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Detecting and Characterizing Genomic Signatures
of Positive Selection in Global Populations

Xuanyao Liu,1,2 Rick Twee-Hee Ong,2 Esakimuthu Nisha Pillai,3 Abier M. Elzein,4 Kerrin S. Small,5

Taane G. Clark,6 Dominic P. Kwiatkowski,7,8,9,12 and Yik-Ying Teo1,2,3,10,11,12,*

Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global popu-

lations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation

events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin

pigmentation, or cause sickle cell anemia.We have developed a long-range-haplotypemethod for identifying genomic signatures of pos-

itive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype

homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplo-

types that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to sys-

tematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a

single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of

multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from

14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing

the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence

and that the majority of shared signals stem from the same evolutionary event.
Introduction

The process of positive natural selection leaves informative

imprints in the human genome. Bioinformatics strategies

designed to discover evidence of local adaption predomi-

nantly focus on identifying the following two genomic

features that accompany the introduction of an evolution-

arily advantageous allele: (1) the presence of a long-range

haplotype (LRH) on which the selected allele resides, given

that this variant increases in frequency very rapidly and

brings along neighboring variants (on the same haplotype)

that recombination does not have sufficient time to break

down; (2) stretches in the human genome that are highly

differentiated between populations as a result of positive

selection’s exerting a stronger force on the genetic back-

grounds associated with the beneficial alleles to dominate

above neutrally evolving regions. Metrics relying on de-

tecting these two genomic features have jointly discovered

that hundreds of regions in the human genome exhibit

evidence of positive selection, and most of these are attrib-

uted to adaptations due to changes in environmental or

dietary exposures or to the emergence of infectious dis-

eases.1,2 A recent composite method combines the evi-

dence across several metrics and exhibits a remarkable

ability to localize the functional variants responsible for

these selective sweeps.3
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Except in a handful of genes, it remains unanswered

whether advantageous alleles that are shared across several

populations (1) have arisen in the human genome as a

result of a single mutation event subsequently followed

by gene flow between these populations or (2) present

evidence of convergent evolution wheremultiple indepen-

dent mutation events, either at the same location or at

different locations in the same gene, have occurred in

these populations as a result of exposure to the same adap-

tive pressure. For example, the sickle cell allele that confers

a 10-fold protection against malaria is a classic case of

convergent evolution of the same variant, given that

malaria endemicity in different parts of Africa exerted the

same evolutionary force at the adenine allele on the

genomic variant rs334 and caused it to arise independently

in these populations.4 Another well-known example of

convergent evolution is the lactase-encoding gene that

confers lactase persistence in northern European popula-

tions5 and certain nomadic African tribes,6 in which

different functional variants have arisen in the same

gene to enable lactase persistence in the different popula-

tions.

Every mutation event that introduces a new allele hap-

pens against a specific haplotype background, which we

define as the founder haplotype. For an allele that confers

a survival or reproductive advantage, the haplotype on
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which the beneficial allele resides tends to be significantly

longer than the other haplotypes at the same frequency in

the population when adjusted for the recombination back-

ground. LRH methods, such as the integrated haplotype

score (iHS) and cross-population extended haplotype

homozygosity (XP-EHH), probabilistically model the likeli-

hood that the decay of this haplotype is due to recombina-

tion but do not formally identify the actual haplotype that

carries the advantageous allele.

There are at least two sources of information that can be

relied on to locate these selection signals: (1) given a spe-

cific frequency, we can search for the longest haplotype

around a focal site in the genome, and by searching across

a range of frequencies in a monotonically decreasing

fashion, we expect the haplotype length to increase signif-

icantly when the haplotype frequency is first below the fre-

quency of the selected allele in the data—given that the

identified haplotype will switch from that carrying the

wild-type allele to the haplotype carrying the beneficial

allele; and (2) at a frequency that is lower than the popula-

tion frequency of the selected allele, the longest haplotype

around a positively selected site is likely to be significantly

longer than haplotypes around neutrally evolving sites in

the rest of the human genome. The first source of informa-

tion is local and compares the length of the longest haplo-

types found at different frequencies around the same focal

site, whereas the second source of information is global

and is obtained by a comparison of the length of the

longest haplotype at a particular frequency to all other

haplotypes across the genome at the same frequency.

Here, we developed haploPS, an approach that leverages

on these two sources of information to discover genomic

regions that are positively selected and to locate the haplo-

type patterns on which the selected alleles reside. The con-

struction of themethod naturally allows the frequency of a

selected allele to be estimated, as well as identifies the

haplotype form that is carrying the selected allele (we refer

to this haplotype as the founder haplotype here). The

power of haploPS was compared against those of iHS and

XP-EHH in a series of simulations designed to mimic the

genetic architecture present in Africa. We subsequently

ran haploPS across 14 populations from Phase III of the

International HapMap Project7 and the Singapore Genome

Variation Project (SGVP)8 to discover genomic signatures

of positive selection in these worldwide populations. The

method also presents an opportunity to investigate across

the genome whether a selection signal that is present in

multiple populations is the result of a single mutation

event or the consequence of multiple mutation events

located within the same locus.
Material and Methods

Construction of HaploPS
The development of haploPS follows that of HapFinder, intro-

duced by Ong and colleagues.9 Given phased haplotype data for
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multiple samples of a particular population, such as those from

the International HapMap Project and the SGVP, one can query

what constitutes the longest haplotype pattern around a focal

SNP at a specific frequency, hereafter defined as the core frequency.

If the core frequency is higher than the major allele frequency at

the focal SNP, then there will not be any haplotype pattern that

satisfies this definition. However, if the core frequency is lower

than the major allele frequency at the focal SNP, then the alleles

of neighboring SNPs can be appended to the haplotype carrying

either allele until the frequency of this haplotype form is first

below the core frequency.

Mathematically, in searching for the longest haplotype given a

core haplotype frequency f, we first determine out of a total of N

chromosomes the required critical number of chromosomes c to

attain a core haplotype frequency of f, such that c ¼ floor[f 3 N].

When the major allele frequency of the focal SNP is less than f,

there is no haplotype form that is generated and the algorithm

moves on to the next successive SNP. When the number of chro-

mosomes carrying the major allele is at least c, the next ten SNPs

immediately to the right of the focal SNP are included, the most

commonhaplotype form is identified, and the number of chromo-

somes carrying this haplotype form is calculated. If this number

remains higher than c, the next ten SNPs immediately to the right

of the last SNP are appended. This process continues until the

frequency of the most common haplotype first falls below f or

effectively until the number of chromosomes carrying the most

common haplotype form first falls below c. When this happens,

the set of ten SNPs that were most recently appended is removed,

the ten SNPs that are immediately to the left of the focal SNP are

now appended, and the frequency of themost commonhaplotype

form is evaluated. This process of adding ten SNPs to the left con-

tinues until the frequency of the most common haplotype first

falls below f, at which point the set of ten SNPs most recently

appended is removed. One SNP at a time is then added to the right

of this haplotype form until the frequency of the most common

haplotype first falls below f, when the most recently appended

SNP is then removed. The final step is to add one SNP at a time

to the left of the haplotype form until the frequency of the most

common haplotype first falls below f, when the most recently

appended SNP is then removed. This procedure thus identifies

the longest haplotype form around a focal SNP with a population

frequency no smaller than f (Figure 1). When f is higher than the

frequency of the minor allele but below (or exactly at) the fre-

quency of the major allele, the longest haplotypemust be carrying

the major allele. However, when f is less than or equal to the fre-

quency of the minor allele, the procedure will search for the

longest haplotype that might carry either the minor or the major

allele.

For a genomic site that is under positive selection, the haplotype

on which the advantageous allele resides tends to be significantly

longer than other haplotypes at the same frequency in the popu-

lation when adjusted for the recombination background. As such,

haplotypes that are uncharacteristically long for a given core

haplotype frequency, relative to what can be seen across the whole

genome, are indicative of the presence of a positive-selection

signature. However, long haplotypes tend to occur in regions

with low recombination, and these can be confused with genuine

genomic signals of positive selection. To account for the con-

founding effects of low recombination, haploPS thus uses the

genetic distance to quantify the length of the haplotype rather

than the physical distance. Another potential source of bias is

the number of SNPs that form the longest haplotype. A long
erican Journal of Human Genetics 92, 866–881, June 6, 2013 867



Figure 1. Illustration of the HaploPS
Method
Steps that haploPS takes to search for the
longest haplotype around a focal SNP
(red triangle) at a given core frequency f,
which is set to 0.1 in this illustration. Sup-
pose the major allele frequency at the focal
SNP is 82%; then, haploPS first extends to
the right ten SNPs a time. The new haplo-
type consists of 11 SNPs, and the most
common haplotype form has a frequency
of 73%. Because this is higher than 10%,
the haplotype is continued to be extended
to the right ten SNPs each time until it
spans 41 SNPs, when the frequency of
the haplotype first falls below 10%, and
the last set of ten SNPs is removed; this
leaves 31 SNPs. The haplotype is next
extended to the left by ten SNPs until it
contains 71 SNPs and the frequency first
falls below 10%, at which point the last
set of ten SNPs appended to the haplotype
is removed. Subsequently, SNPs are added
to the haplotype one at a time to the right

until the haplotype frequency is lower than 10%, when the last SNP is removed. Finally SNPs are added to the left one at a time until the
frequency is lower than 10%, and the last appended SNP is removed. This then yields the longest haplotype H. Although this figure
illustrates the situation when the major allele is positively selected, haploPS actually performs the search on both alleles of the focal
SNP. When f is above the minor allele frequency at the focal SNP, the longest haplotype must be carrying the major allele (unless f is
above the major allele frequency); however when f falls below the minor allele frequency, the algorithm searches for the longest haplo-
type that might carry either the minor or the major allele.
haplotype carrying significantly fewer SNPs is less informative and

indicative than a long haplotype that spans considerably more

SNPs. Given a core haplotype frequency, haploPS thus searches

for long stretches of haplotypes that span significant genetic dis-

tances and across large numbers of SNPs.

Each haplotype identified by haploPS at a particular core fre-

quency is compared against the rest of the haplotypes generated

by haploPS at the same frequency in terms of both the genetic dis-

tance spanned and the number of SNPs carried by the haplotype.

We calculate a haploPS score metric that is defined as

Shap ¼ # regions withRobserved # SNPs

total # regions

3
# regions withRspanned genetic distance

total # regions
:

The numerators denote (1) the number of regions that carry

more SNPs than that observed in the target haplotype and (2)

the number of regions spanning a larger genetic distance than

that observed in the target haplotype. The denominator represents

the total number of regions identified across the genome at that

particular core frequency. To account for the number of regions

surveyed, we calculate an adjusted score that is defined as Shap 3

total number of regions, and haploPS considers a region to be posi-

tively selected if the adjusted score is less than 0.05 (Table 1).

The analysis of haploPS is performed at core frequencies ranging

from 0.05 to 0.95 in step sizes of 0.05. At each frequency, a set of

positive-selection signals will be identified. By combining signals

observed across a range of frequencies, we observe that signals

occur around the same position across multiple frequencies once

the core frequency decreases below the frequency of the selected

allele. By stacking the significant haplotypes around the same

core SNP across different frequencies, we expect the functional

allele to reside on all these stacked haplotypes. Thus, we can

obtain an estimate for the population frequency of the selected
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allele as the highest core frequency with a significant haplotype

at the locus. HaploPS thus uses the significant haplotype found

at the highest core frequency of each stack to represent the selec-

tion signal at that locus.

Long haplotypes carrying the advantageous allele are observed

at or below the derived allele frequency. Haplotypes carrying this

advantageous allele would not be present above this frequency.

Therefore, an estimate of the frequency of the selected allele can

be obtained as the frequency that coincides with a sudden increase

in the haplotype length as the core frequency is decreased. Also,

the haplotype form on which the unknown functional allele re-

sides can also be identified by haploPS. As a result of imperfect

SNP coverage from HapMap and SGVP, the functional variant

might not necessarily be present in these databases. However,

haploPS does not require the functional variant to be present in

order to locate the selection signal, given that it leverages on the

haplotype pattern that carries the functional allele.

A Cþþ executable version of the haploPS software is available

for public download online (see Web Resources).

Running iHS and XP-EHH
In order to calculate the iHS, we need to measure the extended

haplotype homozygosity (EHH), which is defined as the probabil-

ity of identity by descent for two randomly chosen haplotypes

carrying a core haplotype of interest in an interval around a pre-

specified focal SNP.10 The EHH is measured at each SNP, and the

iHS integrates the EHH score up to the SNP exhibiting an EHH

score of 0.05 unless there exists a gap ofmore than 200 kb between

adjacent SNPs. A scaling factor described by Voight and colleagues

was implemented to correct for artificial inflation of the iHS statis-

tic in the presence of gaps between 20 and 200 kb between adja-

cent SNPs.2 No iHS is assigned for a SNP if any of the following

conditions is true: (1) minor allele frequency< 5%; (2) the derived

allele is not known or does not agree with either of the two
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Table 1. The Criteria for Identifying Positively Selected Regions by HaploPS, iHS, and XP-EHH in the Simulations and in the Analyses of the
HapMap2, HapMap3, and SGVP Populations

Method Simulations (Neutral) Simulations (Selection) HapMap2 HapMap3

HaploPS the distribution of haploPS scores
generated from 2,000 iterations at
each core frequency is used for
deriving the corresponding haploPS
score threshold S* at the bottom 1%
of the distribution

for the respective core frequency, a
simulated region with haploPS
score < S* is considered to be
positively selected

adjusted haploPS score for
each core frequency < 0.05

adjusted haploPS score for
each core frequency < 0.05

iHS the distribution of jstandardized iHSj
generated from 2,000 iterations is
used for deriving the threshold at the
top 1% of the distribution T*

when the jstandardized iHSj in each
simulated region is larger than T*, the
region is considered to be positively
selected

extracted from Frazer et al.7

and Sabeti et al.10
not performed

XP-EHH the distribution of standardized XP-
EHH scores generated from 2,000
iterations is used for deriving the
threshold at the top 1% of the
distribution U*

when the standardized XP-EHH in
each simulated region is larger than
U*, the region is considered to be
positively selected

extracted from Frazer et al.7

and Sabeti et al.10
not performed
possible alleles that have been observed; or (3) the EHH does not

decrease below 0.05 after an interval of 2.5 Mb. We used the

definitions of the derived alleles from Haplotter. The population-

averaged recombination rates were used for calculating the iHS

statistic, and these rates refer to the average of the HapMap Phase

II population-specific recombination rates. The iHS statistics that

were calculated were subsequently normalized within 20 bins

according to the derived allele frequency; each bin spanned 5%.

Candidate regions of positive selection were defined as genomic

regions containing an uncharacteristic clustering of SNPs with

high iHS statistics. This was quantified as the proportion of SNPs

with jiHSj> 2.0 in 100 kb nonoverlapping windows. Candidate re-

gions of positive selection were identified as windows with the top

1% density of high iHS SNPs, except that we excluded windows

with fewer than ten SNPs.

The XP-EHH metric contrasts the evidence of positive selection

between two populations at a focal SNP for a predefined direction.

At each focal SNP and direction of analysis, the XP-EHH metric

considers SNPs that are present in both populations and located

within 1 Mb of the focal SNP, and it specifically requires at least

one SNP in this region to possess an EHH between 0.03 and

0.05. When there is at least one SNP that satisfies this criterion,

the SNP with the EHH score that is nearest to 0.04 is identified,

and within each population, the integral of the EHH across all

the SNPs between the focal SNP and the identified SNP is calcu-

lated. The XP-EHH metric is effectively the logarithm of the ratio

of this integral value in the two populations, and the genome-

wide distribution of the XP-EHH metric is standardized to yield a

zero mean and unit variance. Genomic regions that carry an

unusually high density of SNPs with extremely positive values of

the standardized scores suggest that a selection event is likely to

have occurred in one population, but not the other, whereas clus-

tering of extremely negative values suggest a selection event in the

latter population, but not the former. To locate the clustering of

SNPs, we divided each chromosome into nonoverlapping win-

dows of 100 kb, and we calculated the proportion of SNPs with

XP-EHH > 2.5. Candidate regions of positive selection were iden-

tified as windows with the top 1% density of high XP-EHH SNPs,

except for windows with fewer than ten SNPs. We specifically

focused on only the extremely positive values in our analyses of

the HapMap Phase II populations, given that we used YRI (Yoruba

in Ibadan, Nigeria) as a reference population when searching for

positive-selection signals in CEU (Utah residents with ancestry
The Am
from northern and western Europe from the CEPH collection)

and JPTþCHB (Japanese in Tokyo, Japan, and Han Chinese in

Beijing, China) and used CEU as the reference population when

searching for positive-selection signals in YRI.

In performing the iHS and XP-EHH analyses, we utilized the

Cþþ software that is publicly available (see Web Resources).
Simulation Framework for Power Calculations
In order to compare the performance of haploPS to those of iHS

and XP-EHH, we performed a series of simulations to first generate

distributions of haploPS, iHS, and XP-EHH signals under a setting

of neutral selection before simulating SNPs under positive-

selection pressure. The neutral simulations were performed with

simulation package cosi11 under the assumption of a neutral

demographic model characterized by two bottlenecks experienced

by non-African populations. We simulated 2,000 iterations meant

to mimic the data from each of CEU, JPTþCHB, and YRI.

Selection was modeled with the program SelSim,12 which

assumes a constant population size, and we modeled the YRI

population in the same fashion as did Voight and colleagues.2

An advantageous mutation was introduced at a specific location

with constant selection pressure. Samples of size 120 were drawn

when the derived allele reached a predefined allele frequency.

The advantageous allele frequencies were fixed at increments of

10% from 10% to 100%. The effective population size, Ne, was

set to 17,469, and the selection coefficient was 0.01. The mutation

rate was set to 3 3 10�8 per base per generation, and the recombi-

nation rate was generated by cosi with a baseline rate of 1 cM/Mb.

SNPs were thinned randomly to match the HapMap SNP density.

A total of 2,000 regions, each spanning 100 kb, were simulated

for YRI with SelSim, and the simulated data were analyzed with

haploPS, iHS, and XP-EHH (the iHS and XP-EHH metrics used

the jstandardized iHSj and the standardized XP-EHH score, respec-

tively). The power for iHS (and XP-EHH) is calculated as the

fraction of the 2,000 iterations in which the iHS (and XP-EHH)

statistic for each iteration exceeds the 99th percentile of the distri-

bution obtained from the 2,000 iterations under the assumption

of the neutral model without selection (Table 1). For haploPS,

the power is quantified as the fraction of 2,000 iterations where

the haploPS score obtained for each iteration is less than the first

percentile of the distribution of haploPS scores obtained from

the 2,000 iterations under the null model (Table 1). In calculating
erican Journal of Human Genetics 92, 866–881, June 6, 2013 869



the haploPS score in each iteration, the identified haplotype is first

compared against the 2,000 haplotypes obtained from the null

simulations for the calculation of the respective empirical p values

for the number of SNPs and genetic distance, and the haploPS

score is obtained as described previously as the product of the

two empirical p values.
Haplotype Entropy and Genome-wide Distribution
In order to assess the diversity and specificity of haplotypes

between populations, we implemented a metric that effectively

assessed the entropy of the conditional probabilities of each

haplotype across a set of populations. A haplotype-entropy score

was calculated for nonoverlapping windows of 100 kb in the

human genome. In the situation in which there are K populations,

we first identify and collate the set of unique haplotypes that are

present in any population with a frequency of at least 2% within

each 100 kb region; this set is defined as {h1, h2, ., hL}. The fre-

quency of each of these haplotypes is tabulated in each of the K

populations for obtaining population-specific frequencies fij for

haplotype hi in the jth population. We quantify the conditional

probability of haplotype hi in population j as Fij ¼ fij / (Sjfij) and

subsequently calculate the relative mutual information (RMI) for

haplotype hi as RMI(hi)¼ 1þ Sj(Fij log Fij) / log(K).We can quantify

the haplotype entropy for each genomic window as the overall fre-

quency-weighted sum of the individual RMI estimates, or Si[(Sifi,)

RMI(hi)] / (Sifi,), such that fi, represents the combined frequency

of haplotype hi when the chromosomes from all K populations

are considered. The haplotype entropy provides a measure of the

degree of population specificity of the observed haplotypes across

all the populations and yields a score from 0 to 1. Larger values of

the haplotype entropy indicate that there are specific haplotypes

that are at a relatively high frequency in some populations but

that are either absent or at low frequencies in the remaining

populations, and they are thus reflective of a greater degree of

haplotype diversity across the populations. In the context of the

positive-selection survey, if there is a positively selected allele

that exists at a considerably high frequency in some populations

as a result of the selection sweep but that is absolutely absent

from the other populations, we expect that the haplotype form

carrying the advantageous variant will similarly be at a high fre-

quency, and this haplotype form is likely to be absent entirely

from the populations that are not carrying the selected variant.

For a specific combination of K populations, we can obtain the

genome-wide distribution of the haplotype entropy by consid-

ering nonoverlapping windows of 100 kb across every autosomal

chromosome. This allows an empirical p value (pent) to be calcu-

lated for a specific window, such as one that overlaps with a puta-

tive signal of positive selection, and the empirical p value can be

quantified as the proportion of windows (across the genome)

that exhibit a haplotype-entropy score less than or equal to the

one observed for the specific window. Genomic regions exhibiting

low empirical p values thus correspond to the regions where there

is considerably less haplotype diversity across the populations.
Quantifying Similarity of Selected Haplotypes
We aimed to investigate whether a selection signal present in mul-

tiple populations is likely to stem from the same mutation event.

Under the assumption that the beneficial allele will reside on a

founder haplotype that is significantly longer than the back-

ground haplotypes of the same frequency, we can thus compare

the degree of similarity in the haplotype forms that emerged
870 The American Journal of Human Genetics 92, 866–881, June 6, 2
from the haploPS analyses in the different populations. If the

same mutation event is responsible for the selection signal

observed across multiple populations, we expect a significant

degree of similarity in the selected haplotype forms of these pop-

ulations. We thus introduce a similarity index that quantifies

this degree of haplotype similarity across multiple populations.

For a region that is found to be positively selected in K popula-

tions by haploPS, we extract these populations’ K selected haplo-

type forms found at the maximum frequencies according to the

threshold of discovery and identify the common set of L SNPs

that are present in all K haplotypes. We calculate the K 3 K simi-

larity matrix M, in which the leading diagonals are all ones and

the (i, j)th entry of thematrix corresponds to the scaledManhattan

distance between the selected haplotypes for populations i and j;

this matrix is defined as M(i, j) ¼ 1 � l=L, where l represents the

number of sites (out of L) in which the two haplotypes carry

different alleles.

An eigen decomposition is performed on matrix M, and the

haplotype similarity index (HSI) is defined as the amount of vari-

ance explained by the first principal component, or l1=K, where l1
is the leading eigenvalue. Intuitively, if the haplotypes are all

extremely similar, the leading eigenvalue will explain a significant

portion of thematrix variance given that all the elements inMwill

be close to 1. However, if there is at least one population where the

selected haplotype form is different from the rest, then the leading

eigenvalue will not explain a significant portion of thematrix vari-

ance. We restrict the HSI calculation to selection signals for which

L R 20. Owing to the possibility of genotyping or haplotype-

phasing errors, we define regions where the HSI is at least 0.98

as being likely to be selected as a result of a single mutation event

and regions with a HSI less than 0.9 as being likely to be selected as

a result of multiple mutation events at the same locus.
Simulation of Single-Origin versus Convergent-

Evolution Selection Events
In order to assess the ability of haploPS to infer whether a shared

selection signal is the result of a single evolutionary event or due to

convergent evolution at the same locus in different populations,

we performed two sets of 2,000 simulations with the program

msms.13 We first simulated a population split at 2,000 generations

ago, which resembled the split between non-African populations,

to form the modern European and Asian populations. For single-

origin selection events, the selection started 2,000 generations

before the populations split. For the convergent-evolution events,

selection started 1,000 generations after the populations split. The

recombination-rate andmutation-rate parameters were set accord-

ing to recommended values that mimic human demographic

history.13 For each of the 2,000 simulations under each of the

two scenarios, the advantageous allele was set at position 0.5

and was included in subsequent analyses, and the selection

strengths (2NS) for homozygotes and heterozygotes were 1,000

and 900, respectively. Because the selected locus and its derived

allele frequency were known, haploPS was applied to these simu-

lated populations to locate the selected haplotypes at the known

derived allele frequency and to calculate the HSI for the two

selected haplotypes.
Principal-Component Analysis of Positive-Selection

Signals
A total of 405 regions in the human genome have been identified

in the 14 populations in HapMap3 and SGVP to be positively
013



Figure 2. Assessment of Statistical Power of Different Positive-
Selection Metrics
The statistical power of haploPS (blue line with circles), iHS (red
line with triangles), and XP-EHH (green line with squares) was
selected by haploPS. We thus constructed a 14 3 405 matrix in

which the (i, j)th element of the matrix takes value 1 if the jth re-

gion is found to be positively selected in population i and takes

the value of 0 otherwise. On the basis of this matrix, we can derive

a 14 3 14 correlation matrix indicating the degree of similarity in

the selection signals that were present between every pair of pop-

ulations. The principal components of this correlation matrix can

be obtained via eigen decomposition of the correlation matrix,

and the corresponding eigenvectors can be used for calculating

the amount of variance explained by the principal components.

The proportion of variance explained by the kth principal com-

ponent can be calculated as lk/Si(li), where li represents the ith

eigenvalue.

Additional information about the Material and Methods can be

found in the Supplemental Data, available online. All coordinates

reported here are referenced against NCBI Genome browser build

36. Simulated data sets and simulation scripts, as well as haploPS

analysis scripts, are available at the haploPS website.

assessed via simulations of Yoruba Africans (YRI). Power was
derived on the basis of 2,000 simulations and was assessed at
each derived allele frequency from 10% to 100% at a false-discov-
ery rate of 1%, defined against the empirical distributions of the
respective metrics.
Results

Power Comparison with iHS and XP-EHH

We benchmarked the performance of haploPS against iHS

and XP-EHH via a series of simulations to evaluate the

sensitivity of all three methods. We simulated a total of

2,000 regions, each spanning 100 kb, with the genetic

backgrounds of west Africans and introduced a selection

sweep with constant selection pressure (see Material and

Methods). The simulations were performed across a range

of frequencies for the derived allele from 10% to 100% in

increments of 10%, and 200 regions were simulated for

each frequency. The sensitivity of each method at each fre-

quency was then defined as the proportion of simulations

that satisfy the conditions to be successfully identified as

being positively selected at a false-discovery rate of 1%,

defined against the empirical distributions of the respec-

tive metrics calculated from 2,000 iterations.

When haploPS is used to search for selection signals pre-

sent between 10% and 100% in frequency, it tends to

achieve higher sensitivity than both iHS and XP-EHH

throughout the frequency spectrum except at fixation,

where XP-EHH outperforms both haploPS and iHS

(Figure 2). In particular, haploPS is able to identify signals

present at lower frequencies (<30%) in the population,

even though locating these has been shown to be difficult

with existing methods. For example, haploPS achieves

46% power to locate a signal present at 10% in YRI,

whereas iHS and XP-EHH only achieve power estimates

of 11% and 5%, respectively. When we stratified the true

discoveries by the derived allele frequencies and looked

at the degree of overlap among the three methods

(Figure 3A), we observed that haploPS serves as a valuable

complement to both iHS and XP-EHH because it can suc-

cessfully identify selection signals at low frequencies where

neither iHS nor XP-EHH can detect.

In addition to the power simulations, we also performed

an empirical comparison among the findings of haploPS,

iHS, and XP-EHH when all three methods were used to
The Am
identify selected regions in the three population panels

in Phase II of the HapMap.10 This presents a setting with

real data for evaluating the three methods for consistency

in the findings and for comparing the number of regions

identified by each method.

We observed that the numbers of regions identified by

haploPS and iHS were similar (310 and 188, respectively),

whereas XP-EHH, a method that purportedly possesses

higher power to locate selection signals at a higher fre-

quency spectrum, located only 35 regions (Figure 3B). Of

the 35 discoveriesmade by XP-EHH, 26 were also identified

by haploPS, and all nine regions that were identified by

both iHS and XP-EHH were found by haploPS. Surpris-

ingly, iHS and haploPS shared only a small fraction of their

findings (52 regions) despite the fact that both approaches

leverage on LRHs.

Identifying the Founder Haplotype and Predicting

Advantageous Allele Frequency

Although haploPS similarly relies on locating genomic

evidence of long haplotypes, the construction of themeth-

odology allows the frequency of the selected allele to be

estimated, as well as the identification of the founder

haplotype form that carries the selected allele. At each

locus, haploPS searches for the longest haplotype extended

at the position given a haplotype frequency. When the

targeted haplotype frequency is above the frequency at

which the advantageous allele is found, the longest

haplotype identified will be carrying the neutral variant

instead. However, once the targeted haplotype frequency

drops below the frequency of the advantageous allele,

the longest haplotype will be carrying the advantageous

allele, and this is expected to be uncharacteristically

long compared to other haplotypes that are identified

at the same frequency but that are not carrying any
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Figure 3. Degree of Overlapping Signals by HaploPS, iHS, and XP-EHH
Positive-selection signals observed by haploPS, iHS, and XP-EHH in (A) the simulation of 2,000 positively selected regions in a popula-
tion with African ancestry (the results of this simulation are stratified into four frequency bins at 10%–20%, 30%–50%, 60%–80%, and
90%–100%) and (B) the three population panels from Phase II of the International HapMap Project. The numbers found in the overlap-
ping segments of the circles indicate the number of signals that were jointly observed by at least two of the corresponding methods.
advantageous alleles. Therefore, the frequency at which a

significant change in the haplotype length occurs is postu-

lated to be an estimate of the frequency of the advanta-

geous allele in the population.

To explore this empirically, we investigated three loci

that have been consistently established to be positively

selected. Reports on the lactase-encoding gene (LCT

[MIM 603202]) suggest a high prevalence of the functional

mutation that allows lactase production to persist into

adulthood in European populations,5 and the thymine

allele associated with lactose persistence at rs4988235 is

at a frequency of 75.8% in the Europeans (CEU) in the In-

ternational HapMap Project. Using haploPS, we observed

the presence of an uncharacteristically long haplotype at

a frequency of 75% around LCT in CEU (Figure 4A). Simi-

larly, at the ectodysplasin A receptor (EDAR [MIM 604095])

locus in the HapMap East Asians (JPTþCHB), unusually

long haplotypes were observed at frequencies of 80% and

below (Figure 4B), which suggests that the functional

mutation driving the selection signal is expected to be at

a frequency of at least 80%. The haemoglobin beta (HBB
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[MIM 141900]) locus encompasses the sickle cell variant

at rs334 in the HapMap west Africans (YRI) with a fre-

quency of 12.5%. We observed that the lengths of the

longest haplotypes increased significantly when the core

haplotype frequency decreased from 15% to 10%. This

suggests that the functional allele driving the selection

signal at this region possesses a frequency between 10%

and 15% (Figure 4C).

