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ABSTRACT

An appreciable fraction of introns is thought to have
some function, but there is no obvious way to
predict which specific intron is likely to be func-
tional. We hypothesize that functional introns
experience a different selection regime than non-
functional ones and will therefore show distinct
evolutionary histories. In particular, we expect func-
tional introns to be more resistant to loss, and that
this would be reflected in high conservation of their
position with respect to the coding sequence. To
test this hypothesis, we focused on introns whose
function comes about from microRNAs and snoRNAs
that are embedded within their sequence. We built a
data set of orthologous genes across 28 eukaryotic
species, reconstructed the evolutionary histories of
their introns and compared functional introns with
the rest of the introns. We found that, indeed, the
position of microRNA- and snoRNA-bearing introns
is significantly more conserved. In addition, we
found that both families of RNA genes settled
within introns early during metazoan evolution. We
identified several easily computable intronic
properties that can be used to detect functional
introns in general, thereby suggesting a new
strategy to pinpoint non-coding cellular functions.

INTRODUCTION

Spliceosomal introns are one of the defining features of
eukaryotes and are found in virtually all fully sequenced
eukaryotic genome. Generally, their sequence evolution-
ary rate resembles that of synonymous sites in coding
regions, a fact that was widely interpreted as indicative
of neutral evolution (1,2). In contrast, it was noticed
that the position of introns along the coding region,

i.e. their point of insertion with respect to the coding nu-
cleotides, is remarkably conserved (3,4). How can this
intron positional conservation (IPC) be settled with their
apparent lack of sequence conservation?

In the past few decades, numerous demonstrations of
intron functions have been reported, showing that many
introns play critical roles in cellular regulatory programs
(5). Consistent with the lack of sequence conservation,
these functions are either sequence-independent or are
carried out by short cis elements that contribute only
little to the overall sequence conservation of the intron.

Applying birth–death models to intron position data, a
picture of intron–exon evolution in eukaryotes had
emerged (6,7). These studies showed that different eukary-
otic clades are characterized by different rates of intron
gain and loss, and they uncovered general evolutionary
patterns such as massive intron gain during the genesis
of early eukaryotic lineages, followed by predominance
of intron loss events later on.

These reconstructions use data of many introns and
therefore represent the evolutionary behavior of a
‘typical’, presumably non-functional, intron. We assert
that a functional intron would experience a different se-
lection regime, and therefore its evolutionary behavior will
show unique features. Specifically, we hypothesize that
functional introns will be more resistant to loss, thus
showing higher positional conservation.

To test this, we examined the evolutionary history of a
particular group of introns that are known to be func-
tional by means of harboring RNA genes. Specifically,
we looked at introns that harbor microRNAs (miRNAs)
and snoRNAs. These introns are presumed to have a
reduced loss rate, as their loss would result in the loss of
their RNA content. Indeed, using multiple criteria for
IPC, we found that RNA gene-bearing introns are more
conserved, and that their evolutionary patterns are more
remote from those of ‘typical’ introns. Moreover, we
found that introns that harbor RNA genes show signs
of elevated positional conservation mainly within the
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metazoan clade, suggesting that the association between
RNA genes and introns dates back to the very early days
of the metazoan lineage.

MATERIALS AND METHODS

Gene architecture data set

We have generated an intron–exon data set comprising the
full genomes of 98 eukaryotic species, based on annota-
tions from Ensembl release 61 (8) and Ensembl Genomes
(9) via the BioMart interface (10), Refseq (11), UCSC
genome browser (12), JGI (13), FlyBase (14), VectorBse
(15), AphidBase (16), BeetleBase (17), SilkDB (18),
Fourmidable (19) and the Hymenoptera Genome
Database (20) (Supplementary Table S1).

Orthology assignment

In the current study, we focus on introns that harbor
miRNAs or snoRNAs. Based on miRBase (21) and
sno/scaRNAbase (22), we mapped the position of these
RNA genes onto our annotated genomes and identified
all miRNA/snoRNA-bearing introns. In human, such
introns were found in 450 genes. These RNA genes are
best annotated in human, and we have therefore used
these 450 genes as the basis for subsequent analysis.

For these 450 genes, we queried the Ensembl Compara
database (23) via their Perl API to detect orthologs in our
98 species. Frequently, a set of orthologous genes con-
tained multiple subsets of paralogs. In such cases, we
wished to identify the single best representative from
each species. This was done by calculating, within each
set of orthologs, the sum of pairwise distances of all
possible gene combinations that contain exactly one
ortholog per species. The representative set was chosen
to be the one with the minimal sum of pairwise distances.

The resulting 450 sets of orthologous genes were partial
in the sense that most of them contained orthologs for far
less than 98 species. To this end, species with an ortholog
in <85% of the sets were removed from the data set,
unless they were the only representative of their respective
taxonomic group. In taxonomic groups with high
sampling (e.g. mammals), we left for analysis the species
with the largest number of orthologs. This process left 391
sets of orthologs over 28 species (Supplementary Table
S2): one insect (Drosophila melanogaster), one bird
(Gallus gallus), two fish (Danio rerio, Gasterosteus
aculeatus), two amphibians (Anolis carolinensis, Xenopus
tropicalis), three invertebrates (Caenorhabditis elegans,
Schistosoma mansoni, Ciona savignyi), four fungi
(Ustilago maydis, Saccharomyces cerevisiae, Neurospora
crassa, Schizosaccharomyces pombe), four plants (Vitis
vinifera, Arabidopsis thaliana, Physcomitrella patens,
Oryza sativa), five protists (Plasmodium falciparum,
Dictyostelium discoideum, Leishmania major,
Phaeodactylum tricornutum, Phytophthora infestans) and
six mammals (Homo sapiens, Pan troglodytes, Mus
musculus, Pongo abelii, Ornithorhynchus anatinus,
Monodelphis domestica). Notably, many sets of orthologs
are still missing representative from some species, and
these were regarded as missing data.

Phylogenetic tree

The phylogenetic tree for the 28 species was formed by
combining taxonomic data from The Tree of Life Web
Project (http://tolweb.org/), NCBI (24,25) and FlyBase
(14). Divergence times were estimated based on Time Tree
(26). iTOL (27) was used for tree display and modification
(Supplementary Figure S1).When there were no data on the
divergence time between two species, we used sequences with
orthologs in close species with known divergence time to
reconstruct the phylogeny using UPGMA (28). Then, we
estimated the missing divergence times by linear regression.
As future analysis steps require a bifurcating tree,
multifurcations were resolved by a series of bifurcations,
separated by short (100000 years) internal branches.

Multiple alignments

We used MUSCLE (29) to align the protein products of
the transcripts within each set of orthologs, then applied
the Matlab function seqinsertgaps to get the multiple
alignment at the mRNA level.

Intron presence/absence patterns

Upon each multiple sequence alignment, we projected the
positions of the exon–exon junctions and transferred the
alignment into ternary representation where 1 stands for
the last nucleotide of an exon, 0 stands for all other nu-
cleotides and 2 stands for gaps and other missing data.
For example, a species that lacks an ortholog in one of the
sets will have an entire row of 2’s in the multiple align-
ment. A multiple alignment of L positions over S species
will be represented by a ternary matrix of size S� L. Each
column in this matrix is called a pattern, and it represents
the intron phylogenetic presence–absence pattern in a par-
ticular position along the coding region (Figure 1a and b).
Overall, our data consist of 1 474 563 patterns, which is
just the number of positions in the collection of the 391
multiple alignments. In the following analysis, we assume
that each position evolves independently of other pos-
itions, allowing us to represent the data more succinctly
by the list of all 29 516 unique patterns, along with the
number of times each unique pattern appears in the data
(Figure 1c). Hereinafter, we shall denote by np the number
of occurrences of unique pattern p.
We filtered out patterns consisting �45% unknowns

(2’s), as statistical inference from these would be less
reliable. Patterns without a 1 were filtered out as well, as
they do not contain information on intron positions. Also,
as we base the analysis on human RNA gene-bearing
introns, we filtered out patterns with 2’s in human.
These steps reduced the number of unique patterns from
29 516 to 4163.

miRNA/snoRNA-bearing patterns

A pattern is called miRNA-bearing pattern if it designates
the presence of an intron in human (a ‘1’ in the human
row), and if that intron harbors a miRNA. If in all np
appearances of unique pattern p, it is miRNA-bearing,
then the unique pattern is called miRNA-bearing unique
pattern. If in some appearances, it is miRNA-bearing
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and in others it is not, it is called miRNA-mixed unique
pattern. Otherwise, it is called miRNA-lacking unique
pattern (Figure 2). In a similar fashion, we define
snoRNA-bearing unique patterns, snoRNA-lacking unique
patterns and snoRNA-mixed unique patterns.
Overall, our data consist of 53 miRNA-bearing, 4099

miRNA-lacking, 11 miRNA-mixed, 99 snoRNA-bearing,
4041 snoRNA-lacking and 23 snoRNA-mixed unique
patterns (Supplementary Figure S2). Clearly, hosting
miRNAs and snoRNAs are not mutually exclusive, and
three unique patterns are both miRNA-bearing and
snoRNA-bearing (Supplementary Table S3).

Reconstruction of gene architecture evolution

In past works, we have devised a comprehensive model of
gene architecture evolution (4). This model is implemented
in the Evolutionary Reconstruction by Expectation-
Maximization (EREM) software tool (http://carmelab.
huji.ac.il/software.html#erem) that learns the model par-
ameters and reconstructs the evolutionary history of the
intron–exon structure. EREM allows for gene-, site- and
tree-branch variability in intron loss and gain rates, as well
as an ability to handle missing data in the input (2’s in the
aforementioned alignment matrices). EREM’s input is the
ternary patterns and the known phylogenetic tree, and its
output is the estimated model parameters and the prob-
ability of having an intron in each position for any of the
internal nodes in the tree.
A pattern is defined over the leaves of the tree (terminal

nodes), and its likelihood is the probability of observing it,

given the model parameters, see formula 15 in Carmel
et al. (4). For each unique pattern p, we use either Dollo
parsimony or EREM to find the last common ancestor
(LCA) of the intron in all intron-bearing terminal nodes.
Hereinafter, we shall assume that the intron originated
(was gained) along the lineage leading to LCA.

Pattern features

To find whether miRNA/snoRNA-bearing patterns have
unique properties, we compiled a list of 48 pattern-
characterizing features (Supplementary Table S4).
Features that are highly associated with another feature
(absolute value of the correlation coefficient above 0.85)
were removed, leaving a final list of 13 features (Table 1).
These 13 features describe various properties of the
patterns, including their level of positional conservation,
how typical they are when compared with the evolution-
ary pattern of ‘typical’ introns, how ancient the intron is
and where along the coding sequence (CDS) the intron is
present (Supplementary Table S4).

Statistical tests

We tested whether miRNA/snoRNA-bearing unique
patterns have distinct characteristic values of each
feature using the Mann–Whitney U-test and t-test with
unknown and equal variance (30).

Fisher discriminant analysis

Fisher discriminant analysis is a supervised linear
dimensionality reduction technique that projects the data
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Figure 1. Ternary representation of multiple alignments. (a) A toy example of a multiple sequence alignment of an orthologous group. The rows
stand for species, and the columns represent the position along the alignment. The last nucleotide of an exon is highlighted. (b) A ternary repre-
sentation of the same alignment: 1 stands for the last nucleotide of an exon, 0 stands for all other nucleotides and 2 stands for gaps or missing
orthologs. (c) The same data are represented by a list of unique patterns, and by the number of times each of them appears in the data (np).
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into a low-dimensional space such that clusters are best
separated (31). Here, we used the Fisher discriminant
analysis to separate miRNA/snoRNA-bearing unique
patterns from miRNA/snoRNA-lacking unique patterns.
Interpreting the composition of the Fisher discriminant
vector requires caution, as it is implied that the features
are independent. In our analysis, this is not the case. To
overcome this, we first applied principal component
analysis to the data and then used the Fisher discriminant
analysis on the projection of the data onto the space
spanned by the first seven principal components (which
are, of course, assured to be independent).

