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Abstract
The past decade has produced an avalanche of experimental data on the structure and dynamics of
the ribosome. Groundbreaking studies in structural biology and kinetics have placed important
constraints on ribosome structural dynamics. However, a gulf remains between static structures
and time dependent data. In particular, x-ray crystallography and cryo-EM studies produce static
models of the ribosome in various states, but lack dynamic information. Single molecule studies
produce information on the rates of transitions between these states but do not have high-
resolution spatial information. Computational studies have aided in bridging this gap by providing
atomic resolution simulations of structural fluctuations and transitions between configurations.

Introduction
Early computational efforts focused on structural models of the ribosome in the classical
state, before high-resolution x-ray crystallography structures were available [1–6]. New
RNA homology methods produced predictive models of the E. coli 30S ribosomal subunit
and the T. thermophilus 70S ribosome that were highly consistent with cryo-EM data and
used for phasing x-ray crystals [7,8]. After high-resolution x-ray structures of individual
subunits were solved, it was then possible to perform short timescale molecular dynamics
simulations of important functional regions [9,10] as well as normal mode analysis [11]*
and Poisson-Boltzmann analysis on the intact ribosome[12]. As the speed of supercomputers
increased, molecular dynamics simulations of the intact ribosome were possible [13]**,
along with exhaustive sampling simulations of functional regions [14]. New reduced-model
techniques and even faster supercomputers are paving the way to exhaustive-sampling
molecular simulations of the intact ribosome [15]**. Ultimately, one would like to obtain
the equilibrium free energy landscape of the ribosome complexed with its various ligands.

Due to the large size (Fig. 1) of the ribosome system (~3 million atoms for simulations with
explicit water molecules) and formidable time scales involved (typical functional rates
measured in vitro are hundreds of milliseconds), computational studies of the ribosome use
various approximations, making tradeoffs between force field accuracy and the time scale
sampled. As often occurs in molecular simulations, high levels of detail in the force field are
typically attained at the cost of the time scale sampled, and in turn, accuracy of the entropic
contribution to the free energy. Specifically, explicit calculations of the equilibrium free
energy may be obtained by the expression -kT log P(Q), where P is the probability of
sampling order parameter value Q for a suitable order parameter. Computing the free energy
requires exhaustive sampling of configurational space. Thus, deficiencies in sampling
produce inaccurate free energies, specifically in the entropic contribution to the free energy.
In the case of the ribosome, it is difficult to obtain exhaustive sampling due to its large size.
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Enhanced sampling methods that attempt to produce exhaustive sampling must either (1)
reduce the level of detail in the force field or (2) simulate portions of the ribosome.

While approximations must be made, each computational technique used to study the
ribosome is quite useful in its own way and provides a new window into ribosome dynamics
that was previously unexplored experimentally. There are currently no experimental
techniques available capable of studying ribosome dynamics in full atomic detail. In this
review, we summarize many of the various computational techniques used to study
ribosome dynamics over the past decade. In accordance with journal guidelines, we pay
particular attention to publications within the previous 2 years. While the review is by no
means completely comprehensive, it serves as a starting point for future treatments of
ribosome simulation.

Computational studies of intact ribosomes
Normal mode analysis was used to determine the possible overall global motions of the
ribosome at nucleotide resolution [11,16,17]. Specifically, these calculations produced
ratchet-like pivoting of the small subunit relative to the large subunit, along with motion of
the head and large subunit stalks. This technique has also been incorporated into the fitting
of cryo-EM reconstructions with success (see below) [18,19]. Recent calculations have
examined the coupled motions of tRNA and mobile domains of the ribosome showing that
A- and P- site tRNAs, as well as the L1 protein, effect E-tRNA dynamics[20]. Electrostatic
calculations have determined charged regions on the ribosome [12]. Detailed analysis has
shown the surface of the ribosome to be mostly negative with scattered positively charged
regions corresponding to ribosome proteins.

