Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Aug 24;16(4):595. doi: 10.2478/s11658-011-0025-9

Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization

Akin Sevinc 1, Leslie W -M Fung 1,
PMCID: PMC3675649  NIHMSID: NIHMS323222  PMID: 21866423

Abstract

With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.

Key words: Brain beta spectrin, Spectrin tetramerization, Brain proteins, Yeast three-hybrid, Library screening, Spectrin interacting proteins

Full Text

The Full Text of this article is available as a PDF (998.9 KB).

Abbreviations used

αII

non-erythroid (brain) alpha spectrin

αII-N

a recombinant protein consisting of the N-terminal region 359 residues of αII

AD

activation domain of GAL4

βII

non-erythroid (brain) beta spectrin

βII-C

a recombinant protein consisting of residues 1697-2145 at the C-terminus of βII

BD

binding domain of GAL4

IPαII-N

proteins interacting with αII-N

IPβII-C

proteins interacting with βII-C

pAD

yeast twohybrid cloning vector pGADT7

pBD

yeast two-hybrid cloning vector pGBKT7

pBR

yeast three-hybrid cloning vector pBridge

QDO

quadruple drop-out

SD

synthetic defined

TDO

triple drop-out

X-α-gal

5-bromo-4-chloro-3-indolyl-α-galactopyranoside

YPDA

yeast growth medium with yeast extract, peptone, dextrose and adenine

References

  • 1.Oh Y., Fung L.W.-M. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin. Cell. Mol. Biol. Lett. 2007;12:604–620. doi: 10.2478/s11658-007-0028-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Marchesi V.T., Steers E. Selective solubilization of a protein component of the red cell membrane. Science. 1968;159:203–204. doi: 10.1126/science.159.3811.203. [DOI] [PubMed] [Google Scholar]
  • 3.Hiller G., Weber K. Spectrin is absent in various tissue culture cells. Nature. 1977;299:181–183. doi: 10.1038/266181a0. [DOI] [PubMed] [Google Scholar]
  • 4.Levine J., Willard M. Axonally transported polypeptides associated with the internal periphery of many cells. J. Cell Biol. 1981;90:631–643. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lee J.K., Coyne R.S., Dubreuil R.R., Goldstein L.S.B., Branton D. Cell shape and interaction defects in α-spectrin mutants of Drosophila Melanogaster. J. Cell Biol. 1993;123:1797–1809. doi: 10.1083/jcb.123.6.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Pinder J.C., Baines A.J. A protein accumulator. Nature. 2000;406:253–254. doi: 10.1038/35018679. [DOI] [PubMed] [Google Scholar]
  • 7.Djinovic-Carugo K., Gautel M., Ylanne J., Young P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 2002;513:119–123. doi: 10.1016/S0014-5793(01)03304-X. [DOI] [PubMed] [Google Scholar]
  • 8.Gascard P., Mohandas N. New insights into functions of erythroid proteins in nonerythroid cells. Curr. Opin. Hematol. 2000;7:123–129. doi: 10.1097/00062752-200003000-00009. [DOI] [PubMed] [Google Scholar]
  • 9.Sridharan D.M., McMahon L.W., Lambert M. W. αII-spectrin interacts with five groups of functionally important proteins in the nucleus. Cell Biol. Int. 2006;30:866–878. doi: 10.1016/j.cellbi.2006.06.005. [DOI] [PubMed] [Google Scholar]
  • 10.Kanda K., Tanaka T., Sobue K. Calspectin (fodrin or nonerythroid spectrin)-actin interaction: a possible involvement of 4,1-related protein. Biochem. Biophys. Res. Commun. 1986;140:1051–1058. doi: 10.1016/0006-291X(86)90741-2. [DOI] [PubMed] [Google Scholar]
  • 11.Tsukita S., Tsukita S., Ishikawa H., Kurokawa M., Morimoto K., Sobue K., Kakiuchi S. Binding sited of calmodulin and actin on the brain spectrin, calspectin. J. Cell Biol. 1983;97:574–578. doi: 10.1083/jcb.97.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Sobue K., Kanda K., Kakiuchi S. Solubilization and partial purification of protein kinase systems from brain membranes that phosphorylate calspectin: a spectrin-like calmodulin-binding protein (fodrin) FEBS Lett. 1982;150:185–190. doi: 10.1016/0014-5793(82)81331-8. [DOI] [PubMed] [Google Scholar]