RESULTS AND DISCUSSION

Gene architecture data

We identified 450 human genes whose introns harbor
miRNAs or snoRNAs. Of those, for 391 genes, we were
able to identify sufficient number of orthologs from
among 27 other eukaryotic species (see ‘Materials and
Methods’ section). For each of the 391 orthologous
groups, we computed the multiple alignment of the pro-
teins and represented it by a ternary matrix at the
underlying mRNA level, denoting by 1, the last nucleotide
of an exon; by 0, any other nucleotide; and by 2, any
missing value such as gap or lack of ortholog (Figure 1a
and b; see more details in ‘Materials and Methods’
section). Each column (position) in this matrix is
denoted a pattern. A ‘1’ in a pattern stands for an exon–
exon junction in the mRNA of the corresponding species,
and thus a pattern reflects the intron presence/absence dis-
tribution across species at a specific position. The entire
data set consists of 1 474 563 patterns (positions), but fil-
tering out patterns that are not relevant to the current
study (see ‘Materials and Methods’ section) left a final
set of 169 genes and a total of 5653 patterns. The same

pattern may appear multiple times in the alignments, and
we have thus summarized the data by compiling a list of
all 4163 unique patterns and by denoting by np the number
of occurrences of unique pattern p (Figure 1c).
We have put together a list of 48 pattern-characterizing

features (Supplementary Table S4), and after filtering out
features that are highly dependent on others, we were left
with a final set of 13 features (see ‘Materials and Methods’
section; Table 1). These features are associated with the
level of IPC, with how typical the pattern is, with how
ancient the intron is and with where along the CDS the
RNA gene-bearing intron resides.

MiRNA-bearing patterns have unique characteristics

The 169 genes contain 64 human intronic miRNAs. We
have referred to the pattern corresponding to a miRNA-
bearing human intron (the pattern for the last nucleotide
of the upstream exon) as a miRNA-bearing pattern. We
divided the unique patterns into three groups: an
miRNA-bearing unique pattern is a unique pattern with a
miRNA-bearing human intron in all occurrences; an
miRNA-mixed unique pattern is a unique pattern with a
human intron that bears miRNA in some occurrences,
and lacks miRNA in others; otherwise, a unique pattern
will be denoted miRNA-lacking unique pattern (Figure 2).
Overall, the data comprise 53 miRNA-bearing, 4099
miRNA-lacking and 11 miRNA-mixed unique patterns
(Supplementary Figure S2a).
To see what features characterize miRNA-bearing

unique patterns, we tested each feature for whether it
differs significantly between miRNA-bearing and
miRNA-lacking unique patterns (using Bonferroni-cor-
rected t-test; Table 2). Ten of the thirteen features were
found to be significantly different in miRNA-bearing
unique patterns, suggesting that these patterns have
special attributes that will be discussed in the next

Table 1. The final set of 13 pattern-characterizing features used in the analysis

Feature Description

LOGLIKE Given EREM’s estimation of the evolutionary model parameters, this is the log-likelihood of observing the
pattern.

ONES_RATIO_KNOWN The number of 1’s divided by the total number of 1’s and 0’s in the pattern.
SANKOFF_G3L1 The minimum number of intron gain and loss events required to obtain the pattern, given that gains cost three

times as much as losses (using the Sankoff algorithm).
SANKOFF_G1L3 The minimum number of intron gain and loss events required to obtain the pattern, given that losses cost

three times as much as gains (using the Sankoff algorithm).
IN_AMPHIBIAN This feature is 1 if the pattern has a 1 in at least one amphibian (A. carolinensis or X. tropicalis), otherwise it

is 0.
IN_FISH This feature is 1 if the pattern has a 1 in at least one fish (D. rerio or G. aculeatus), otherwise it is 0.
IN_BIRD This feature is 1 if the pattern has a 1 in G. gallus otherwise it is 0.
IN_FUNGI This feature is 1 if the pattern has a 1 in at least one fungi (U. maydis, S. pombe, S. cerevisiae or N. crassa),

otherwise it is 0.
IN_PLANT This feature is 1 if the pattern has a 1 in at least one plant (V. vinifera, A. thaliana, P. patens or O. sativa),

otherwise it is 0.
IN_PROTIST This feature is 1 if the pattern has a 1 in at least one protist (P. falciparum, D. discoideum, L. major,

P. tricornutum or P. infestans), otherwise it is 0.
LCA_AGE The LCA of all the intron-bearing species is assumed to be the species in which the intron was originated.