Explicit solvent molecular dynamics simulations have examined large-scale conformational
changes of the ribosomal complex (Fig. 2). The most tractable conformational change
during elongation is the movement (“accommodation”) of tRNA from its partially bound
state (A/T) to its fully bound state (A/A) that occurs during the process of tRNA selection
(also known as decoding). This conformational change is limited largely to the tRNA and
the base of the L7/L12 stalk. Targeted simulations correctly predicted the regions of the
large subunit that interact with the tRNA during this conformational change
(“accommodation corridor”) [13]. These predictions have been verified by several recent
experimental studies. Dinman and co-workers performed snoRNA deletions in yeast,
producing ribosomes with unmodified nucleotides in the accommodation corridor[21,22].
The resulting ribosomes displayed fidelity phenotypes including defects in -1 frameshifting,
peptide bond formation and misreading [22]. Recent mutational studies by the same group
demonstrated that mutations of the predicted three-dimensional gate (A2556, 2492 and
2573) are viable for normal ribosomes, but dramatically effect growth when treated by
antimicrobials [23]. These three nucleotides are considered “promising targets for
antimicrobial therapy” [23]. Most recently, the Dontsova lab has also performed mutations
on the same three nucleotides [24,25]. This group found that two of the nucleotides impair
peptide release. The Dontsova and Rodnina labs found that mutations of the third nucleotide
are lethal and act to block peptide bond formation, presumably by impeding tRNA
accommodation into the fully bound (A/A) conformation. Recent molecular dynamics
simulations of the intact ribosome have also examined short time scale dynamics of the L1
stalk (60 ns) and the ribosome exit tunnel in the large subunit of the ribosome [26–28]. The
L1 stalk investigations examined interactions with initiator and elongator tRNAs in addition
to producing all-atom fits of cryo-EM reconstructions. Interestingly, in studies of an isolated
L1 stalk / tRNA subsystem, the simulations of the L1 stalk using the CHARMM 27 force
field were found to be unstable while simulations using the AMBER99 force field were
stable. Studies of the ribosome exit tunnel simulated 50 ns of physiological time and
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examined the ribosome-Sec Y channel interaction. A second study of the tunnel included
approximately 5% (125,000 atoms) of the full ribosome system, achieved 2.1 microseconds
of sampling and characterized interactions with nascent peptide chains.

Most recently, explicit solvent simulations of the full 70S ribosome have connected
measured kinetic rates of accommodation to free energy barriers[29]*. These simulations of
the intact ribosome (3.2 million atoms) achieved aggregate sampling of 2.1 microseconds
and measured the diffusion of tRNA inside the ribosome. The study produced an estimate of
the pre-factor in the Arrhenius equation for this process. The end result of these calculations
is a table converting measured rates to estimated free energy barriers.

Coarse-grained and reduced description molecular dynamics simulations have explored
larger regions of configurational space and longer time scales. The first coarse-grained
molecular dynamics study of the entire ribosome on a half a microsecond time scale
accounted for large-scale motions by implementing a Morse potential function, allowing for
breaking of interactions in the MD simulations [30]**. Here, large-scale collective motions
such as the rotation of the subunits were produced. In addition, the anti-correlated movement
of the ribosomal stalks positioned on the opposite sides of the large subunit was observed.
Studies performed by Tryskla et al. also enabled the investigation of large-scale
conformational changes coupled with electrostatic effects[31]. Tryskla and coworkers have
also applied the Poisson-Boltzmann electrostatics model to the ribosome to determine the
computational assembly map of the 30S subunit[32]. Recent studies have also used new
coarse graining schemes designed for even longer sampling [33].

