forces applied to its end termini. The force propagates along the backbone into the center
of the chain on the picosecond scale. Both conformational and tension dynamics are found in good agreement with a
coarse-grained theory of force propagation through semiflexible polymers. The speed of force propagation of~50Å ps21

derived from these simulations is likely to determine an upper speed limit of mechanical signal transfer in allosteric proteins
or molecular machines.
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Introduction

Mechanical force has long been recognized as one of the major

factors that regulates biological function not only on the

macroscopic level such as tissues and organs, but also on the

microscopic level such as individual cells and proteins [1–3]. Cells

and their constitutes are subjected to a constantly changing

environment to which they are required to adopt in a dynamic and

timely way. The dynamic response of a molecular system like a

protein or protein complex to an external force has been

extensively studied in experiments, simulations and theory [4–8].

While these processes of protein conformational changes or

protein unfolding upon force application typically exhibit time

scales from microseconds to seconds or even hours [9], the time

scale of the force to propagate into the molecular structure is

probably several orders of magnitude faster. The velocity of force

propagation, i.e. the speed of sound, can be considered as an

upper limit for the mechanical response of biomolecules, and thus

is of fundamental interest in order to explore the dynamic

consequences of external perturbations. One intriguing example is

the helical fibers in hair cell bundles of vertebrate inner ear that

serve as force transducers and are postulated to give rise to the

exquisite frequency sensitivity ranging from 20 to 20 000 Hz and

remarkably high dynamic range exceeds 100 dB [10–12].

Unfortunately, force propagation is inherently difficult to

measure experimentally. Doing so not only requires excellent

time resolution, one also has to either introduce force-sensitive

probes into the molecular backbone [13] or resort to indirect and

difficult to interpret measures such as force-induced heat

dissipation [14]. However, the very same rapidity acting as a

roadblock to experimental investigation pushes the subject of force

propagation into the realm of atomistic molecular dynamics (MD)

simulations, a technique that is limited to very short time scales,

but has proven useful for our understanding of protein dynamics

[15]. In particular, a good agreement has been observed between

experimental and simulated folding rates, suggesting the time

scales of non-equilibrium processes investigated by MD simula-

tions to be of a reasonable order of magnitude [16,17]. We take

advantage of this fact by combining atomistic MD simulations of

an (Ala)40 homo-polypeptide under external stretching force with

Force Distribution Analysis (FDA) [18], allowing us to track

intramolecular forces with perfect temporal and spatial resolution

(see Fig. 1).

Results

Tension Propagation from MD Simulations
After a sudden increase in the external force applied to the

termini of (Ala)40 from fpre to fext, we monitored the tension

propagation into the center of the polypeptide by measuring the

force between each pair of adjacent residues over time. While

the MD simulations at the increased force of fext were carried

out for 50 ps, we observed the inter-residue forces to equilibrate

already within the first 10 ps, and thus restricted the analysis to

this time window. As shown in Fig. 2a (diamonds), as expected,

the increase in force between pairs of residues is highly non-

linear and delayed towards the center of the chain. While the

outer residue pairs show a rapid increase in inter-residue force

within 1 ps, residue pairs located in the vicinity of the center of

the chain exhibit a force increase significantly delayed on the

picosecond time scale. A representative dynamic trajectory of

(Ala)40 color coded by inter-residue forces is visualized in Movie

S1. We next attempted to analyze the numerical results with

two distinct polymer models, a bead-spring model and the

dynamic Worm-like Chain model.
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Bead-spring Model
Since protein dynamics are often treated within a linearized

bead-spring framework [19,20], it is natural to assume that tension

might propagate diffusively through the protein backbone, in the

same way vibrational excitations do [14]. Assuming freely draining

hydrodynamics, we solve the corresponding equations of motion.

k½x2(t){x1(t){‘0�{(fext{fpre){f _xx1(t)~0

k½xiz1(t){2xi(t)zxi{1(t)�{f _xxi(t)~0, i~2 . . . 39

(fext{fpre){k½x40(t){x39(t){‘0�{f _xx40(t)~0

xi(0)~(i{1)‘0,

ð1Þ

where f denotes the approximate bead friction coefficient

f~6pgr, r&0:2nm the hydrodynamic radius of a single mono-

mer, fpre a low force at which the poly-alanine peptide was pre-

equilibrated, and fpre a higher external stretching force. By

matching the resulting stretching response x40(t){x1(t) to the

end-to-end distance for an intermediate stretching force f , with

fprevfvfext, in a corresponding MD force-extension curve

(Fig. 3), we determined both the backbone stiffness k~47Nm
and the contour length per residue ‘0~0:344nm. The force-

extension profile for (Ala)40 (raw data in grey, averaged data in

blue in Fig. 3), obtained from additional MD simulations, gives the

stretching force of the chain as a function of its end-to-end

distance, and is directly comparable to experimental force-

extension data.

Turning now to the time-dependent backbone tension

fi(t)~fprezk(xiz1(t){xi(t)), we find that this severely underes-

timates the actual speed of tension propagation especially for the

inner most residues and intermediate time scales (not shown). One

might argue that this is due to hydrodynamic cooperativity, as

neighboring monomers move in unison, thus possibly shifting their

effective friction coefficients towards the infinite-cylinder limit

f&2pg(2r)= log (20) [21], thereby reducing friction by a factor of

up to &5. This approximation, however, could only roughly bring

our model in line with the MD data (Fig. 2a, Table S1 in File S1).

Close to the center, even this manually corrected friction

coefficient yields a time-dependent backbone tension that is too

high at short times, but too low later on.

The likely reason behind this qualitative discrepancy is the

inherently nonlinear stretching behaviour of polymers in thermal

equilibrium. If the molecule was perfectly straight, then all the

work done by the external stretching force went into pulling the

polymer’s atomic constituents further apart, thus acting against

powerful chemical binding potentials for which the harmonic

approximation holds well beyond the external force levels

considered here. As it is, however, Brownian forces always induce

a certain amount of contour bending transverse to the polymer

main axis, thus effectively shortening it in the longitudinal

direction and providing a finite amount of ‘‘stored length’’ that

is easily pulled out at forces far below those necessary to stretch the

molecular backbone itself. A single stiffness chosen such as to

correctly reproduce the overall longitudinal extension will thus

always overestimate the actual stiffness, and thus the speed of

tension propagation, at low stretching forces, Fig. 3.

Worm Like Chain (WLC) Model
Previous studies [22] have shown that polypeptides, like many

other biopolymers, belong to the class of semiflexible polymers, rigid

below a certain persistence length ‘p but flexible on long scales

‘&‘p. Mathematically, semiflexible polymers are described by the

worm-like chain model, which yields an accurate expression for the

nonlinear force-extension relation [8] (presuming zero backbone

extensibility),

f ‘p
kBT

~
Rz

L
z

1

4(1{Rz=L)
2
{

1

4
, ð2Þ

where L denotes the total polymer length and Rz its longitudinal

extension. Previous experimental measurements of ‘p&1nm show

that we are very close to full extension, f&kBT=‘p&4pN,

allowing us to simplify the force-extension relation as follows,

Rz

L
~1{

4f ‘p
kBT

� �{1=2

: ð3Þ

Meanwhile, f is large enough to stretch the backbone, which we

may regard as a linear spring, f~k(L{L(f~0)), i.e. the full

force-extension relation for strong contour straightening and weak

backbone stretching reads.

Rz~L0 1{
4f ‘p
kBT

� �{1=2
" #

z
f

k
, ð4Þ

where L0 denotes the molecule’s natural contour length, i.e., the

longitudinal extension of its energetic ground state. By fitting the

above expression to our force-extension data, we obtain

‘p&0:7nm, L0&14:7mm and k&4:2Nm{1. Raising the external

force from fpre to fext thus stretches the backbone by &2:4%,

Figure 1. Force propagation along a polypeptide in water. (a)
After first equilibrating an (Ala)40 polypeptide under a relatively low
stretching force of fpre~167pN applied to both termini of the
polypeptide, we then suddenly increase the stretching force by a
factor of 10 to fext . As the polymer is straightened, backbone tension
propagates from the two termini into the center of the chain. (b)
Structure used in the MD simulation. The (Ala)40 polypeptide is
surrounded by explicit solvent molecules. A constant force, fpre or fext
is applied to the terminal C-a atoms, and the end-to-end distance R of
the peptide is measured.
doi:10.1371/journal.pone.0064746.g001

How Fast Does a Signal Propagate through Proteins?

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e64746



whereas the strain caused by contour straightening is more than

twice as large as the harmonic contribution,

DRstraightening
z

L0
~

ffiffiffiffiffiffiffiffiffi
kBT

4‘p

s
f{1=2
pre {f

{1=2
ext

� �
&6:2%: ð5Þ

In contrast to the linear bead-spring model, the Wormlike Chain

gives rise to very complex short-time behaviour that can only be

accounted for by explicit consideration of the nonequilibrium

relaxation behaviour of mechanical bending modes [23–26].