LCA_AGE is the age of LCA [MYA].
MED_REL_POSITION The median distance of the exon–exon junction from the beginning of the CDS divided by the CDS length.
MED_POSITION The median distance of the exon–exon junction from the beginning of the CDS (nucleotides).
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sections. We repeated the analysis using the Mann–
Whitney U-test and obtained identical conclusions
(Table 2).
To test which linear combination of the features best

characterizes miRNA-bearing unique patterns, we
applied the Fisher linear discriminant analysis (see
‘Materials and Methods’ section). MiRNA-bearing
unique patterns are distinguished by having high value
of the Fisher discriminant vector and so are the
miRNA-mixed unique patterns (Figure 3a). In fact,
more than two-thirds of the miRNA-lacking unique
patterns have their Fisher discriminant coordinate lower
than that of any of the miRNA-bearing or miRNA-mixed
unique patterns. The contribution of each feature to the
Fisher discriminant vector is shown in Figure 3b (usually
called a loading plot). As miRNA-bearing patterns have

high positive values of the Fisher discriminant vector, they
are characterized by high values of features with positive
contribution and low values of features with negative
contribution. The makeup of the Fisher discriminant
vector is perfectly consistent with the tests on the
individual features (Table 2), having negative contri-
bution of LOGLIKE, MED_REL_POSITION and
MED_POSITION, and positive contribution of all other
features. These results suggest that human introns that
harbor miRNAs show distinct properties, which we will
discuss in the sections below.

MiRNA-bearing patterns tend to be more conserved

Despite being characterized by more intron gain and loss
events (SNAKOFF_G3L1 and SANKOFF_G1L3 in
Table 2), probably owing to their antiquity (see next
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Figure 3. Fisher discriminant analysis for miRNA-bearing versus miRNA-lacking unique patterns. (a) Scatter plot of all unique patterns: (red)
miRNA-bearing, (yellow) miRNA-mixed and (blue) miRNA-lacking unique patterns. The x-axis is the Fisher discriminant vector, and the y-axis was
computed—for visualization only—as the first principal component that is constrained to be orthogonal to the Fisher discriminant vector. (b) The
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Table 2. Mean and median of the 13 features for miRNA-bearing and miRNA-lacking unique patterns

Feature Mean Median

miRNA-bearing
pattern

miRNA-lacking
pattern

P-value
(t-test)

miRNA-bearing
pattern

miRNA-lacking
pattern

P-value
(U-test)

LOGLIKE �17.99 �13.63 7.1·(10�4) �15.52 �11.62 5.3·(10�6)
ONES_RATIO_KNOWN 0.52 0.22 9.6·(10�21) 0.50 0.06 1.1·(10�15)
SANKOFF_G3L1 4.13 3.37 9.3·(10�5) 4 3 4.4·(10�5)
SANKOFF_G1L3 2.55 1.58 1.4·(10�7) 2 1 8.8·(10�9)
IN_AMPHIBIAN 0.96 0.62 4.1·(10�6) 1 1 4.3·(10�6)
IN_FISH 0.98 0.61 4.3·(10�7) 1 1 4.6·(10�7)
IN_BIRD 0.98 0.45 7.4·(10�14) 1 0 9.1·(10�14)
IN_FUNGI 0.62 0.59 1 1 1 1
IN_PLANT 0.96 0.72 1.4·(10�3) 1 1 1.4·(10�3)
IN_PROTIST 0.92 0.82 0.74 1 1 0.74
LCA_AGE 1104 460 2.2·(10�10) 993.6 0 1.7·(10�14)
MED_REL_POSITION 0.45 0.49 1 0.46 0.49 1
MED_POSITION 773.1 1461.5 1.2·(10�2) 426 982 6·(10�3)
P-values are Bonferroni corrected.
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section), all conservation-related features suggest that
miRNA-bearing introns have high positional
conservation.

First, the log-likelihood of miRNA-bearing unique
patterns (LOGLIKE) tends to be small, supporting the
assumption that their evolutionary patterns are atypical
when compared with the bulk of non-functional introns
(Figure 4a). The average log-likelihood of miRNA-
bearing unique patterns is �17.99, whereas it is �13.63
for miRNA-lacking unique patterns (P=7.1·10�4,
t-test; Table 2). This is consistent with a negative contri-
bution of LOGLIKE to the Fisher discriminant vector
(Figure 3b).

Second, miRNA-bearing unique patterns are associated
with introns that appear in human and, at exactly the
same position, in other metazoans (IN_AMPHIBIAN,
IN_FISH, IN_BIRD). This suggests that miRNA-
bearing introns have a reduced loss rate in metazoans
compared with miRNA-lacking introns. These introns
show no tendency for positional conservation in fungi or
various stem protists (IN_FUNGI, IN_PROTIST), sug-
gesting that many of them have gained their miRNA
content in early metazoans. Interestingly, when comparing
the positional conservation of miRNA-bearing introns in
human and plants, weak but significant conservation is
detected (P=0.0014, t-test; Table 2), consistent with
other evidence for high positional conservation of
introns between metazoans and plants (4,7).

Third, the feature that is most discriminating miRNA-
bearing introns from miRNA-lacking ones is
ONES_RATIO_KNOWN (Table 2 and Figure 3b),
measuring the ratio of the number of introns present in
that position (the number of 1’s in the pattern) to the total
number of orthologous positions in our data set (the
number of 0’s and 1’s in the pattern). A value of 1
means that all orthologs in which the position is present
harbor an intron in that position. MiRNA-bearing introns
show high values of ONES_RATIO_KNOWN, suggest-
ing, again, that these introns have high positional conser-
vation. The mean value of ONES_RATIO_KNOWN in
miRNA-bearing unique patterns is 0.47, compared with
only 0.22 for miRNA-lacking unique patterns
(P=9.6·10�21, t-test; Table 2).

In general, miRNAs are found in metazoans, plants and
a variety of unicellular eukaryotes (32–34). Yet, as of
today, proper miRNAs were not identified in fungi,
although miRNA-like molecules had been found (35,36).
Adding this to the fact that miRNA structure, function
and biogenesis somewhat differ between metazoans and
plants led to the notion that miRNAs entered independ-
ently to various eukaryotic clades (37). Our results show
that the position of miRNA-bearing introns is extraordin-
arily conserved, but only within metazoans, rendering
further credence to the view that miRNAs developed
independently in metazoans.

miRNA-bearing introns tend to be ancient

For a given pattern, we assume that the intron was ori-
ginally gained along the branch leading to the LCA of all
species that harbor an intron at this position. The feature

LCA_AGE measures the evolutionary age of this LCA
and is therefore a proxy to how old the intron is.
LCA_AGE contributes positively to the Fisher discrimin-
ant vector (Figure 3b), and, consistently, miRNA-bearing
introns seem to have been gained early during eukaryotes
evolution (Figure 4b). The mean LCA_AGE of miRNA-
bearing unique patterns is 1104 million years ago (MYA),
whereas it is only 460 MYA for miRNA-lacking unique
patterns (P=2.2·10�10, t-test; Table 2). This corrobor-
ates nicely with the finding of the previous section that
miRNAs got inserted into introns in early metazoans, as
the introns that were present then were necessarily of
ancient origin. The EREM algorithm calculates the pos-
terior probability of the presence of an intron at each an-
cestral node. As such, it can produce a different estimation
of the intron origin than Dollo. We repeated the analysis
with LCA_AGE calculated by EREM and received quali-
tatively same results (Supplementary Table S5).

Long first introns explain the tendency of miRNA-bearing
introns to reside towards the 50-end of the gene

The feature MED_POSITION is the median distance (in
nucleotides) of the exon–exon junction from the beginning
of the CDS in human, taken over all occurrences of the
miRNA-bearing unique pattern. The feature
MED_REL_POSITION is similar, except that the
distance is divided by the CDS length. Both features
show somewhat lower values for miRNA-bearing unique
patterns (Table 2, Figure 3b), although, admittedly, this
trend is weak (Figure 4c).
These results confirm a study by Zhou et al., (38) in

which it was reported that miRNA-bearing introns tend
to reside near the 50-end of the gene. In this work, Zhou
et al. also found that miRNAs tend to reside within long
introns, but did not check the deep connection between
the two observations. We hypothesized that neither trend
is significant, and that these two observations can be ex-
plained by the well-known tendency of 50-most introns
(first introns) to be significantly longer (39). To test this,
we assumed that an miRNA has an equal probability to
get inserted at any position along the intron, regardless of
its distance from the beginning of the CDS. Consequently,
we ran 1000 simulations, in which we uniformly re-pos-
itioned miRNAs within the introns of their host genes. In
>95% of the cases, a randomly positioned miRNA was
located within its true host intron, or in another intron
that is closer to the 50-end of the gene. This shows that the
observed tendency of miRNAs to reside towards the 50-
end of the gene is due to the unusual length of first introns.
Notably, this observation does not necessarily rule out the
possibility that natural selection does act to position RNA
genes near the 50 untranslated region (50UTR), allowing
them to be expressed early during transcription.

The unique characteristics of snoRNA-bearing patterns

We have mapped known snoRNAs into the human introns
in our data set and found a total of 123 snoRNA-bearing
introns. Similarly to the process with miRNAs, we divided
the 4163 unique patterns into snoRNA-bearing unique
patterns (99 patterns), snoRNA-mixed unique patterns
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(23 patterns) and snoRNA-lacking unique patterns (4041
patterns; Supplementary Figure S2b). We do not see any
tendency of miRNAs and snoRNAs to reside within the
same intron, as only three unique patterns are both
miRNA-bearing and snoRNA-bearing (Supplementary
Table S3).
Except for MED_REL_POSITION, all features signifi-

cantly differ between snoRNA-bearing and snoRNA-
lacking unique patterns (Table 3), suggesting that the
two groups are characterized by a different set of
features. Fisher discriminant analysis visually demon-
strates this, as snoRNA-bearing and snoRNA-mixed
unique patterns have high values of the Fisher

discriminant vector (Figure 5a). The makeup of the
Fisher discriminant vector is in complete agreement with
Table 3 (Figure 5b).

Like in miRNA-bearing unique patterns, the features
that characterize snoRNA-bearing unique patterns
suggest that snoRNAs were inserted into introns in early
metazoans, thereby conferring them with function and
with increased resistance to loss. The log-likelihood of
snoRNA-bearing unique patterns is substantially
reduced (Figure 4a), with a mean of �22.49 compared
with �13.45 in snoRNA-lacking unique patterns
(P=3.1·10�29, t-test; Table 3). The features
ONES_RATIO_KNOWN, IN_AMPHIBIAN, IN_FISH
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Figure 4. Ranking of unique patterns. (Top rows) snoRNA-bearing (blue), snoRNA-mixed (red) and snoRNA-lacking (beige) unique patterns.
(Bottom rows) miRNA-bearing (blue), miRNA-mixed (red) and miRNA-lacking (beige) unique patterns. The unique patterns are ranked according
to (a) their log-likelihood; (b) the antiquity of the intron; and (c) their distance from CDS start.
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and IN_BIRD are all higher in snoRNA-bearing unique
patterns, whereas IN_FUNGI, IN_PLANT and
IN_PROTIST are lower (Table 3), again signifying early
metazoan evolution as the point in time in which
snoRNAs were attached to introns. This is further sup-
ported by higher values of LCA_AGE for snoRNA-
bearing unique patterns (Figure 4b).

SnoRNAs are ancient RNA genes, fundamental to
rRNA modifications in both archaea and eukaryotes
(40). Yet, in different clades, they show very different
genomic organization, ranging from independently
transcribed units harboring their own promoter to
intron-residing units whose transcription depends on
that of the hosting gene. Comparative study of these
genomic organizations showed that intron-residing
snoRNAs are particularly abundant in metazoans, much
less so in plants, and are almost absent in fungi (41).

This finding is in perfect agreement with our conclusion
that snoRNAs settled within introns in early metazoans.

CONCLUSIONS

In this work, we have focused on introns that are func-
tional owing to RNA genes that they host. We found that
such introns show distinct patterns of evolution, notably,
a decreased loss rate since the time of function gain. In
fact, we analyzed miRNA-bearing introns and snoRNA-
bearing introns separately, and in both cases, we found
that the functional introns have very similar characteris-
tics (compare, e.g. Figures 3b and 5b). This leads us to
hypothesize that elevated positional conservation is a
property of functional introns in general, and not only
of the specific family of introns that we have investigated.
We therefore predict that a high fraction of the introns
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Figure 5. Fisher discriminant analysis for snoRNA-bearing versus snoRNA-lacking unique patterns. (a) Scatter plot of all unique patterns: (red)
snoRNA-bearing, (yellow) snoRNA-mixed and (blue) snoRNA-lacking unique patterns. The x-axis is the Fisher discriminant vector, and the y-axis
was computed—for visualization only—as the first principal component that is constrained to be orthogonal to the Fisher discriminant vector.
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Table 3. Mean and median of the 13 features for snoRNA-bearing and snoRNA-lacking unique patterns

Feature Mean Median

snoRNA-bearing
pattern

snoRNA-lacking
pattern

P-value
(t-test)

snoRNA-bearing
pattern

snoRNA-lacking
pattern

P-value
(U-test)

LOGLIKE �22.49 �13.45 3.1·(10�29) �18.58 �11.54 1.1·(10�19
ONES_RATIO_KNOWN 0.47 0.22 2.9·(10�28) 0.46 0.06 3.1·(10�23)
SANKOFF G3L1 4.79 3.34 4.8·(10�30) 5 3 5.3·(10�29)
SANKOFF G1L3 3.19 1.56 1.9·(10�39) 3 1 3.1·(10�34)
IN AMPHIBIAN 0.99 0.61 2.9·(10�13) 1 1 3.5·(10�13)
IN FISH 0.98 0.60 4·(10�13) 1 1 4.8·(10�13)
IN BIRD 0.95 0.44 4.1·(10�23) 1 0 7.6·(10�23)
IN FUNGI 0.41 0.60 3.3·(10�3) 0 1 3.3·(10�3)
IN PLANT 0.29 0.74 2.5·(10�22) 0 1 4.4·(10�22)
IN PROTIST 0.49 0.84 6.9·(10�18) 0 1 9.9·(10�18)
LCA AGE 1202.7 449 8.6·(10�26) 993.6 0 4.3·(10�31)
MED_REL_POSITION 0.51 0.49 1 0.52 0.49 1
MED_POSITION 740.7 1473 2.2·(10�5) 514 999 4.6·(10�7)
P-values are Bonferroni corrected.
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associated with high values of the Fisher discriminant
vector (see Figures 3a and 5a) are functional, even if this
function is not hosting RNA genes.
Finding functional non-coding elements like RNA

genes, transcription factor binding sites and splicing
factor binding sites are known to be much harder than
finding protein-coding genes. Many factors contribute to
this evasive nature of functional non-coding elements,
such as short and degenerate sequence, poor sequence
conservation and broad flexibility in genomic location.
This work provides means to detect such otherwise invis-
ible elements, at least when they reside within introns.
Even more, some intronic functions do not depend on
sequence at all but merely on the fact that splicing took
place. This is, for example, how introns contribute to
nuclear export (42) or to nonsense-mediated decay in
mammals (43). As of today, such intronic functions with-
stand any computational prediction. Detection of introns
with high positional conservation is therefore a novel, and
actually the single, approach for computational identifica-
tion of such functional introns. In this regard, intron
position is a criterion by which evolutionary conservation
can be measured, similarly to the more familiar criteria of
sequence or structure conservation.
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Supplementary Tables 1–5 and Supplementary Figures 1
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