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Abstract
Purpose of review—Standard neurorehabilitation approaches have limited impact on motor
recovery in patients with severe injuries. Consideration of the contributions of impaired arousal
offers a novel approach to understand and enhance recovery.

Recent findings—Animal and human neuroimaging studies are elucidating the neuroanatomical
bases of arousal and of arousal regulation, the process by which the cerebrum mobilizes resources.
Studies of patients with disorders of consciousness have revealed that recovery of these processes
is associated with marked improvements in motor performance. Recent studies have also
demonstrated that patients with less severe brain injuries also have impaired arousal, manifesting
as diminished sustained attention, fatigue and apathy. In these less severely injured patients it is
difficult to connect disorders of arousal with motor recovery due to a lack of measures of arousal
independent of motor function.

Summary—Arousal impairment is common after brain injury and likely plays a significant role
in recovery of motor function. A more detailed understanding of this connection will help to
develop new therapeutic strategies applicable for a wide range of patients. This requires new tools
that continuously and objectively measure arousal in patients with brain injury, to correlate with
detailed measures of motor performance and recovery.
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Introduction
Only a small percentage of the variance of motor recovery from stroke, and likely traumatic
brain injury (TBI), is explainable by rehabilitation interventions; the remainder falls under
the category of “spontaneous” recovery (1,2). In the setting of focal stroke, animal model
and human imaging studies provide evidence that recovery of movement is associated with
peri-lesional brain regions taking over for lost functions (3,4). On the other hand, in the
setting of larger injuries produced by large-vessel strokes or TBI, this local neuroplasticity
may play less of a role. In these situations, we propose that a major driver of motor recovery
is restitution of brain networks supporting arousal and production of goal-directed behavior.
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Below we briefly review the neuroanatomical basis of level of arousal and the initiation and
maintenance of goal-directed behavior. We then review evidence from a variety of brain
injury types for the connection of functioning of these networks and recovery of motor
function and learning. This connection is strongest in cases of severe brain injury with
disorders of consciousness, but there is also evidence for patients with milder diffuse or
focal injuries. Finally we discuss steps that can be taken in future work to clarify the role of
arousal in recovery of motor function in patients without disorders of consciousness to
support the development of appropriate interventions.

Background
Goal-directed movements require, in addition to the typically discussed sensory and motor
systems, an adequate level of generalized arousal and a mobilization of distributed neural
networks to initiate and sustain the behavior. Generalized arousal refers to an overall state
function of brain activity, and in the intact brain, ranges from stage three non-REM sleep,
where strong stimuli are required to elicit a response, to states of high vigilance within
wakefulness, where subtle stimuli can be detected and acted upon(5,6). Within the awake
state, level of arousal is often termed alertness, and can be measured by speed of response to
stimuli, and ability to continue responding over a period of time (i.e. vigilance or sustained
attention) (7). Initiation and maintenance of goal-directed behavior involves enhancement of
arousal with a focus on activation of corticothalamic networks involved in task performance.
This mobilization of resources (8) is one of the brain’s “executive functions” and is termed
arousal regulation (9).

Arousal level and regulation of arousal are supported by a collection of highly interactive
cortical, subcortical and brainstem areas. The core areas for generalized arousal appear to be
glutamatergic and cholinergic neurons in the dorsal tegmentum of the midbrain and pons
(10,11). In humans, these neuronal populations broadly activate the cerebrum predominantly
via the basal forebrain and central thalamus (primarily intralaminar nuclei). The basal
forebrain and central thalamus subsequently activate the cortex through cholinergic and
glutamatergic projections, respectively. The brainstem norepinephrine system also enhances
arousal via modulation of the cortex, basal forebrain, and thalamic intralaminar nuclei.
(12,13). Other arousal system components include brainstem dopaminergic, and
hypothalamic histaminergic and orexin/hypocretin producing neurons (14–17).

Arousal regulation is primarily implicated in healthy subjects during tasks requiring
enhancement of alertness or sustained attention. It is primarily supported by activity in the
medial frontal and anterior cingulate cortices, though also relies on the broadly activating
neurons of the intralaminar thalamus (18–21). Further organization of goal-directed
behaviors is by broadly distributed activity across frontal and parietal systems (22). Loop
connections between the frontal and parietal cortices, basal ganglia and thalamus (both
specific and non-specific) are also important to focus and support both arousal regulation
and organization of behavior (23–25).

In healthy subjects, arousal and arousal regulation play a major role in motor performance
and motor learning. Low arousal states, such as those often produced by sleep deprivation,
are well known to impair motor performance and learning (26). Sleep deprivation is
associated with decreased metabolism on FDG PET (fluorodeoxyglucose positron emission
tomography) across the frontal lobe, basal ganglia and thalamic regions that support goal-
directed behavior (27,28). This is consistent with other studies showing that activation of
these regions is the first to reduce with sleep onset (29), and the last to recover after
awakening, associated with an impairment of motor responsiveness known as ‘sleep inertia’
(30). A recent study using local-field potential recording in rats supports that the
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hypometabolism during sleep deprivation represents intermittent pauses in firing of cortical
neurons (31). The authors suggested that these cortical areas are entering a local sleep state
despite an overall appearance of wakefulness, and that this local sleep state can impair motor
performance.

Increasing arousal through processes including motivation, reward, pain, stimulant
medications and anxiety, improves motor performance and learning to a point, though too
high levels of stimulation impair behavior and learning (32,33). Arousal-promoting stimuli
likely improve behavior by enhancing signal to noise ratios; but too high levels of arousal
can enhance response to all stimuli, preventing detection of salient ones (34).

The effect of brain injury on arousal and production of goal-directed
behavior

Diffuse and focal brain injuries can impair goal-directed behavior by directly injuring or
disconnecting the networks of brain areas involved in arousal and arousal regulation. The
connection between these injuries and recovery of motor performance and learning is
clearest in patients with global impairments in brain function, known as disorders of
consciousness. For patients with less severe diffuse injuries or focal injuries, there is
evidence of deficits in arousal and arousal regulation, but less so for a connection with
motor recovery.

The disorders of consciousness arising from structural brain injury include coma, vegetative
state, and the minimally conscious state (35). Three canonical pathophysiologies are:
widespread neuronal death and/or disconnection from global hypoxia; diffuse axonal injury
(DAI) from TBI; and focal destruction of the upper brainstem and thalamus often from top
of the basilar stroke. These anatomic pathologies all involve dysfunction of corticothalamic
activity from either direct loss of neurons or overwhelming impairment of arousal system
activation. In these conditions, recovery of voluntary movement is by definition associated
with recovery of arousal (36), though the inverse is not true, due to deficits of corticospinal
(37) or higher order motor systems (38–40). Evidence for the causal link of improved
arousal and motor recovery include patients with rapid improvements in arousal due to
zolpidem (41) and central thalamic deep brain stimulation (DBS) (42), who had marked
improvements in movement ability. Recovery of consciousness is also associated with return
of motor learning. One extreme example is a patient who recovered consciousness after 19
years in the minimally conscious state, and over the subsequent year transitioned from no
lower extremity movement, to being able to use his lower extremities to elevate his lower
back to help in personal care (43).

A relevant, but less common disorder of consciousness is akinetic mutism (44,45). Here the
behavioral appearance is that of low-level minimally conscious state, but the injury is
restricted to areas involved in arousal regulation (medial frontal cortices or connected
subcortical nuclei), without loss or disconnection of typical brainstem or basal forebrain
arousal centers (46). One of the hallmarks of the syndrome of akinetic mutism is the
occasional appearance of high-level organized behaviors in response to specific stimuli (47);
these marked variations in goal-directed behavior may provide a model of the role of arousal
regulation in motor system function. The pathophysiology of akinetic mutism thus could
provide clues for ways to recruit the arousal regulation networks towards recovery of goal-
directed behavior in patients with disorders of consciousness. A recently proposed model
(48) suggests that specific variations in the activation of different cell types within this
network can alter widespread corticothalamic activity, and thereby explain fluctuations in
goal-directed behavior in akinetic mutism and similar syndromes. This model accounts for
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the role of dopaminergic agents (49–51), zolpidem (41,52), central thalamic DBS (42), and
other potential agents that would act on these neuronal subsystems.

In patients with less severe diffuse brain injuries, deficits in arousal and arousal regulation
are common. Even six months post-injury, subjective and objective evidence of excessive
daytime sleepiness is relatively common in patients with TBI (53), and affects ability to
sustain attention (54). Daily fluctuations in arousal can lead to significant variations in
behavior (55,56). Theories for mechanisms of impaired arousal and arousal regulation
include loss of cholinergic neurons (57) and impaired cortical connectivity (58), possibly
produced from residual axonal injury (59). The connection between recovery of arousal and
of motor function in this population is not well understood, though is important, as motor
recovery can be prolonged and incomplete (60).

In patients with focal brain injury from stroke, the clearest cases of impaired arousal are in
those with focal injuries to the upper brainstem and thalamus, who may either have a
disorder of consciousness (discussed above), or may appear alert, but demonstrate impaired
attention and slowed responsiveness (61). Strokes of the medial frontal lobe or basal ganglia,
areas involved in arousal regulation, may result in a milder form of akinetic mutism called
abulia (47). There is also evidence that the syndrome of left-sided neglect can be due to
damage to areas involved in arousal regulation, resulting in loss of right greater than left
arousal tone, rather than a specific loss of attentional network functioning (62). These
syndromes are clearly relevant to overall function after stroke, but their role in motor
recovery still needs to be determined.

In patients with focal stroke but without damage to arousal systems or regions involved in
arousal regulation, there is still a significant prevalence of disorders of arousal and
production of goal directed behavior, presenting as fatigue and apathy. Both fatigue and
apathy are defined by patient description of a lack of drive to perform goal-directed
behaviors, with motivation retained in fatigue, but lost in apathy. Both syndromes have been
documented post-stroke independent of depression (63,64) and correlate with prolonged
disability (65,66). The connection between fatigue and apathy and the patterns of underlying
brain injuries is still poorly defined (67), though one study did find a higher prevalence with
brainstem strokes (68). The lack of a clear pathophysiologic basis is likely due to a
combination of small sample sizes in observational studies, multiple other contributing
factors (e.g. pre-morbid depression, infection, medications, sleep disorders, medical
comorbidities), and definition of conditions by use of questionnaires rather than
physiological biomarkers. Going forward, it is important to develop objective markers of
apathy and fatigue to determine their role in motor recovery and to develop treatment
approaches aimed at underlying mechanisms.

There is also evidence that exogenous factors that act on arousal pathways may affect motor
performance and recovery from brain injury. Medications that correlate with slower
recovery and inhibit generalized arousal include: alpha-2 adrenergic agonists (generally
inhibit norepinephrine release); GABA enhancers (benzodiazepines and barbiturates); and
antiepileptics including phenytoin (69–71). Benzodiazepines have even been shown to
transiently reinstate motor deficits in patients in the chronic stage post-stroke (72). Anti-
dopaminergic agents such as haloperidol also slow recovery from brain injury (69), with
potential mechanisms including inhibition of an implicit form of arousal regulation (73) and
of skill learning (74). Conversely, medications that enhance noradrenergic (75) and
dopaminergic (74) neurotransmitter levels have been shown in animal studies to improve
motor learning and recovery, though human trials have been inconsistent (76). Sleep
disorders are another common factor after stroke and TBI (77,78) and affect recovery. As
with direct effects of brain injury on arousal and initiation, most of the studies on exogenous
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factors are observational and use non-physiological outcome measures. An approach
focused on mechanism could reveal which patients’ recoveries are being impaired by these
factors, and which ones would most benefit from interventions to enhance arousal.

An approach to determine the role of arousal in recovery of motor function
after structural brain injury

The above review highlighted some of the anatomy of highly interconnected brain networks
supporting arousal and production of goal-directed behavior. We reviewed clinical evidence
linking specific patterns of brain injuries, as well as common exogenous arousal-inhibiting
factors, that affect the functioning of these networks. However, with the exception of
patients with disorders of consciousness, the demonstrated connection between improved
arousal and motor recovery is weak. One reason is that the behavioral definitions of arousal
and arousal regulation are either based on subjective patient reports, or on
neuropsychological measures (e.g. vigilance tests) that require movement as the output. By
requiring patients to move to respond, deficits in arousal and motor control are confounded.
Furthermore, most trials are retrospective, limiting interpretation. To address these
limitations to allow for development of new therapeutic strategies, we now offer a
framework for future studies to allow for a more direct association between these
phenomena.

To better define arousal and arousal regulation, behavioral measures should be based on
objective evidence of a patients’ overall level of responsiveness, as well as performance of
goal-directed behavior. Wireless wearable devices now offer a solution to monitor patient
behavior continuously and without need for direct interaction with research staff. Triaxial
accelerometers have been used in the home and rehabilitation setting for patients with stroke
and brain injury and can demonstrate overall level of activity (79), as well as more specific
actions such as walking speed (80). Machine-learning algorithms allow for detection of
more complex behaviors such as reaching and grasping (81). Once level of goal-directed
behavior can be defined, it can be correlated with other measures of arousal that don’t
require voluntary movement including eye closures and EEG (electroencephalography)(82–
85).

Once objective markers of arousal and goal-directed behavior are available, they should be
incorporated into observational and clinical trials focused on motor recovery from brain
injury. Motor outcome measures in these trials should include both impairment and
disability measures, as it is important to determine whether arousal and measures of arousal
regulation correlate with true recovery at a kinematic level, or with compensation behaviors.
If such information can be included in clinical trials, it may help reveal some of the
unexplained variance in recovery (2), so causative factors can be discovered. Further, it also
may help to explain the varied responsiveness to adrenergic agents (75), as these drugs may
benefit those who have loss of movement from impaired arousal, rather than loss of motor
systems.

Conclusion
Sufficient arousal level and ability to regulate arousal to mobilize neuronal resources are
basic requirements for all higher-level behaviors. This is shown in our daily lives with sleep-
wake cycling and in states of sleep deprivation, and is also revealed by the global
impairments in behavior in patients with disorders of consciousness. Above we review
evidence that the systems that support goal-directed behavior are dysfunctional in a wide
range of brain-injured patients. Experience with patients with disorders of consciousness has
revealed that enhancement of activity in systems underlying arousal and arousal regulation
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can lead to marked improvements in motor recovery. We suggest that a deeper study of the
presence and influence of arousal disorders in patients with less severe brain injuries will
reveal underlying sources of delayed recovery, as well as identify new targets and
approaches to enhance recovery.
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Key points

• Goal-directed behavior requires an adequate arousal level as well as ability to
mobilize neuronal resources, termed arousal regulation.

• Recovery of arousal and arousal regulation in patients with disorders of
consciousness can be associated with marked recovery of motor performance.

• Disorders of arousal and production of goal-directed behavior are common in
patients with traumatic brain injury and stroke.

• New approaches are needed to document disorders of arousal and goal-directed
behavior after brain injury independent of motor dysfunction.
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