Fortunately, in the limit of ‘‘long’’ times (in our case anything

beyond t~00:01ps) these quickly fluctuating bending modes adapt

quasistatically to changes in the backbone tension f (s,t), thus

allowing us to generalize the above static force-extension relation

to spatially and temporally varying tension profiles f (s,t),

‘~ 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

4f (s,t)‘p

s
z

f (s,t)

kL

" #
‘0, ð6Þ

Figure 2. Tension propagation from MD simulations and comparison to dynamic bead-spring and semiflexible chain models. (a)
Tension evolution as predicted by a bead-spring model (colored curves) fitted to the tension in Ala40 as obtained from MD simulations (colored
diamonds). Coloring red, yellow, green yellow, blue and purple show residue pairs 1–2, 4–5, 7–8, 10–11, 15–16 and 20–21, respectively. A manually
reduced friction coefficient was used to map the WLC model and numerical results. We note that here forces were averaged over 100 fs time periods
for clarity. (b) Tension evolution from the dynamic WLC model (colored curve) fitted to the tension in Ala40 as obtained from MD simulations (colored
diamonds). Coloring and averaging as in (a). (c) Boundary layer size lE(t) relative to the contour length L obtained from MD simulations shown in blue.

Numeric solution to the dynamic WLC model prediction in green and y!x1=2 growth law in black. (d) Extension DRz=Rz shown as black dots

compared to two growth laws, y!x3=4 in blue and y!x1=2 in red.
doi:10.1371/journal.pone.0064746.g002

Figure 3. Force-Extension curve of the (Ala)40 chain (grey dots).
The average is shown in blue, and the fitting result of the worm-like-
chain model is shown in red. A minimized root mean square residual
error of 0.1 nN was obtained by nonlinear least square fitting.
doi:10.1371/journal.pone.0064746.g003

How Fast Does a Signal Propagate through Proteins?

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e64746



where ‘ denotes the length of an infinitesimal piece of polymer (of

rest length ‘0).

The corresponding changes in local strain Lt‘ determine the

longitudinal velocity gradients LsvE~Ls(fELsf ) (for further details

please refer to [23–26]), thus furnishing us with a closed partial

differential equation for the time- and space-dependent tension

profile,

L2s f~fE _ff (s,t)
1

4

ffiffiffiffiffiffiffiffiffi
kBT

‘p

s
f (s,t){3=2z1=(kL)

 !
, ð7Þ

valid for t&kBT‘pf\=(fprefext)*0:01ps [25] which we solve

under the given initial and boundary conditions f (s,0):fpre,

f (0,t):f (L,t):fext. Figure 2b shows the results from the dynamic

WLC model for the time-dependent inter-residue forces as

obtained from MD simulations (same as Figure 2a). The

agreement with our MD data is much improved, especially deep

within the chain where forces remain within the regime of

nonlinear extensibility for several (Table S1 in File S1).

We also quantified and compared the boundary layer as it was

defined within the dynamic WLC model in [27]. Following the

sudden increase of the external force fext, the polymer stretches its

contour within a growing boundary layer lE(t). Only within

boundary layers, the thermally undulated contour is straightened

while in the bulk of the chain tension stays in their original ground

state defined by fpre. Practically, the boundary layer is defined as

the segment of the polymer such that its tension

f (lE)~(fextzfpre)=2. The boundary layer growth in the (Ala)40
chain relative to its contour length lE(t)=L(t) is compared to the

model prediction in Figure 2c. We extracted the characteristic

parameter t
E
L = 1.2 ps, which marks the crossover from the tension

propagation into the relaxation phase. In consistence with the

analytical model put forward in [25], for tk=f\&(fextfpre)
{1,

the boundary layer lE(t)=L(t) scales as l1=2p f 1=4pre (fextt)
1=2 before two

boundary layers from both ends meet each other. Here, k~kBT‘p
and f\ are the bending stiffness and the friction coefficient for

transverse motion, respectively. We note that the stair wise

appearance of the boundary layer growth in our simulations is due

to the discrete nature of the polypeptide chain.

Another observable that we compared to the dynamic WLC

model prediction is the change in chain extension DRz(t). As

shown in Figure 2d, its growth is nonlinear and showed a crossover

from DRz!t3=4 into DRz!t1=2, which corresponds to the

transition from the tension propagation regime into the relaxation

regime [25].

Discussion

Through Molecular Dynamics simulations of polyalanine, we

have shown that coarse-grained models of semiflexible polymer

dynamics yield an accurate description of tension propagation and

stretching dynamics even in peptide-sized macromolecules, thus

providing a reliable theoretical framework on all relevant length

scales.

In a bulk material, the longitudinal signal propagation is given

by the Newton-Laplace equation, c~
ffiffiffiffiffiffiffiffiffiffi
Y=r

p
, where r is the

density of the material and Y is the Young’s modulus. Our

calculations allow to estimate the signal propagation speed for the

nanometer-sized single molecule chain of poly-alanine. With a

Young’s modulus of 13 GPa at a constant force of fpre = 166 pN

and a r of 507.8 kg m23 derived from van der Waals volume, we

obtain a speed of c= 51 Å : ps21.

Alternatively, c can be estimated from the propagation regime

characteristic time scale t
E
L = 1.2 ps in the non-equilibrium MD

simulations. Considering that the signal only travels through half

the chain length Rz, the effective signal propagation speed fcf̂f0gg
is given by c

0
~Rz=2=t

E
L = 56 Å ? ps21. This estimate quantita-

tively agrees with the estimation from the Newton-Laplace

equation, suggesting the theory for macroscopic bulk materials

to hold at the level of discrete single molecular chains.

The longitudinal mechanical signal propagation speed we

determined here for a stretched peptide is roughly two times of

the speed of sound in myoglobin obtained previously [28] and 1.5

times of the value reported for a densely packed b-sheet rich

proteins in another study [29]. In a stretched peptide, mechanical

force almost exclusively transfers through the backbone while in

the case of myoglobin or b-sheet rich proteins it also transfers

through a softer network of hydrogen bonds and other non-

covalent molecular contacts, which apparently slows down the

propagation of forces relative to their transfer through covalent

bonds. Mechanical signal propagation plays a pivotal role in

protein allostery, which is known to involve much longer time

scales from microseconds onwards, but could be envisioned to be

partly determined by transmission through either faster backbone

or slower non-covalent forces, or a combination thereof. How the

picosecond time scale of force propagation through our simplistic

single-chain system relates to the dynamics of signal transmission

through larger allosteric proteins or molecular machines remains

to be resolved.

Methods

Molecular Dynamics Simulations
Our simulation encompasses a triclinic box of size 6|6|40

nm with periodic boundary conditions containing besides the

(Ala)40 peptide approximately 47000 SPC water molecules [30].

We first perform 2000 energy minimization steps using a steepest

descent algorithm, followed by 1 ns of MD simulation to

equilibrate the solvent. During solvent equilibration, all protein

atoms are held in place by harmonic potentials of stiffness

kpr~1000 kJ mol21 nm2. Next, we remove the artificial

constraining potentials and turn on the pre-stretching force,

corresponding to linear potentials Upre~+fprez acting on residues

1 and 40, respectively. Another 500ps of MD simulation ensure

complete tension equilibration within the peptide. We then

increase the external stretching force by a factor of 10 and record

all atomic trajectories (with a time resolution of 1fs) during the

following 50ps of simulation time.

Using the Force Distribution Analysis (FDA) method imple-

mented based on Gromacs [18], we also record the vectorial forces

between each pair of atoms within cut-off distance of each other,

again with a time resolution of 1 fs. From this we obtain the

sought-after backbone tension by summing all forces between

adjacent residues and projecting onto the polymers main axis êez.

All simulations are carried out in GROMACS 4.5.4 [31] using

the OPLS/AA force field [32] and a 1.0 nm cutoff for non-bonded

interactions. Within the 1.0 nm distance, electrostatic interactions

are calculated explicitly, while longer ranged electrostatic interac-

tions are evaluated using the Particle Mesh Ewald summation

method [33]. Simulations are performed within the NpT

ensemble, where temperature is kept constant at 300K by a

Nose-Hoover thermostat coupling with a time constant of tT~0:1
ps [34] and the pressure constraint p~1 bar is enforced by a

Parrinello-Rahman barostat coupling with tP~1:0 ps and

compressibility of 4:5|10{5 bar21 [35].
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For a single nonequilibrium simulation, the magnitude of

tension fluctuations measures approximately 6000 pN (Fig. S1a in

File S1), thus dwarfing the deterministic average force by a factor

of almost 4: 1. To arrive at a reasonable signal-to-noise ratio, we

average over 100 independent trajectories following the same

force-jump protocol, resulting in standard errors of the mean in

the range of 20–50 pN (Fig. S1b in File S1), i.e. below the average

differences between residue pairs along the chain and in time. We

also measure the static force-extension relation by attaching

harmonic potentials of stiffness 500 kJ mol21 nm2 to the terminal

residues and moving them outwards at different constant speeds

between 0.5 and 10 nm/ns (constant velocity pulling). The

resulting curves are velocity-independent, proving that the pulling

velocity is slow enough for backbone tension to equilibrate

quasistatically.

Supporting Information

File S1 Detailed model fitting parameters.
(PDF)

Movie S1 Dynamics of tension propagation after the
jump to a high stretching force mapped onto the
stretched (Ala)40 chain. Elevated force propagates from both

ends of the peptide into the central region. The color code from

blue to red indicates lowest to highest inter-residue forces. Only the

first 10ps are shown.

(MOV)
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