We also assessed the ability of haploPS to correctly infer

the frequency of the advantageous allele by using the re-

gions produced in the power simulations (Figure S1).

Here, we evaluated whether a simulated region carrying a

functional allele of a particular derived allele frequency

was successfully identified by haploPS within a maximum

difference of 0.1 in the haplotype frequency (0.1 corre-

sponds to the step size used in the power simulations).

We observed that the inference accuracy exceeded 80%

at derived allele frequencies between 10% and 50% and

that there was a general negative trend whereby the accu-

racy decreased with increasing frequency of the advanta-

geous allele. The accuracy was considerably lower as the
013



Figure 4. Application of HaploPS at Three Well-Known Positively Selected Loci
HaploPS located positive-selection signals at (A) LCT in Europeans (CEU), (B) EDAR, implicated in hair-follicle development, in East
Asians (JPT and CHB), and (C) HBB, containing the sickle cell polymorphism, in Nigerians in West Africa (YRI). For each locus, haploPS
additionally located the haplotype form onwhich the advantageous allele is likely to reside; these haplotypes are represented below each
panel as horizontal bars with alleles colored green (adenine), blue (cytosine), yellow (guanine), and red (thymine). HaploPS also provided
an estimate for the frequency of the selected allele in its respective population, effectively by locating the frequency that coincides with a
significant increase in haplotype length. The red line in each windowed panel illustrates the span of the haplotype around the selected
locus at each core frequency, and the other two lines (cyan and lime green) show two examples of the haplotypes spanned at two
randomly chosen regions in the genome. The estimated frequencies, with a frequency step size of 5%, for the three loci concurred
with those of the derived alleles at the functional polymorphisms (rs4988235 for LCT: estimated 75%, actual 75.8%; rs3822760 for
EDAR: estimated 80%, actual 86.6%; and rs334 for YRI: estimated 10%, actual 12.5%).
frequency of the advantageous allele went beyond 80%,

and most of the errors were attributed to underestimating

the actual frequencies (Figure S2).

Characteristics of Positive-Selection Signals in Global

Populations

We proceeded to survey the positive-selection landscape

with haploPS in 11 populations from Phase III of
The Am
HapMap14 and three populations from the SGVP,8 and

we identified a total of 405 regions across all 14 popula-

tions (Table S1). When we investigated the frequency spec-

trum of these signals, we observed a striking trend whereby

a greater proportion of the selection signatures were found

at lower frequencies (less than 30%) in populations with at

least partial African ancestry (ASW [African ancestry in

southwest USA], LWK [Luhya in Webuye, Kenya], MKK
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Figure 5. Segregation of Positive-Selection Signals in Global Populations
HaploPS was used to identify positive-selection signals in 14 populations of African (ASW, LWK, MKK, and YRI), European and South
Asian (CEU, TSI [Toscani in Italia], MXL [Mexican Ancestry in Los Angeles, CA, USA], GIH [Gujarati Indians in Houston, TX, USA],
and INS [Indians in Singapore]), and East and Southeast Asian (CHB, CHD [Chinese in Metropolitan Denver, CO, USA], CHS [Chinese
in Singapore], JPT, and MAS [Malays in Singapore]) ancestries.
(A) When the selection signals are grouped according to the estimated frequencies of the derived alleles (low: %30%; medium: 30%–
80%; and high: R80%), populations with African ancestry are likely to possess proportionally more low-frequency signals, whereas
East and Southeast Asian populations are likely to possess more high-frequency signals. This matches the segregation of the populations
according to genetic diversity as quantified by FST.
(B) Of the 405 signals (as represented in the vertical axis), those that are unique to African populations tend to be lower in frequency,
whereas signals that are shared across multiple non-African populations tend to be more common in the populations.
(C) A principal-component analysis (PCA) on the degree of sharing of the selection signals segregated the 14 populations according to
major ancestry groups.
[Maasai in Kinyawa, Kenya], and YRI), whereas popula-

tions of East or Southeast Asian ancestry were likely to

possess more high-frequency signals (at least 80%)

(Figure 5A). Populations of European and South Asian

ancestries tended to carry more signals of moderate fre-

quency between 30% and 80%. This trend of increasing

proportion of low-frequency signals corresponded with

populations of increasing genetic diversity as assessed by

FST. Although there appeared to be fewer selection signals

in African populations than in non-African populations,

those that were identified tended to be mostly population

specific and of lower frequencies (Figure 5B). In contrast,

selection signals found in non-African populations tended

to be shared across multiple populations and were of

higher frequencies. The only exception appeared to be
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Mexican Ancestry in Los Angeles, CA, USA (MXL), which

carried a significant proportion of low-frequency and

population-specific signals.

Given that, across 14 populations, a total of 405 regions

in the human genome were identified by haploPS to be

positively selected, a natural question is how many of

these are unique to specific populations and how many

are shared by multiple populations. To investigate this,

we performed a principal-component analysis (PCA) on

the degree of sharing of the 405 selected regions across

all 14 populations by using a 14 3 14 correlation matrix

in which each element quantifies the proportion of the

405 signals that are present in the respective pair of popu-

lations. The first two leading principal components of

the PCA revealed distinct clustering of the populations
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Figure 6. Selected Haplotype Forms at EDAR in East Asians
HaploPS-identified haplotype forms that correspond to the identification of a signal of positive selection at EDAR (green horizontal bar).
In all four East Asian populations we surveyed, uncharacteristically long haplotypes were found to span EDAR, and these long haplo-
types were observed at frequencies of 70% (JPT) and 90% (CHB, CHD, and CHS). These long haplotypes are exactly identical across
the common sites, suggesting that any advantageous mutation that is responsible for the presence of the long haplotypes is likely to
have arisen in the same mutation event prior to the time of the most recent common ancestor (TMRCA) of these populations. This
will thus explain the occurrence of the beneficial allele against an identical haplotype background in the four populations.
according to major ancestry groups (Figure 5C), indicating

that populations located within the same geographical re-

gion or of similar ancestry are more likely to share the same

selection signals.

Although it is unsurprising that populations in the same

ancestral clades are more likely to share similar selection

signals, a natural extension that haploPS allows is the

interrogation of selection sweeps that are likely to stem

from a single mutation event versus those where separate

mutation events have introduced either the same or

different functional alleles at the same locus in different

populations. For example, the EDAR locus, which affects

hair morphology in East Asians, is one of the most promi-

nent selection signals that has consistently emerged from

selection surveys by a variety of metrics. HaploPS located

this signature in all four East Asian populations and with

estimated derived allele frequencies of 70% in Japanese,

90% in Chinese in Beijing and Denver, and 90% in south-

ern Chinese. The haplotype forms identified by haploPS

for these four populations were perfectly concordant at

the common sites (Figure 6), suggesting that these popula-

tions most likely carry the same functional allele that arose

in a single mutation event prior to the time to the most

recent common ancestor (TMRCA) of these populations.

Local adaptation due to diet constitutes one of the

strongest evolutionary forces in nature. The persistence

of lactase development in adulthood stems from a dairy-

centric diet in northern Europe (CEU [adjusted Shap ¼
0.013]) and drove a selection sweep of the thymine variant

at rs4988235 in LCT. A selection signature at LCTwas simi-

larly observed by haploPS in the Maasai (MKK [adjusted

Shap ¼ 3.0 3 10�3]), although the selected haplotype in

the Maasai was significantly different from that identified

in the northern Europeans and instead carried the cytosine

variant at rs4988235 (Figure 7A). This suggests that the

cattle-rearing Maasai have evolved different mutations

independently from the northern European variant, a

finding that concurred with a landmark survey of poly-

morphisms in LCT by Tishkoff and colleagues.6 This
The Am
selection signature is not observed in TSI (Toscani in Italia),

nor in another three African groups (ASW, LWK, and YRI)

that traditionally adopt a starch-based diet.

Convergent evolution explains the development of

lactase persistence in northern Europe and in eastern

Africa, butmost diet-driven adaptations conform to similar

geography and are most likely the results of gene flow from

singular mutation events. HaploPS revealed a selection

signal that is present across east and west African popula-

tions (LWK, MKK, and YRI [adjusted Shap % 0.042]) and

spans the forkhead box E1 (FOXE1 [MIM 602617]) locus

(Figure 7B). Mutations in FOXE1 have been associated

with thyroid disorders,15 and thyroid maladies have

constituted a significant public health problem across the

African continent primarily as a result of a deficiency in

dietary iodine. Because severe iodine deficiency can also

result in infertility in women and a higher chance of mis-

carriages, mutations that improve iodine synthesis or

metabolism are likely to confer strong survival and repro-

ductive advantages. Another selection signature discov-

ered by haploPS in the South and East Asian populations

(GIH [Gujarati Indians in Houston, TX, USA], CHB, CHD

[Chinese inMetropolitan Denver, CO, USA], CHS [Chinese

in Singapore], and JPT [adjusted Shap % 0.041]) spans thia-

mine pyrophosphokinase 1 (TPK1 [MIM 606370]), which

catalyzes the conversion of thiamine to thiamine pyro-

phosphate (TPP) (Figure 7C). Inadequate levels of TPP

cause thiamine deficiency, which is prevalent in Asiatic

populations where rice has traditionally been the principal

food. In both FOXE1 and TPK1, the functional mutations

are expected to have arisen only once given the high

concordance in the selected haplotype forms across Afri-

can (haplotype entropy pent ¼ 0.041 [see Material and

Methods]) and Asian (pent ¼ 0.034) populations, respec-

tively.

Pigmentation-related genes, such as SLC24A5 (MIM

609802), KITLG (MIM 184745), and HERC2 (MIM

605837), have classically been used as positive controls

for metrics designed to identify selection signals,16 and
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Figure 7. Selected Haplotype Forms at Three Loci Positively Selected in Multiple Populations
Selected haplotypes identified by haploPS at three genes (green horizontal bars) exhibiting evidence of positive selection as a result of
diet-induced evolutionary pressure.
(A) The selection of the lactase-encoding gene (LCT) in northern Europeans (CEU) and the seminormadic Maasai people from Kenya
(MKK) most likely stems from different mutation events, given the significant discordance in the selected haplotype forms. Moreover,
at one of the functional polymorphisms (rs4988235) responsible for an amino acid change, the CEU haplotype correctly carries the func-
tional thymine allele and the MKK haplotype carries the wild-type cytosine allele.
(B) The FOXE1 locus, which has been implicated in thyroid disorders and iodine deficiency, is positively selected in three African pop-
ulations (LWK, MKK, and YRI), and the selected haplotype forms are remarkably similar (especially among three African populations),
suggesting that the selection signals are likely to be the result of the same evolutionary event.
(C) The TPK1 locus is positively selected in East Asia (CHB, CHD, CHS, and JPT), and haploPS located identical haplotype forms, which
might have been driven by the same survival pressure due to thiamine deficiency in Asiatic populations as a consequence of traditional
rice consumption.
haploPS similarly discovered these in non-African popula-

tions (KITLG) and populations with at least partial Euro-

pean ancestry (HERC2 and SLC24A5) (Table S1). The

selected haplotypes at KITLG across all non-African popu-

lations are perfectly identical (Figure 8A), and this concurs

with previous suggestions of a single selective sweep that

happened outside Africa and that led to fairer skin pigmen-

tation.17 Interestingly, the selected haplotype at SLC24A5

in GIH matches the haplotypes in northern (CEU) and

southern (TSI) Europeans (Figure 8B), and there is signifi-

cantly less haplotype diversity around SLC24A5 among

these three populations than in the rest of the human

genome (pent ¼ 0.003). This suggests that the occurrence

of gene flow from Europe into northern India produced

the fairer complexions seen in Gujarati Indians, a finding

that concurs with migration and expansion of Indo-Euro-
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peans into northern India between 1,700 and 1,300 BC,

as revealed with paternal lineage analyses.18

Evaluating Origins of Shared Signals by Quantifying

Haplotype Similarity

The HSI provides a quantitative method for evaluating

whether a selection signal that is observed inmultiple pop-

ulations is likely to have originated from a single mutation

event or from multiple independent mutation events

either at the same variant or across multiple variants in

the same vicinity (see Material and Methods). Under the

assumption that the beneficial allele will reside on a

founder haplotype that is significantly longer than the

background haplotypes of the same frequency, we can

thus compare the degree of similarity in the haplotype

forms that emerged from the haploPS analysis in the
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Figure 8. Selected Haplotype Forms at Two Skin-Pigmentation Gene Loci
Haplotypes identified by haploPS to carry the selected alleles at two pigmentation genes, KITLG (A) and SLC24A5 (B) (green horizontal
bars).
(A) The KITLG locus has been consistently identified in non-African populations to be positively selected, and the genomic region that is
common across all the haploPS haplotypes is perfectly identical, suggesting that the selection sweep most likely happened prior to the
TMRCA of these populations.
(B) Similarly, the selected haplotypes at SLC24A5 for Europeans (CEU and TSI) and Gujarati Indians (GIH) are perfectly identical, sug-
gesting that the gene flow between Gujarati Indians and Europeans partly accounts for the lighter skin pigmentation seen across these
populations.
different populations. If the same mutation event is

responsible for the selection signal observed across multi-

ple populations, then we expect a significant degree of

similarity in the selected haplotype forms of these popula-

tions. A HSI of at least 0.98 is interpreted to suggest a single

mutation event, owing to the fact that the same founder

haplotype is present in multiple populations, whereas a

HSI less than 0.9 suggests that different haplotypes are car-

rying the selected variants, and as such, separate mutation

events are expected to have occurred on different haplo-

type backgrounds (in at least one population) to result in

the significant dissimilarity in the haplotype forms.

To evaluate the performance of the HSI, we simulated

2,000 iterations under each of two scenarios that generated

either convergent evolutionary events or single-origin

events. The two simulated populations mimic the evolu-

tionary history of Europeans and East Asians, who diverged

around 2,000 generations ago but shared the same recom-

bination background. For convergent-evolution events,

the advantageous allele was introduced 1,000 generations

after the populations diverged. For single-origin events,

the advantageous allele was introduced 2,000 generations

before the populations diverged. By applying the HSI

criteria on the selected haplotypes identified by haploPS,

we were able to correctly identify 50% of the simulated
The Am
convergent evolution (10% of the simulations were incor-

rectly classified as single-origin events). Conversely, for

the simulations that mimicked single-origin events, we

were able to correctly classify 94% as stemming from the

same evolutionary event (none of the simulations were

misclassified as convergent-evolution events).

For the selection signals that were presented above, the

LCT locus had a HSI of 0.75 for the selected haplotypes

identified in the Kenyan Maasai (MKK) and in northern

Europeans (CEU), whereas the hair morphology gene,

EDAR, had a HSI of 1.00 across the four East Asian popula-

tions (CHB, CHD, CHS, and JPT). The examples of diet-

driven adaptations at FOXE1 and TPK1 also exhibited

HSIs of 1.00 across the three east and west African popula-

tions (LWK, MKK, and YRI) and the four East Asian popu-

lations, respectively. The pigmentation gene KITLG also

displayed a HSI of 1.00, despite the fact that the selection

signal was observed in diverse non-African populations

of European and East and South Asian ancestries. Similarly,

a HSI of 1.00 was observed for the selection signal at

SLC24A5 for Europeans (CEU and TSI) and Gujarati

Indians (GIH).

Out of the 405 regions identified by haploPS to be posi-

tively selected in at least one of the 14 populations, 212 re-

gions were shared by at least two populations, although
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Table 2. The Ten Regions Identified by HaploPS to Be under Convergent Evolution in Identified Populations

Chr Start End HSI Populations Genesa

1 35,157,192 35,852,095 0.85 CEU, GIH, INS, TSI ZMYM6, ZNF258, ZMYM1, SFPQ, ZMYM4, NCDN, PSMB2, TFAP2E

1 75,238,998 75,889,193 0.77 CHB, CHD, CHS, JPT, MAS LHX8, SLC44A5

2 135,318,981 137,528,542 0.75 CEU, MKK ACMSD, CCNT2, YSK4, RAB3GAP1, ZRANB3, R3HDM1, UBXN4, UBXD2, LCT,
MCM6, DARS, CXCR4, THSD7B

6 29,388,715 31,065,597 0.78 ASW, CEU, CHB, CHD, CHS,
GIH, JPT, LWK, TSI, YRI

OR5V1, OR12D3, OR12D2, OR11A1, OR10C1, OR2H1, MAS1L, UBD, GABBR1,
SNORD32B, OR2H2, MOG, ZFP57, HLA-F, HLA-G, HLA-A, HLA-H, IFITM4P,
HCG4, HCG2P7, HCG4P6, C6orf12, C6orf134, C6orf136, C6orf214, ZNRD1,
PPP1R11, PPP1R10, RNF39, TRIM31, TRIM40, TRIM10, TRIM15, TRIM26,
TRIM39, GNL1, PRR3, CAT53, MRPS18B, DHX16, NRM, NRM29, MDC1,
TUBB, FLOT1, IER3, DDR1, GTF2H4, TFIIH, VARS2, SFTA2, DPCR1, MUC21

6 31,296,179 31,556,632 0.84 ASW, CEU, YRI HLA-C, HLA-B, MICA, HCP5, HCG26

6 33,066,663 33,839,447 0.89 ASW, JPT, LWK, MXL, YRI HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DPB2, COL11A2, RXRB, SLC39A7,
HSD17B8, RING1, VPS52, RPS18, B3GALT4, FP221, WDR46, PFDN6, RGL2,
TAPBP, ZBTB22, DAXX, LYPLA2P1, KIFC1, PHF1, CUTA, SYNGAP1, ZBTB9,
BAK1, BAK, C6orf227, C6orf125, ITPR3, SBP1, IP6K3

6 65,850,800 70,137,233 0.84 MAS, LWK EYS, UNQ9424, BAI3, BAI

7 118,321,619 118,579,454 0.86 GIH, INS, MKK -

12 109,915,688 111,589,168 0.82 CHB, JPT, TSI CUX2, FAM109A, SH2B3, ATXN2, BRAP, ACAD10, ALDH2, PNAS1, MAPKAPK5,
TMEM116, ERP29, C12orf30, C12orf51, NAP1, TRAFD1, RPL6, PTPN11

14 62,796,468 62,834,923 0.86 ASW, INS, MXL RHOJ

The ten positive-selection signals were found in multiple populations, and the HSI for each region is less than 0.90. This means that the haplotypes carrying the
advantageous variants at each of these ten regions in the different populations is significantly different and thus suggestive of convergent evolution of multiple
mutation events, either at the same variant or at different variants in the same genomic region. Abbreviations are as follows: Chr, chromosome; HSI, haplotype
similarity index; ASW, African ancestry in southwest USA; CEU, Utah residents with ancestry from northern and western Europe from the CEPH collection; CHB,
Han Chinese in Beijing, China; CHD, Chinese in Metropolitan Denver, CO, USA; CHS, Chinese in Singapore; GIH, Gujarati Indians in Houston, TX, USA; INS,
Indians in Singapore; JPT, Japanese in Toyko, Japan; LWK, Luhya in Webuye, Kenya; MAS, Malays in Singapore; MKK, Maasai in Kinyawa, Kenya; MXL, Mexican
ancestry in Los Angeles, CA, USA; TSI, Toscani in Italia; and YRI, Yoruba in Ibadan, Nigera.
aMIM numbers for these genes can be found in Table S2.
only 139 regions carried at least 20 SNPs that were shared

across multiple populations. We observed that 121 regions

had HSIs of at least 0.98 and that ten regions had HSIs of

less than 0.90, suggesting that the bulk of the selection sig-

nals shared across multiple populations are likely to have

stemmed from the same evolutionary event instead of

separate mutation events occurring at either the same

variant or multiple variants in the same genomic region.

However, because our approach only has 50% power to

detect convergent evolutionary events, there might be

other such events that were not successfully detected.

Other than the region encompassing LCT, the remaining

nine regions with a HSI less than 0.90 unsurprisingly

included an additional six regions found to be selected in

CHB, JPT, and TSI: five regions in the human leukocyte

antigen (HLA) segment of the major histocompatibility

complex on chromosome 6 and a chromosome 12 region

encompassing aldehyde dehydrogenase 2 family (ALDH2

[MIM 100650]) (Table 2).
Discussion

We have introduced haploPS, a method of locating

genomic evidence of positive selection by using the phased

haplotypes of multiple samples in a population. It is
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similar to several currently available approaches, such as

EHH, iHS, and XP-EHH, except that haploPS conveniently

estimates the population frequency of the allele under

selection and identifies the haplotype sequence on which

the selected allele sits. The power of haploPS has also

been shown to be higher than that of existing methods

across a range of selected allele frequencies between 10%

and 90% via a series of simulations.Whenwe used haploPS

to survey 14 populations from HapMap and SGVP, the 405

selection signals that emerged had a tendency to cluster in

populations within ancestral clades, and comparing the

degree of similarity in the founder haplotypes allowed us

to infer the origins of selection signals shared across multi-

ple populations. We believe haploPS presents a significant

advancement as a metric for characterizing positive selec-

tion, particularly because it also provides a systematic

and quantitative approach for surveying across the whole

genome for evidence of convergent evolution versus

gene flow to multiple populations from a single mutation

event.

In illustrating the performance and utility of haploPS,

we have relied on well-known examples of positive selec-

tion, such as HBB in Ibadan Yoruba, LCT in Europeans

and Kenyan Maasai, and EDAR in East Asians. This was

deliberate because these loci have been well characterized,

and in the case of HBB and LCT, the actual functional
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polymorphisms are known; therefore, we could calculate

the frequencies of the selected alleles at these loci in the

HapMap data and compare them to the haploPS estimates.

In the two examples here, haploPS produced estimates

comparable to the empirical frequencies. LCT is also a

well-studied example by Tishkoff and colleagues6 of

convergent evolution in northern Europe and certain

cattle-rearing tribes in Africa, and haploPS conferred an

in silico approach to correctly infer that the detected selec-

tion signals in CEU and MKK stem from different evolu-

tionary processes. The performance of haploPS at these

three different loci is thus reassuring, given that in the

absence of any established methods for performing

in silico and quantitative inference of selection frequency

and shared origins, genomic regions with established func-

tional polymorphisms under selection pressure provide

useful surrogates for validating the method.