  • 13.Riederer B.M., Lopresti L.L., Krebs K.E., Zagon I.S., Goodman S.R. Brain spectrin (240/235) and brain spectrin (240/235E): conservation of structure and location within mammalian neural tissue. Brain Res. Bull. 1988;21:607–616. doi: 10.1016/0361-9230(88)90200-6. [DOI] [PubMed] [Google Scholar]
  • 14.Ohara O., Ohara R., Yamakawa H., Nakajima D., Nakayama M. Characterization of a new β-spectrin gene which is predominantly expressed in brain. Mol. Brain Res. 1998;57:181–192. doi: 10.1016/S0169-328X(98)00068-0. [DOI] [PubMed] [Google Scholar]
  • 15.Tang Y., Katuri V., Iqbal S., Narayan T., Wang Z., Lu R.S., Mishra L., Mishra B. ELF a beta-spectrin is a neuronal precursor cell marker in developing mammalian brain; structure and organization of the elf/beta-G spectrin gene. Oncogene. 2002;21:5255–5267. doi: 10.1038/sj.onc.1205548. [DOI] [PubMed] [Google Scholar]
  • 16.Lambert S., Bennett V. Postmitotic expression of ankyrinR and beta R-spectrin in discrete neuronal populations of the rat brain. J. Neurosci. 1993;13:3725–3735. doi: 10.1523/JNEUROSCI.13-09-03725.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Tang Y., Katuri V., Dillner A., Mishra B., Deng C.-X., Mishra L. Disruption of transforming growth factor-β signaling in ELF β-spectrindeficient mice. Science. 2003;299:574–577. doi: 10.1126/science.1075994. [DOI] [PubMed] [Google Scholar]
  • 18.Bennett V., Baines A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 2001;81:1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  • 19.Norman K.R., Moerman D.G. Alpha spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegant. J. Cell. Biol. 2002;157:665–677. doi: 10.1083/jcb.200111051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.McMahon K.R., Zhang P., Sridharan D.M., Lefferts J.A., Lambert M.W. Knockdown of alpha II spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair. Biochem. Biophys. Res. Commun. 2009;381:288–293. doi: 10.1016/j.bbrc.2009.02.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.DeSilva T.M., Peng K.-C., Speicher K.D., Speicher D.W. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. Biochemistry. 1992;31:10872–10878. doi: 10.1021/bi00159a030. [DOI] [PubMed] [Google Scholar]
  • 22.Bignone P.A., King M.D., Pinder J.C., Baines A.J. Phosphorylation of a threonine unique to the short C-terminal isoform of betaII-spectrin links regulation of alpha-spectrin interaction to neuritogenesis. J. Biol. Chem. 2007;232:888–896. doi: 10.1074/jbc.M605920200. [DOI] [PubMed] [Google Scholar]
  • 23.Speicher D., DeSilva T., Speicher K., Ursitti J., Hembach P., Weglarz L. Location of the human red cell spectrin tetramer binding site and detection of a related “closed” hairpin loop dimer using proteolytic footprinting. J. Biol. Chem. 1993;268:4227–4235. [PubMed] [Google Scholar]
  • 24.Mehboob S., Luo B.-H., Fu W., Johnson M.E., Fung L.W.-M. Conformational studies of the tetramerization site of human erythroid spectrin by cysteine-scanning spin-labeling EPR methods. Biochemistry. 2005;44:15898–15905. doi: 10.1021/bi051009m. [DOI] [PubMed] [Google Scholar]
  • 25.Ipsaro J.J., Harper S.L., Messick T.E., Marmorstein R., Mondragon A., Speicher D.W. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood. 2010;115:4843–4852. doi: 10.1182/blood-2010-01-261396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Song Y., Antoniou C., Memic A., Kay B.K., Fung L.W.-M. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Sci. 2011;20:867–879. doi: 10.1002/pro.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Antoniou A., Lam V.Q., Fung L.W.-M. Conformational changes at the tetramerization site of erythroid α-spectrin upon binding β-spectrin: a spin label EPR study. Biochemistry. 2008;47:10765–10772. doi: 10.1021/bi800840p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Song Y., Pipala N.H., Fung L.W.