Finally, recent all-atom reduced model simulations based on a structure-based potential have
enabled systematic studies of spontaneous large-scale conformational changes with
atomistic detail (Fig. 3) [15]. Here, reversible excursions of tRNAs into and out of ribosomal
binding sites were observed, consistent with recent single molecule FRET experiments [69].
These simulations produced sampling on the order of ~200 milliseconds for the ribosomal
complex in atomistic detail. The simulations suggest that helix 89 plays a critical role in
monitoring tRNA accommodation. In addition, the high entropy of the tRNA 3’-CCA end
appears to present an entropic barrier for accommodation.

Computational studies of functional regions of the ribosome
A second class of ribosome simulations focuses on localized regions of the ribosome that are
critical for protein synthesis. Several quantum mechanical studies of the peptidyl transferase
center have explored reaction mechanisms [34,35]. Warshel and co-workers found that
solvation effects are significant and that while the 2’- hydroxyl group of tRNA A76
significantly accelerates the reaction rate, it does not directly catalyze the reaction. They
concluded that substrate-assisted catalysis was unlikely[35]*. More recently, this group has
examined the mechanism of GTP hydrolysis by EF-Tu during tRNA selection. They
conclude that rather than behaving as a general base, the critical residue H84 contributes to
an allosteric effect [36]. We note that Wieden and co-workers have performed extensive
studies on the mechanism of EF-Tu, including one very interesting investigation that
combines molecular dynamics simulations with rapid kinetics studies [37].

Aqvist and co-workers have also examined the mechanism of the peptidyl transferase
reaction, combing an empirical valence bond description with molecular dynamics
simulations. They also conclude that an acid-base catalysis method is unlikely. They favor a
proton-shuttling mechanism that does include the P-site adenine O2' oxygen [34]. More
recently the group has employed high-level quantum calculations to reveal a double proton
shuttling mechanism, where water molecules play a key role[38]. Aqvist and co-workers
have applied quantum chemical methods to the mechanism of termination[39]. They
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conclude that a methylated glutamine residue in the ribosome release factor makes an
entropic contribution to lowering the free energy barrier.

Early (2003) short time scale simulations (20 ns sampling) of the decoding center
complexed with mRNA and tRNA anticodon stem loops have examined the stability of the
decoding center hydrogen bond network for a wide range of cognate, near-cognate and non-
cognate mRNA-tRNA combinations [9]. In the simulations, ribosomal RNA had a
stabilizing effect on cognate codon-anticodon interactions and a destabilizing effect on
certain non-cognate combinations. Recent studies by Aqvist and co-workers have revisited
this study with a slightly longer aggregate sampling of the A-site subsystem. Here, they
attempt to calculate binding free energies using a set of nine simulations per system, with 1
ns of production time for each simulation. The total amount of sampling for the study was
54 ns of sampling for bound states and 27 ns of sampling for free states[40]. On this time
scale, they observe that the Leu2 anticodon stemloop is more stable that the Ser stem loop
when complexed with the Phe UUU codon. Aqvist and co-workers have applied a similar
method to study stop-codon recognition, where they use 51 ns of sampling per system to
calculate binding free energies[38].

A variety of studies have investigated the dynamics of the decoding center helix itself
[14,41–43]. Explicit solvent simulations of the decoding center complexed with antibiotics
have examined the stability of the drug-ribosome interactions (Fig. 4) [14]. Exhaustive
sampling simulations (replica exchange molecular dynamics simulations) of the decoding
center show a high degree of convergence after 0.5 microseconds in the absence of
antibiotics and 12 microseconds (12,000 ns) in the presence of gentamicin. These
simulations show the decoding center bases (A1492 and A1493) flipping in and out of helix
44 in absence of ligand [14,41]. In the presence of gentamicin, this equilibrium is shifted
towards the flipped out state. Flipping time scales are consistent with 2-aminopurine
fluorescence studies of the decoding helix[44]. We note that these studies do not include
interactions with the large subunit, which could act to stabilize A1492 and A1493. The
studies produced the first energy landscapes of the ribosome, and suggest that an entropy
shuttling mechanism may move the drug from local minimum to local minimum until the
binding site is reached.

Tryskla and co-workers performed explicit solvent molecular dynamics simulations of the
decoding center, introducing various mutations to analyze how nucleotide substitutions
change its physicochemical properties. They found differences in the internal mobility of the
A-site, as well as in ion and water density distributions inside the binding cleft, between the
prokaryotic and mutated RNA [42].

In a very interesting study, Tryskla and co-workers used Brownian dynamics simulations to
examine antibiotic binding to the 30S subunit, showing that electrostatic steering is not the
sole factor directing the aminoglycoside antibiotic toward the binding site on the 30S
ribosomal subunit. The simulations explained helped elucidate the mechanism by which
paromomycin overstabilizes the 70S ribosome complex. This study unveiled other possible
binding clefts in the ribosomal RNA of the 30S subunit and explained the physical
mechanisms of aminoglycoside diffusion and binding to the ribosomal RNA [45]*.

Sponer and co-workers have performed explicit solvent simulations of three-way junctions
present in the ribosome, demonstrating that the junctions can act as anisotropic flexible
elements contributing to functional fluctuations of the ribosome, including coupled
dynamics between 5S rRNA, the A-site finger, and L7/L12 stalk region [46]*. Sponer, Frank
and co-workers have also performed highly detailed studies of the A-site finger [47]. The
team examines dynamics of H38 for several species and suggest that the kink-turn is
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responsible for large-scale motions of H38. Several groups have used reduced-description
molecular simulations as well as explicit solvent molecular dynamics simulations to study
peptide folding and dynamics within the exit tunnel of the large subunit of the ribosome
[48–53]. Finally, a number of studies of localized ribosomal regions have focused on drug-
ribosome interactions [14,42,43,54].

Cryo-EM fitting
Tama and co-workers have pioneered the use of simulation in fitting cryo-EM
reconstructions of the ribosome. At the core of their method is the use of a correlation term
that determines the quality of the fit. Here, a simulated EM map is produced from a
structural model and correlated with the experimentally determined cryo-EM map. The
correlation term is used in the potential itself to iteratively converge on a solution. They first
included this in normal mode analysis, achieving close fits to the cryo-EM data [18]. Next,
they used explicit solvent molecular dynamics simulations with a high degree of success
[55]. Schulten and coworkers have also applied molecular dynamics flexible fitting to the
ribosome with great success [56,57]. Recently, a technique using a reduced representation
force field, MDfit, allowed molecular dynamics fitting to be performed on a desktop
computer, which is available at mdfit.lanl.gov [58,59]. This so-called ‘1-step’ fitting uses a
potential based on the x-ray structure and finds a conformation with a high correlation to
cryo-EM density while maintaining the stereochemistry present in the x-ray structure. In a
very interesting use of explicit solvent molecular dynamics simulation, Frank and co-
workers performed simulations of the tRNA in solution and selected conformations with
very close correlations to their tRNA cryo-EM density inside the ribosome [60]*. Caulfield
and co-workers used a combination of biased and unbiased simulations to achieve atomistic
fits of cryo-EM data. Their method uses a conformational selection technique akin to Monte
Carlo called Maxwell’s Demon molecular dynamics[61]. Tama and co-workers have
recently compared the various methods, demonstrating that a consensus between several fits
is a better measure of the accuracy of the method[62].* Although not cryo-EM fitting, we
note that Noller and co-workers have performed a very interesting computational study on
ribosome dynamics, where they use translation-libration-screw (TLS) constraints to refine
atomistic models based on x-ray diffraction data [63]. Here, they examine the mobilities of
the peptidyl transferase center and the Shine-Dalgarno helix, as well as the 30S rotation
relative to the 50S subunit. The group concludes that regions of the ribosome near the Shine-
Dalgarno helix are stabilized by the Shine-Dalgarno helix, suggesting that the Shine-
Dalgarno helix may help stabilize the 30S subunit during initiation.

Conclusions
Outstanding issues and future outlook

Significant progress has been made over the past decade in using computational methods to
bridge the gap between detailed static structures[64–67] of the ribosome and measurements
of ribosome dynamics [68–71] with low spatial resolution. Explicit solvent simulations of
ribosomal conformal changes have been performed that have been validated experimentally
[13,23–25]. Reduced-model simulations of the entire ribosome in atomic detail have reached
time scales on the order of ~200 milliseconds [15]. In addition, enhanced sampling
simulations in explicit solvent of localized regions have revealed the energy landscape for
local conformational changes [14,41]. The next step is to produce free energy landscapes of
global conformational changes of the ribosomal complex[72]. We estimate that this will
require approximately one second of sampling for each barrier. This level of sampling may
be reached with all-atom reduced-model simulations using supercomputers in the near
future. However, achieving this level of sampling in explicit solvent will require significant
advances in compute power. While initial attempts at determining the free energy landscape
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will certainly be useful, we caution the reader that aggregate sampling time scales of 100 ms
– 1 s may be necessary to produce accurate entropic components of the free energy for the
entire ribosome. When merged together with kinetic experiments, however, one can estimate
free energy barriers with relatively short simulations (~1 microsecond) [29]. Another
frontier lies at the level of systems biology, where computer simulations are used to examine
the overall kinetics and energy balance for the various substeps of protein synthesis. While
only a handful of studies of this nature have been performed, this area may grow quite
rapidly in the coming years [73,74].
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Highlights

• It is not possible to study ribosome dynamics at atomic resolution
experimentally

• Computation provides a window into dynamics that is unexplored
experimentally

• Computational studies of the ribosome have been tested and validated
experimentally

• Supercomputers produced microsecond explicit solvent simulations (3 million
atoms)

• All-atom reduced simulations of large, spontaneous conformational changes
have been performed with 200 ms sampling

Sanbonmatsu Page 11

Curr Opin Struct Biol. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Snapshot from explicit solvent simulation of the 70S ribosomal complex. Left, small subunit
(30S). Right, large subunit (50S). Cyan, ribosomal protein. Steel blue, small subunit
ribosomal RNA (16S rRNA). Magenta, large subunit ribosomal RNA (23S rRNA). Dark
purple, 5S rRNA. Green, magnesium ions. White/grey, P-site tRNA.
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Figure 2.
Explicit solvent molecular dynamics simulation of aminoacyl-tRNA (yellow)
accommodation into the ribosome (from Sanbonmatsu et al. J Struct. Biol. 2007). Every
tenth water represented by blue sphere. Red, peptidyl-tRNA. Green, mRNA. Cyan, 16S
rRNA. White, 23S rRNA. Magenta, small subunit ribosomal protein. Light green, large
subunit ribosomal protein. Upper region of the simulation box (including 30S head) is
clipped for the purposes of visualization to reveal positions of the tRNAs.
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Figure 3.
Comparison of explicit solvent and all-atom structure-based simulations for tRNA
accommodation into the ribosome. a) Comparison of spontaneous fluctuations in explicit
solvent molecular dynamics simulation (grey, ~1.4 microsecond total sampling) and
structure-based simulations (contours in color, ~200 milliseconds total sampling) displays
overlap in sampling of A/T basin (upper left) and A/A basin (lower right).
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Figure 4.
Convergence studies of explicit solvent replica exchange molecular dynamics simulations
(REMD) of the ribosomal decoding center, with and without the antibiotic Gentamicin. (a)-
(b) Deviation (“Landscape RMS”) of two-dimensional potential of mean force landscape
obtained after time t from those obtained at time t0. Deviation represents the point-wise
RMSD between two free energy landscapes. Values of the deviation approach a plateau,
suggesting convergence after ~0.5 microseconds without Gentamicin (a) and ~12
microseconds with Gentamicin (b).
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