Our results suggest that convergent evolution is gener-

ally a rare phenomenon, given that only 10 out of 405 re-

gions located by haploPS were inferred to be undergoing

convergent evolution. Other than the lactase-encoding

region, five other regions are located in the HLA, and one

encompasses a gene in the aldehyde dehydrogenase

family. The identification of convergent evolution at the

HLA is reassuring because the HLA regions are known to

possess LRHs19 and because the HLA is one of the most

polymorphic and diverse segments of the human genome

and can differ even between seemingly homogeneous pop-

ulations such as northern and southern Han Chinese.20

In our inference of the 405 signals present across the

HapMap and SGVP populations, we saw an enrichment

of low-frequency signals in Africans when compared to

non-Africans, whereas for East Asians, there was an enrich-

ment of high-frequency signals. There are at least two

possible explanations for this observation. First, this might

simply be an artifact introduced as a natural consequence

of population bottlenecks in the Out-of-Africa migratory

process. Non-African populations are believed to have

propagated from a relatively small number of individuals

who left the Africa continent, thus restricting the extent

of genetic diversity that can be present outside Africa and

effectively increasing the degree of genetic similarity.

Each subsequent migratory process that happened outside

Africa to populate the rest of the continents most likely

involved individuals with an even smaller amount of

genetic diversity, and thus populations with a more recent

common ancestor, such as the East Asians, are expected to

exhibit a greater degree of genetic sharing within popula-

tions. This means that an advantageous mutation that

had arisen before the migratory processes but happened

to be carried by most of the migrants most likely ended

up at a higher frequency in the more recent populations

as compared to the founding population. Second, the

enrichment of low-frequency signals in Africans might

be indicative of the fact that adaptive pressure continues

to be significant in African populations without adequate

modern healthcare, either as a response to emerging infec-
The Am
tious diseases or as a result of changing environments and

diets, thus resulting in the discovery of recently introduced

advantageous variants found at lower frequencies into

the human genome.Modern healthcare can lower the inci-

dence of infant and childhood mortality and attenuate the

evolutionary pressure for a population to adapt naturally.

The use of genetic distance has featured prominently in

several metrics for the detection of positive selection.

Metrics such as EHH, iHS, and XP-EHH rely on genetic

distance as a surrogate measure of the extent of recom-

bination in the local genomic region. Fundamentally,

LRH-based metrics for positive selection aim to identify

uncharacteristically long stretches of haplotypes, after

accounting for the background recombination that ought

to break down the haplotypes. However, the genetic dis-

tance used in such calculations is always the version that

averages across the population-specific rates from the

HapMap 2 CEU, JPTþCHB, and YRI populations and never

the population-specific rates. The rationale for this is

simple: in a genomic region harboring a high-frequency

advantageous mutation in a specific population, most of

the chromosomes in this region are likely to be exactly of

the same form, which implies that there is remarkably

low haplotype and SNP diversity in this region. This means

that the amount of recombination in this region is artifi-

cially suppressed, given that there is insufficient diversity

in this region to reflect the breakdown of haplotypes via

recombination. Because of the artificially lowered recombi-

nation rates, the genetic distance is much smaller, and this

region will thus not emerge from the positive selection

scans if the population-specific recombination rates are

used.

Calculating the population-averaged recombination

rates and genetic distance is meant to hedge against the

impact of positive selection in one or two of the popula-

tions in underestimating the recombination rates. How-

ever, this does inadvertently bias the sensitivity of these

metrics in discovering signals of positive selection in pop-

ulations of different ancestries. For example, in African

populations where linkage disequilibrium is considerably

shorter, the genetic distance between two SNPs tends to

be higher than in non-African populations. The average

of the genetic distance across all the populations thus

tends to underestimate the true genetic distance in African

populations while potentially overestimating the distance

in non-African populations. This results in different out-

comes for metrics like iHS and XP-EHH, which use genetic

distance to quantify the probability of haplotype switches,

and for haploPS, which relies on genetic distance directly

to quantify the strength of the positive-selection evidence.

Metrics like iHS and XP-EHH will actually overestimate the

evidence in African populations, resulting in a higher

sensitivity as compared to that for non-African popula-

tions,16 whereas haploPS will have a lower power to

discover selection signals in African populations as com-

pared to non-African populations. This also means that

metrics that rely on genetic distance (including haploPS)
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will have almost no power to identify a selection signal

that exists in all the populations used for estimating the

genetic distance (see additional results in the Supple-

mental Data).

The haploPS algorithm explicitly adjusts for the number

of test statistics that have been generated for each core

haplotype frequency in a manner akin to Bonferroni

correction, even though the haploPS score is not strictly

a significance value. Although this might appear to be

overly conservative when applied to high-density SNP

data where a larger number of regions ought to be tested,

in practice we did not observe a significant difference in

the findings between Phases II and III of the HapMap

CEU data. This is because haploPS considers contiguous

stretches of haplotypes and, using a denser SNP database,

will mostly identify haplotypes that span the same phys-

ical locations in the genome, except that each haplotype

will now cover more SNPs in a manner that is relatively

consistent across the genome. Empirically, we did not

observe a significant difference in the number of regions

when we analyzed the CEU data from HapMap2 and

HapMap3 (for example, 21,416 and 18,855 regions, respec-

tively, tested at a core frequency of 10%), even though the

former contained around 2.6 million SNPs and the latter

only contained about 1.5million SNPs. However, one prac-

tical scenario in which a denser SNP database might result

in the testing of more regions is due to errors in the

phasing of haplotypes, and this might be caused by wrong

genotypes from the unsupervised genotype calling process

or the presence of more low-frequency and rare SNPs.

These two factors can increase the number of switch errors

in the phased haplotypes,21,22 and switch errors affect the

performance of most LRH-based methods for detecting

positive selection. The implication of switch errors to the

performance of haploPS is to increase the number of

regions tested, given that haploPS is explicitly searching

for contiguous stretches of long haplotypes that are found

at a particular frequency in the population. This can thus

reduce the power of haploPS.

Recent evidence by Hernandez and colleagues has sug-

gested that classic selective sweeps that leave distinctive

imprints of long haplotypes in the human genome are

likely to be rare in recent human evolution,23 and poly-

genic selection or selection on standing variation might

explain existing interpopulation genomic diversity. It is

important to note that our findings here are not in con-

flict with this report. Classic selective sweeps achieve

fixation that most LRH methods applied to singular pop-

ulations are not designed to identify anyway. In addition,

Hernandez and colleagues estimated that fewer than 10%

(which corresponds to about 1,000) of the nonsynony-

mous SNPs are likely to be advantageous, and our discov-

ery of 405 selected loci across 14 populations is in line

with this expectation. Although it was suggested that

classic selective sweeps are rare, we emphasize that there

is no dispute to the legitimacy of local adaptation at genes

such as LCT, HBB, EDAR, and SLC24A5, as well as others
880 The American Journal of Human Genetics 92, 866–881, June 6, 2
related to diet, the environment, or emerging infectious

diseases.

That haploPS can potentially identify the haplotype

form on which the selected allele resides is exciting, given

that the comparisons of these haplotype forms across pop-

ulations carrying the selection signals can shed light on

the commonality of the selection event through the

identification of founder haplotypes. Even for the posi-

tive-selection signals that have been successfully detected

by a variety of metrics, the origin and segregation of

most of these signals remain unexplored. HaploPS pro-

vides a unique opportunity to investigate these issues. As

a complement to existing strategies for locating and fine

mapping genomic signatures of positive selection, haploPS

presents an addition to the arsenal of methods for under-

standing the nature and the impetus behind the diversity

of human populations.
Supplemental Data

Supplemental Data include input data, four figures, and six

tables and can be found with this article online at http://www.

cell.com/AJHG.
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Web Resources

The URLs for data presented herein are as follows:

HapFinder, http://www.statgen.nus.edu.sg/~SGVP/software/

hapfinder.html

HaploPS, http://www.statgen.nus.edu.sg/~haplops/

iHS and XP-EHH, http://hgdp.uchicago.edu/Software/

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov/

msms, http://www.mabs.at/ewing/msms/

NCBI Genome browser, http://www.ncbi.nlm.nih.gov/genome

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org
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Singapore Genome Variation Project (SGVP), http://www.statgen.

nus.edu.sg/~SGVP
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