-M. The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: fluorescence and molecular dynamics studies of free and bound alpha spectrin. Protein Sci. 2009;18:1916–1925. doi: 10.1002/pro.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Mehboob S., Song Y., Witek M., Long F., Santarsiero B.D., Johnson M.E., Fung L.W.-M. Crystal structure of the nonerythroid α-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J. Biol. Chem. 2010;285:14572–14587. doi: 10.1074/jbc.M109.080028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Mehboob S., Luo B.-H., Patel B.M., Fung L.W.-M. αβ spectrin coiled coil association at the tetramerization site. Biochemistry. 2001;40:12457–12464. doi: 10.1021/bi010984k. [DOI] [PubMed] [Google Scholar]
  • 31.Mehboob S., Jacob J., May M., Kotula L., Thiyagarajan P., Johnson M.E., Fung L.W.-M. Structural analysis of the αN-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering. Biochemistry. 2003;42:14702–14710. doi: 10.1021/bi0353833. [DOI] [PubMed] [Google Scholar]
  • 32.Begg G.E., Morris M.B., Ralston G.B. Comparison of the saltdependent self-association of brain and erythroid spectrin. Biochemistry. 1997;36:6977–6985. doi: 10.1021/bi970186n. [DOI] [PubMed] [Google Scholar]
  • 33.Sumandea C.A., Fung L.W.-M. Mutational effects at the tetramerization site of nonerythroid alpha spectrin. Mol. Brain Res. 2005;136:81–90. doi: 10.1016/j.molbrainres.2005.01.003. [DOI] [PubMed] [Google Scholar]
  • 34.Marchler-Bauer A., Lu S., Anderson J.B., Chitsaz F., Derbyshire M.K., DeWeese-Scott C., Fong J.H., Geer L.Y., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Jackson J.D., Ke Z., Lanczycki C.J., Lu F., Marchler G.H., Mullokandov M., Omelchenko M.V., Robertson C.L., Song J.S., Thanki N., Yamashita R.A., Zhang D., Zhang N., Zheng C., Bryant S.H. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–D229. doi: 10.1093/nar/gkq1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Roussigne M., Kossida S., Lavigne A.-C., Clouaire T., Ecochard V., Glories A., Amalric F., Girard J.-P. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P lelement transposase. Trends Biochem. Sci. 2003;28:66–69. doi: 10.1016/S0968-0004(02)00013-0. [DOI] [PubMed] [Google Scholar]
  • 36.Macara I.G., Baldarelli R., Field C.M., Glotzer M., Hayashi Y., Hsu S.C., Kennedy M.B., Kinoshita M., Longtine M., Low C., Maltais L.J., McKenzie L., Mitchison T.J., Nishikawa T., Noda M., Petty E.M., Peifer M., Pringle J.R., Robinson P.J., Roth D., Russel S., Stuhlmann H., Tanaka M., Tanaka R., Trimble W., Ware J., Zeleznik-Le N.J., Zieger B. Mammalian septins nomenclature. Mol. Biol. Cell. 2002;13:4141–4143. doi: 10.1091/mbc.E02-07-0438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Peterson E.A., Petty E.M. Conquering the complex world of human septins: implications for health and disease. Clin. Genet. 2010;77:511–524. doi: 10.1111/j.1399-0004.2010.01392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Han G.A., Malintan N.T., Collins B.M., Meunier F.A., Sugita S. Munc18-1 as a key regulator of neurosecretion. J. Neurochem. 2010;115:1–10. doi: 10.1111/j.1471-4159.2010.06900.x. [DOI] [PubMed] [Google Scholar]
  • 39.David Y., Ziv T., Admon A., Navon A. The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 2010;285:8595–8604. doi: 10.1074/jbc.M109.089003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Ardley H.C., Moynihan T.P., Markham A.F., Robinson P.A. Promoter analysis of the human ubiquitin-conjugating enzyme gene family UBE2L1-4, including UBE2L3 which encodes UbcH7. Biochim. Biophys. Acta. 2000;1491:57–64. doi: 10.1016/s0167-4781(00)00024-5. [DOI] [PubMed] [Google Scholar]
  • 41.Good M.C., Zalatan J.G., Lim W.A. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332:680–686. doi: 10.1126/science.1198701. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES