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Abstract. Attrition risk related to efficacy is still a major reason why new chemical entities fail in clinical trials
despite recently increased understanding of translational pharmacology. Pharmacokinetic-pharmacodynamic
(PKPD) analysis is key to translating in vivo drug potency from nonclinical models to patients by providing a
quantitative assessment of in vivo drug potency with mechanistic insight of drug action. The pharmaceutical
industry is clearly moving toward more mechanistic and quantitative PKPD modeling to have a deeper
understanding of translational pharmacology. This paper summarizes an anticancer drug case study describing
the translational PKPD modeling of crizotinib, an orally available, potent small molecule inhibitor of multiple
tyrosine kinases including anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor
(MET), from nonclinical to clinical development. Overall, the PKPD relationships among crizotinib systemic
exposure, ALKorMET inhibition, and tumor growth inhibition (TGI) in human tumor xenograft models were
well characterized in a quantitative manner using mathematical modeling: the results suggest that 50% ALK
inhibition is required for >50% TGI whereas >90%MET inhibition is required for >50% TGI. Furthermore,
>75%ALK inhibition and >95%MET inhibition in patient tumors were projected by PKPDmodeling during
the clinically recommended dosing regimen, twice daily doses of crizotinib 250 mg (500 mg/day). These
simulation results of crizotinib-mediated ALK and MET inhibition appeared consistent with the currently
reported clinical responses. In summary, the present paper presents an anticancer drug example to demonstrate
that quantitative PKPD modeling can be used for predictive translational pharmacology from nonclinical to
clinical development.
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INTRODUCTION

Pharmacokinetic-pharmacodynamic (PKPD) modeling is
a useful mathematical approach linking drug exposure to
pharmacologic response as a function of time, providing a
quantitative assessment of in vivo drug potency with mech-
anistic insight of drug action (1–4). PKPD modeling is being
applied to virtually all phases of drug discovery and
development such as 1) drug candidate selection with most
favorable PKPD properties and 2) prediction of exposure-
response in patients with the aim to optimize clinical trial
design. For setting the first-in-human (FIH) dose and
subsequent dosing regimen recommendation, several factors,
which may vary among therapeutic areas, are carefully taken

into consideration. For example, a FIH dose of an anticancer
drug would basically be recommended by nonclinical safety
study results, such as no observed adverse effect level
(NOAEL) and highest non-severely toxic dose (HNSTD),
together with an overall risk assessment based on nonclinical
data (Fig. 1) (5). In phase I dose-escalation studies, one of the
most important questions is whether systemic exposures in
patients are enough to achieve the expected antitumor
efficacy. Therefore, PKPD understanding is particularly key
to support a decision to move clinical drug candidates forward,
ultimately to evaluate their clinical efficacy in phase II trials
(6). The use of PKPD modeling in this context relies on the
prediction of the time-course of drug action in patients based
on quantitative PKPD data and understanding in nonclinical
models. A full evaluation of the PD system, which converts in
vivo responses related to its target (e.g., target modulation and
subsequent biomarker response) to pharmacological response
(e.g., antitumor efficacy), is among the key translational
considerations from nonclinical models to patients. Accord-
ingly, a quantitative PKPD model-based approach to transla-
tional pharmacology can provide valuable opportunities to
accelerate the evaluation of drug candidates in the clinic (7–9).

Despite recently increased understanding of translational
pharmacology, attrition risk related to efficacy is still a major
reason why new chemical entities fail in clinical trials (10,11).
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In the case of anticancer drugs, numerous agents have shown
effective, and sometimes even spectacular in vivo antitumor
efficacy in nonclinical models. Unfortunately, such nonclinical
results are often followed by efficacy failure in clinical trials,
or only modest efficacy even if the drug is successful (12,13).
Thus, there appears to be a continuing lack of clear
understanding about translational pharmacology of antican-
cer agents. The value of any nonclinical models ultimately
depends upon their ability to predict clinically relevant
responses accurately. Human tumor xenograft mouse models
are extensively used as the most common nonclinical
antitumor efficacy model and have played an important role
for drug discovery and development. The advantages and
disadvantages of the use of xenograft models have been
discussed extensively (12–16). Historically, human tumor
xenograft models have been developed and validated using
cytotoxic cancer agents. In contrast, most anticancer agents
under current development (e.g., tyrosine kinase inhibitors)
are designed to inhibit or interfere with specific molecular
targets or pathways. Accordingly, a growing emphasis is being
placed upon the incorporation of biomarker responses into
translational pharmacology, because a certain degree of
biomarker response, as driven by unbound drug concentra-
tion at target site, should be quantitatively related to
antitumor efficacy. This more sophisticated approach may
naturally lead to some questions: what is the value of in vivo
xenograft models; whether antitumor efficacy evaluation in
tumor cell cultures is enough for clinical drug candidates, etc.
On the contrary, human tumor xenograft models are current-
ly valuable to determine in vivo PKPD relationships of drug
concentration (exposure) to target modulation, subsequent
biomarker response and/or antitumor efficacy. Therefore,
tumor xenograft mouse models are used extensively to
evaluate in vivo PKPD relationships of molecularly targeted
agents (14–16), often in conjunction with a mathematical
modeling approach (17–22). For translational pharmacology
of molecularly targeted agents, it would be crucial to select
appropriate human tumor cell lines and in vivo xenograft
models by considering several factors such as target gene, its
related pathway, clinical indication and intended patient
population. It would also be vital to understand molecular

pathway and genetic events occurring in individual patients
by identifying mutations, amplification, overexpression or
translocation in oncogenic proteins such as epidermal growth
factor receptor (EGFR), mesenchymal-epithelial transition
factor (MET, also named cMet or HGFR) and anaplastic
lymphoma kinase (ALK). These oncogenic proteins are
potentially involved in tumor initiation and progression;
therefore, personalized targeted cancer therapy can be
considered a clinically effective alternative strategy to con-
ventional therapy.

To achieve a reliable extrapolation of PKPD relation-
ships from in vivo nonclinical xenograft models to patients,
there are obviously several important assumptions that need
to be made and evaluated. One of the main assumptions is
that the tumor microenvironment is functionally comparable
between subcutaneous tumor xenograft models and human
tumors growing in particular sites of organs or tissues. This
assumption also presumes a similar overall drug distribution
between xenograft models and human tumors. A marked
difference in tumor growth rate between xenograft models
and patients may have a significant impact on the evaluation
of drug-related antitumor efficacy. A different effect of tumor
burden on therapeutic efficacy between nonclinical models
and cancer patients may also be considered carefully.
Ultimately, the most important question in translational
pharmacology is whether PKPD relationships of drug expo-
sure, target occupancy or modulation and pharmacological
effects are quantitatively translatable from nonclinical models
to patients. When this assumption is reasonably valid, two of
the subsequent important questions are whether 1) a
sufficient drug exposure is achieved in patients to elicit its
desired pharmacological effects at the target site of action
over a desired time period, and 2) a required target
occupancy or modulation (or its surrogate biomarker, if
reasonably available and applicable) is achieved in patients
to elicit its desired pharmacological effects. When a drug
candidate in clinical trials meets these criteria, its clinical
development can be carried out in a rational way through
translational pharmacology, thus minimizing attrition risk.
Therefore, the pharmaceutical industry is clearly moving
toward proactive utilization of more mechanistic and

Fig. 1. Main work streams for setting the first-in-human starting dose and subsequent phase II
dose/dosing regimen recommendation in cancer therapeutics. NOAEL, no observed adverse effect
level; HNSTD, highest non-severely toxic dose; HED, human equivalent dose
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quantitative PKPD modeling to gain a deeper understanding
of translational pharmacology (6).

Crizotinib (previously known as PF02341066, marketed
as Xalkori®) was identified as an orally available, potent
ATP-competitive small molecule inhibitor of multiple tyrosine
kinases including ALK and MET (23). Crizotinib phase I
dose-escalation study started in 2006 in patients with solid
tumors primarily as a MET inhibitor (24,25). After the
discovery of ALK gene rearrangement such as echinoderm
microtubule-associated protein-like 4 (EML4)-ALK in non-
small cell lung cancer (NSCLC) in 2007 (26,27), the first
ALK-positive NSCLC patient enrolled in the dose-escalation
trial in 2007 followed by the second patient in 2008. Promising
clinical responses in both the patients treated with crizotinib
prompted to add an additional ALK-positive NSCLC ex-
panded cohort to the ongoing clinical studies in 2008 in
parallel with screening for MET-positive patients, e.g., MET-
mutation and amplification (24,25). Subsequently, an overall
response rate of 61% (confirmed complete and partial
responses) was observed in an expanded cohort of 143
NSCLC patients carrying ALK rearrangements (24,28).
Crizotinib has recently been approved by the Food and Drug
Administration (FDA) for the treatment of patients with
locally advanced or metastatic NSCLC that is ALK-positive
as detected by an FDA-approved test. The companion
diagnostic test kit to detect ALK rearrangements (i.e., a
breakapart fluorescence in situ hybridization assay) has also
been developed in parallel with clinical trials of crizotinib
(25,29). Investigations into the clinical responses derived from
crizotinib-mediated MET inhibition are still ongoing with
case reports describing clinical activity in some patients with
MET-amplified NSCLC, gastroesophageal carcinoma and
glioblastoma (25).

We previously reported the PKPD modeling of crizotinib
for the inhibition of ALK phosphorylation and antitumor
efficacy in athymic nu/nu mice implanted with H3122 NSCLC
or severe combined immunodeficient (SCID) mice implanted
with Karpas299 anaplastic large cell lymphomas (22) and for
the inhibition of MET phosphorylation and antitumor
efficacy in athymic nu/nu mice implanted with GTL16 gastric
carcinomas (GC) or U87MG glioblastomas (21). The objec-
tive of this case study is to review the translational pharma-
cology of crizotinib from nonclinical models to patients based
on quantitative PKPD modeling in each ALK- and MET-
driven tumor xenograft model, i.e., H3122 NSCLC and
GTL16 GC xenograft model, respectively (21,22). Further-
more, several factors contributing to the projection of
clinically efficacious concentrations and dosing regimens of
anticancer drugs are discussed from the perspective of PKPD
modeling and simulation.

METHODS

In Vivo PKPD Study

The detailed experimental designs and methods of
crizotinib in vivo PKPD studies were previously reported
(21,22). In this paper, we focused on four separate
multiple oral-dose PKPD studies, that were conducted
with crizotinib in athymic nu/nu mice implanted with
H3122 NSCLC (studies ALK-1 and ALK-2) or GTL16

GC (studies MET-1 and MET-2). Mice were orally treated with
crizotinib at the doses of 25 to 200 mg/kg once daily in studies
ALK-1 and ALK-2 and at the doses of 6.25 to 50 mg/kg once
daily in studies MET-1 and MET-2. In the original report (21),
three separate studies of crizotinib were conducted in mice
implanted with GTL16 GC, i.e., two studies for MET inhibition
and one study for tumor growth inhibition (TGI). To avoid
confusion in this paper, two studies for MET inhibition were
combined and indicated as study MET-1, whereas one TGI
study was indicated as study MET-2. In order to accurately
estimate the PKPD relationship, it would be important to select
an appropriate dose range showing negligible/weak to maximal
effects. A subset of mice was humanely euthanized at 1, 4, 7 and
24 h after the last dose to collect blood and tumor samples (n03/
time point). To perform robust PKPD modeling, it would be
important to have a reasonable number of animals and time
points, considering a balance betweenminimizing cost and labor
resources versus maximizing accuracy and precision of the
exposure-response (PKPD) estimation. Although study design
generally depends upon several factors, such as compound,
target and xenograft model tested, the author’s recommenda-
tion based on prior experience is at least 3 animals per time
point, 4 doses (plus control group) and 5 time points to perform
relevant PKPD modeling. Once any PKPD data are available,
the design of subsequent studies can be optimized by simulation
based on previous data set. The protein levels of phosphorylated
ALK (ALK phosphorylation) or MET (MET phosphorylation)
in tumors were determined using a capture enzyme-linked
immunosorbent assay (studies ALK-1 and MET-1), and then
normalized by mean values of the vehicle control group;
therefore, the levels of ALK and MET phosphorylation were
expressed as the ratios to their baseline (i.e., unity). It is
important for modelers to understand assay sensitivity, lower
limit of quantitation, precision and accuracy of biomarker assay
to properly perform PKPD modeling. Tumor volume of each
animal was measured during the treatment period by
electronic Vernier calipers and was calculated as the
product of its length × width2 × 0.4 (studies ALK-2 and
MET-2). The author would recommend measurement of
tumor volumes at least every other day during the
treatment period to accurately characterize the tumor
growth rate, which could be one of the most important
parameters for PKPD modeling, as will be mentioned
later.

Crizotinib PK Analysis

The detailed quantitative crizotinib assay method and its
PK analysis in mouse xenograft models were previously
reported (21,22). In general, assay method for drug candi-
dates might not be validated yet in the early stage of drug
discovery, where most nonclinical PKPD studies were con-
ducted. However, it would be important to have a robust
assay method with reasonable accuracy and precision. In our
assay method, the calibration curve range was 1 to 1,000 or
2,500 ng/mL with precision and accuracy of the quality
control samples of less than ±15%. The back calculated
calibration standard concentrations were within ±15% of
their theoretical concentrations with coefficients of variation
of less than ±15%. The assay method in the clinic is typically
developed based on nonclinical assay method, and then fully
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validated to determine clinical PK parameters. Crizotinib
assay method used in the clinical studies was also validated
prior to FIH studies (30). The quantitative range, precision
and accuracy in the crizotinib assay method used in nonclin-
ical studies were comparable to that used in the clinic.

A naïve-pooled PK analysis was performed in the
present nonclinical studies, since a subset of mice (n03/time
point) was humanely euthanized at each time point to collect
blood samples. Therefore, all individual plasma concentra-
tions of crizotinib (one sample per animal) at each dose were
pooled together to perform PK analysis as if they came from
a single individual (31). This approach has been widely used
when a full plasma concentration-time profile from each
animal was not available. In the present studies, this approach
provided a better fitting compared to non-linear PK model
with Michaelis-Menten elimination (data not shown). A
standard one-compartment PK model was used to determine
estimates for the absorption rate constant (ka, h−1), oral
clearance (CL/F, L/h/kg) and oral volume of distribution (V/
F, L/kg). The pharmacokinetic parameters obtained were
used to simulate plasma concentrations as a function of time
following oral administration to drive the time-dependent PD
models. It should be noted that the estimated variability for
crizotinib PK in nonclinical models was not used for the
subsequent PKPD simulation in patients (described later)
because it was not generally considered as meaningful for
translational modeling.

PKPD Modeling for Target Modulation

In general, two types of PKPD models, the link model
and the indirect response model, have been proposed and
extensively used to characterize PKPD relationship for drug
concentrations and biomarker response, especially when a
time-delay of biomarker response relative to drug concentra-
tion was observed (32–34). In the link model, the rates of
onset and offset of the biomarker response are assumed to be
governed by the rate of drug distribution to and from a
hypothetical effect site. However, the time-delay of biomark-
er response is often caused by other reasons, particularly
because of indirect mechanisms of action such as stimulation
or inhibition of formation (kin) or loss (kout) of substance
controlling the physiological response. The indirect response
model, which is based on the turnover concept, accounts for
delays caused by the time needed for changes in kin or kout to
be fully reflected in the physiological response. These two
types of PKPD models were applied to characterize ALK or
MET phosphorylation in tumor to plasma concentration of
crizotinib (21,22).

In the link model (henceforth referred to as model I), the
effect site concentration of crizotinib (Ce, ng/mL) was first
calculated by the following differential equation:

dCe

dt
¼ ke0 � Cp � Ce

� � ð1Þ

where ke0 is the rate constant for equilibration with the effect
site (h-1) and Cp is the plasma concentration of crizotinib (ng/
mL).

Then, the biomarker response in tumor to plasma
concentration of crizotinib was characterized to determine

EC50 by the following equation:

E ¼ E0 � 1� Emax � Cg
e

ECg
50 þ Cg

e

� �
ð2Þ

where E is the ratio of ALK or MET phosphorylation to its
baseline (E0), Emax is maximum effect, EC50 is the concen-
tration causing one-half Emax (ng/mL) and γ is the Hill
coefficient.

In the indirect response model (henceforth referred to as
model II), ALK or MET phosphorylation at baseline is
assumed to be maintained by the balance of formation and
degradation rates as mentioned above. The addition of
crizotinib was considered to inhibit the biomarker’s formation
rate, because crizotinib was a competitive ATP-binding
inhibitor. Therefore, the following differential equation was
used to determine EC50 required for crizotinib-mediated
ALK or MET inhibition:

dE
dt

¼ kin � 1� Emax � Cg
p

EC50
g þ Cg

p

� �
� kout � E ð3Þ

where kin is the zero-order formation rate constant (h-1) and
kout is the first-order degradation rate constant (h-1).

Drug-Disease Modeling for Antitumor Efficacy

In general, the time-dependent behavior of in vivo
tumor growth curves in xenograft models can be described
as an exponential growth in the early phase followed by a
linear growth and then a plateau phase (35,36). This
growth inhibition is considered as being mainly caused by
insufficient oxygen and nutrient supplies due to a large
tumor mass. The full temporal profile of in vivo tumor
growth curves can thus be described by either a logistic
(37) or Gompertz model (36). Recent modeling
approaches based on transduction processes for antitumor
efficacy evaluation include cell distribution and signal
transduction models (38–40). Whether these models are
applicable to each data set largely depends upon available
experimental results measured over a certain period of
time with a certain interval. In the present study,
antitumor efficacy to crizotinib plasma concentration was
characterized by a modified indirect response model based
on either exponential or logistic models, where crizotinib
was assumed to ultimately inhibit tumor growth rate
(21,22). When individual tumor volumes of control ani-
mals were exponentially increased over the time of
experimental period, the response of tumor volume (T)
to crizotinib plasma concentration (Cp) was modeled by
the following differential equation based on the exponen-
tial growth model (henceforth referred to as model III):

dT
dt

¼ ktg � 1� Emax � Cg
p

ECg
50 þ Cg

p

� �
� T � ktd � T ð4Þ

where T is tumor volume, ktg is the first-order tumor growth
rate constant (h-1), ktd is the first-order tumor death rate
constant (h-1).

On the other hand, when the individual tumor volumes
were increased linearly or reached a plateau phase over the
time of experimental period, the following differential
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equation based on the logistic growth model was used for
drug-disease modeling (henceforth referred to as model IV):

dT
dt

¼ ktg � 1� Emax � Cg
p

ECg
50 þ Cg

p

� �
� 1� T

Tss

� �
� T � ktd � T ð5Þ

where Tss represents the maximum sustainable tumor volume
(carrying capacity), which is assumed to be constant whereas
the carrying capacity may change over time.

In the logistic growth model, the tumor growth rate is
roughly first-order (i.e., exponential growth) when T is
relatively small. The tumor growth rate thereafter decreases
with the increase in T, and then finally approaches zero when
T reaches Tss (i.e., carrying capacity). Mathematically, a
logistic model with large Tss relative to the observed maximal
tumor volume nearly equals to an exponential growth model.
In our approach, both models were typically applied to
compare the goodness-of-fit of individual tumor growth
curves, and then a better model was selected as a final model.
The logistic and exponential growth models were used in
studies ALK-2 and MET-2, respectively, because of the
goodness-of-fit. The difference in tumor growth curves
between these studies may simply reflect baseline tumor
growth dynamics that differ among a variety of xenograft
models. Hill coefficients (γ) were fixed to be unity in both
studies.

Integrated Drug-Disease Modeling for Antitumor Efficacy

To further investigate the PKPD relationships of crizo-
tinib in the xenograft models, a recently proposed integrated
drug-disease model, i.e., the integration of mathematical
modeling from biomarker to pharmacological response (20),
was applied to comprehensively characterize the relationships
between crizotinib Cp, target modulation (ALK or MET) and
TGI. This integrated model differs from the stepwise
approach described above, where target modulation and
TGI are modeled separately based on crizotinib plasma
concentration. In the integrated model, the PD parameters
obtained by the link model were used to simulate the ALK or
MET phosphorylation (ratio to baseline) as a function of
time. Antitumor efficacies in studies MET-2 and ALK-2 were
then modeled using an “inhibition index” (1/E-1) as the
variable driving the effect based on the exponential growth
model (Eq. 6) and the logistic model (Eq. 7), respectively:

dT
dt

¼ ktg � 1� Emax � 1=E� 1ð Þg
ETg

50 þ 1=E� 1ð Þg
� �

� T � ktd � T ð6Þ

dT
dt

¼ ktg � 1� Emax � 1=E� 1ð Þg
ETg

50 þ 1=E� 1ð Þg
� �

� 1� T
Tss

� �
� T

� ktd � T ð7Þ

where, as before, E is the ALK or MET phosphorylation
ratio to its baseline and ET50 corresponds to the ALK or
MET inhibition index producing 50% of Emax. These
integrated drug-disease models are henceforth referred to as
model V and VI, respectively.

PKPD Simulation in Patients

For anticancer agents, phase I studies are generally
conducted in a manner of dose escalation to determine safety
profiles including maximal tolerated dose (MTD), dose-
limiting toxicities, PK profiles and the recommended phase
II dose (RP2D). Clinical PKPD relationships of systemic drug
exposure to target modulation and/or its surrogate biomarker
response (e.g., proof of mechanism) should be established in
phase I studies such as an expanded cohort setting of selected
patients at MTD. However, tumor biopsy samples, especially
serial samples, are currently difficult to obtain from patients.
In addition, most human tumors are highly heterogeneous,
being a complex mixture of multiple cell types, and target
modulation/biomarker responses typically show large vari-
ability in the clinic (41,42). Despite these limitations, it has
been reported that phase I dose-escalation study of the poly
(ADP-ribose) polymerase inhibitor (PARP), AG014699, was
conducted to establish the PARP inhibitory dose using a
target modulation as the primary endpoint (43). This
approach can maximize potential benefits and minimize
possible risks of anticancer drugs in patients, but unfortu-
nately is a rare practice in the field. If an inhibitory dose was
established for a first-in-class candidate drug based on its
target modulation and/or biomarker response, it can be
valuable for subsequent drug candidates to conduct dose-
escalation studies safely and effectively. The quantitative
understanding of translational pharmacology is key to make
this approach successful. In this context, clinical crizotinib
PKPD relationship in phase I dose-escalation study (e.g., a
starting dose of 50 mg once daily to the highest dose of
300 mg twice daily) had been simulated based on nonclinical
PKPD data with the predicted/observed crizotinib plasma
concentrations. Particularly, the projection of crizotinib
PKPD relationship at the RP2D, 250 mg twice daily
(500 mg/day), was crucial to make the decision to move
forward. It is worth noting that no clinical data regarding
crizotinib-mediated ALK- or MET-related biomarker
responses are available. For crizotinib PKPD simulation,
crizotinib plasma concentrations were first simulated as a
function of time in patients following the twice-daily doses of
250 mg for 14 days using a one-compartment PK model with
CL/F of 70 L/h, V/F of 1,500 L and ka of 0.75 h−1 (22). Since
crizotinib steady-state plasma concentrations were higher
than simulated from single-dose PK parameters (i.e.,
nonlinear kinetics from single to multiple doses), these one-
compartment PK parameters were adjusted from the
clinically observed single-dose PK parameters to simulate
comparable steady-state plasma concentrations to the
clinically observed results previously reported (30): the
differences in the maximum plasma concentration (Cmax)
and the area under the plasma concentration-time curve
during the dosing interval of 12 h (AUC0-τ) at steady-state
between the simulated (342 ng/mL and 3,570 ng·h/mL,
respectively) and observed values (368 ng/mL and 3,641 ng·
h/mL, respectively) were within 10%. Based on the simulated
crizotinib plasma concentrations, crizotinib-mediated ALK or
MET inhibition in patient tumors were projected using the
pharmacodynamic characteristics determined in nonclinical
ALK- or MET-driven xenograft models. Given that human
tumor cells were subcutaneously inoculated into animals to
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establish nonclinical xenograft models, the dynamic PD
parameters (e.g., ke0) for the PKPD simulation were used
without any correction. In contrast, the assumption was made
that unbound EC50 values were comparable between
nonclinical xenograft models and patients, in keeping with
“free drug hypothesis”. Thus, EC50 values estimated in
nonclinical models were appropriately adjusted accounting
for plasma protein binding differences between species:
crizotinib unbound fractions in plasma; (fu,plasma) were 0.093
and 0.036 in humans and mice, respectively.

Data Analysis

PK and PKPD modeling analyses were performed with
NONMEM version VI (University of California at San
Francisco, San Francisco, CA). The subroutine ADVAN2
with TRANS2 implemented in NONMEM was used for a
one-compartment PK analysis whereas the subroutines
ADVAN6 and ADVAN8 were used for the PKPD analyses
with the link and indirect response models, respectively. The
subroutine ADVAN8 was also used for the drug-disease
model and PKPD simulation. The initial conditions at time
zero were the dose amount (mg/kg or mg) in the dosing
compartment, the baseline ratio (i.e., unity) for E and the
measured initial individual tumor volume (mm3) for T.
Residual variability was characterized by a proportional
error model. The source of inter-animal variability
(described with an exponential variance model) was
assumed as either ktg or ktd in the drug-disease model. As is
customary, model selection was based on a number of criteria
such as the NONMEM objective function values (OFV),
parameter estimates, standard errors, and scientific
plausibility, as well as exploratory analysis of standard
goodness-of-fit plots. One of the advantages to perform
nonclinical PKPD modeling with NONMEM is the
extensive use of this software by most cl inical
pharmacologists. This improves the sharing of model
structures, technical discussions and translation between
organizations.

RESULTS

In Vivo Crizotinib PK

A one-compartment PK model sufficiently described
plasma concentration-time courses of crizotinib in both
H3122 NSCLC and GTL16 GC xenograft models following
multiple oral doses (21,22). PK parameter estimates for
crizotinib are summarized in Supplemental Table S1. The
coefficient variability of the majority of PK parameters were
relatively small (<40%). The CL/F values in all studies
tended to be higher at the lower doses than at the higher
doses, suggesting nonlinear PK in xenograft models at the
dose range tested. The observed dose-dependent PK was
likely associated with an inhibition of crizotinib hepatic/
intestinal clearance because crizotinib was reported to be a
substrate and inhibitor of CYP3A isozymes with a negligible
renal excretion (44).

In the clinic, the steady-state crizotinib Cmax and AUC0-τ

were 368 ng/mL and 3,641 ng·h/mL, respectively, in cancer
patients (n 06) at the RP2D of 250 mg twice daily (500 mg/

day) (30). The average steady-state unbound plasma concen-
tration (Cave,u), that was calculated from AUC0-τ divided by a
dosing interval followed by the correction for fu,plasma, ranged
from 50 to 60 nM free. Nonclinical dose level corresponding
to the Cave,u in patients at the RP2D was approximately
50 mg/kg once daily in the present studies.

PKPD Relationships for Target Modulation and Antitumor
Efficacy

Crizotinib plasma concentrations reached Cmax at 1 to
4 h post-dose and slowly declined thereafter in both H3122
NSCLC (study ALK-1) and GTL16 GC (study MET-1)
xenograft models, while crizotinib-mediated ALK or MET
inhibition was sustained throughout most of the dosing
interval of 24 h. The ALK or MET inhibition was particularly
pronounced at higher doses. Thus, temporal disconnects
between crizotinib plasma concentrations and target modu-
lations were observed in both xenograft models. Such a time-
delay between systemic exposure and biomarker response is
often described as hysteresis, and can be analyzed with
appropriately defined PKPD models that explicitly incorpo-
rate a provision for time-delay. A link model (model I)
reasonably fit the time-courses of target modulation with
EC50 of 233 ng/mL in study ALK-1 and EC50 of 18.5 ng/mL in
study MET-1 (Table I). Pharmacodynamic half-lives in studies
ALK-1 and MET-1 were 23 and 5.1 h, respectively, as
quantified by ke0 values of 0.030 and 0.135 h−1, respectively.
In contrast to the link model, an indirect response model
(model II) did not fit the time-courses of ALK or MET
inhibition well in both studies ALK-1 and MET-1, resulting in
higher OFVs of −132 and −265, respectively, compared to
those in the link models (−153 and −322, respectively).
Accordingly, the link model was selected as the final PKPD
model for crizotinib-mediated ALK or MET inhibition.

The drug-disease models (i.e., model III and IV)
adequately fit the individual tumor growth curves during
crizotinib multiple-dose treatment in both H3122 NSCLC
(study ALK-2) and GTL16 GC (study MET-2) xenograft
models with the EC50 of 255 and 213 ng/mL, respectively
(Table II). The EC50 value for TGI in H3122 NSCLC
xenograft model was comparable with that for ALK inhibi-
tion (233 ng/mL). In contrast, the EC50 value for TGI in
GTL16 GC xenograft model was approximately 10-fold
higher than that for MET inhibition (18.5 ng/mL). As a
result, the EC50 value for TGI was roughly comparable to the
EC90 for MET inhibition (167 ng/mL). A recently proposed
integrated PKPD modeling was applied to further character-
ize the PKPD relationships of crizotinib for ALK or MET
inhibition to antitumor efficacy in the xenograft models
(Table II). The integrated PKPD models (i.e., model V and
VI) also reasonably fit the individual tumor growth curves in
all groups of studies ALK-2 and MET-2. The relationships
between the observed and predicted tumor volumes were
almost super-imposable to those estimated from the drug-
disease model alone: the correlation coefficients of linear
regression analyses for the integrated and drug-disease
models were 0.973 and 0.972, respectively, for H3122 NSCLC
xenograft model, and 0.991 and 0.990, respectively, for
GTL16 GC xenograft model. These findings indicated that
the integrated PKPD model did not introduce any bias to the
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drug-disease modeling. The OFVs of the integrated PKPD
models in H3122 NSCLC and GTL16 GC xenograft models
(4010 and 2404, respectively) were also comparable to those
from the drug-disease model alone (4011 and 2404, respec-
tively). The ET50 value in a H3122 NSCLC model was
estimated to be 1.03, indicating E of approximately 0.50 (i.e.,
50% inhibition) corresponded to 50% TGI. In contrast, the
ET50 value in a GTL16 GC model was estimated to be 15.8,
indicating E of approximately 0.06 (i.e., 94% inhibition)
corresponded to 50% TGI. Collectively, the integrated PKPD
modeling results suggest that target modulation required for
significant antitumor efficacy (>50% TGI) is >50% ALK
inhibition in H3122 NSCLC xenograft model and >94% MET
inhibition in GTL16 GC xenograft model. This finding
confirmed to an extent the results previously obtained with
the sequential PKPD modeling.

Overall, the PKPD relationships among crizotinib sys-
temic exposure, ALK or MET inhibition, and TGI in H3122
NSCLC and GTL16 GC xenograft models were characterized
well in a quantitative manner using mathematical models to
understand nonclinical PKPD (exposure-response) relation-
ships (Fig. 2). The present modeling effort suggests that
crizotinib-mediated target modulation of >50% ALK inhibi-
tion or >90% MET inhibition would be required to achieve
significant anti-tumor efficacy (>50%).

PKPD Simulation in Patients

A simulation for crizotinib plasma concentration and
subsequent ALK or MET inhibition in tumors was performed
in a population of patients at the RP2D of 250 mg twice daily
(500 mg/day) for 14 days. Crizotinib PKPD parameters used
for the simulation are summarized in Table III. Crizotinib
EC50 values for ALK and MET inhibition were assumed to
be 90 and 7.2 ng/mL total, respectively, that were calculated
from the EC50 estimates of 233 and 18.5 ng/mL total from the
nonclinical models by accounting for the species-difference in
fu,plasma as indicated in Methods. The simulation result
projected that the crizotinib-mediated ALK and MET
inhibition in patients was sustained during drug treatment.
The simulated ALK inhibition reached approximately 75%
whereas the simulated MET inhibition rapidly reached near-
complete inhibition (∼98%). Thus, the simulated target
modulation for ALK and MET in tumor of cancer patients
at the RP2D was higher than the projected minimal required
target modulation (i.e., >50% ALK and >90% MET) to
achieve the expected antitumor efficacy. In addition, the
simulation of crizotinib-mediated ALK inhibition was

performed in a population of patients at the doses of
200 mg twice daily (400 mg/day) and 250 mg once daily
(250 mg/day), since the reduction to these dosing regimens
has been recommended in the prescription of Xalkori® based
upon individual safety and tolerability if necessary. The
simulated ALK inhibition reached approximately 65% at
the dose of 200 mg twice daily and 60% at the dose of 250 mg
once daily. Thus, the simulated ALK inhibition at these
reduced dosing regimens was still enough to achieve the
expected antitumor efficacy in patients.

DISCUSSION

Building PKPD Understanding in Nonclinical Models

Crizotinib in vivo EC50 and EC90 estimates for ALK,
MET and TGI in xenograft models, along with in vitro ALK
and MET EC50 estimates are summarized in Table IV. It is
important to examine in vitro-in vivo correlations for key
PKPD parameters such as EC50. The estimated in vivo EC50

values in the nonclinical xenograft models tend to be lower
than their in vitro EC50 values. Crizotinib-mediated ALK
inhibition in H3122 NSCLC xenograft model was achieved
with an in vivo EC50 of 19 nM free, that was approximately 3-
fold lower than in vitro EC50 of 60 nM (45). In GTL16 GC
xenograft models, crizotinib-mediated MET inhibition was
achieved with an in vivo EC50 of 1.5 nM free, that was
approximately 7-fold lower than in vitro value (10 nM) (46).
While there are several potential reasons for such a discon-
nect between in vitro and in vivo EC50 estimates, a correction
for non-specific binding of crizotinib in the in vitro cell-based
assay might be the one to be considered since crizotinib
showed relatively high non-specific binding (∼90%) in
hepatic microsomes and hepatocytes, along with high plasma
protein binding of 91 to 96% across species (47). Another
potential contributing factor could be the impact of subcuta-
neous inoculation of tumor cells on the expression levels of
drug-metabolizing enzymes and transporters in mouse xeno-
graft models (48), since crizotinib has been characterized as a
substrate of CYP3A isozymes and multidrug-resistance
transport protein, P-glycoprotein (44). As a general lesson
in drug discovery and development programs, it is important
to investigate whether there is an in vitro-in vivo correlation
of EC50 estimates for target modulation and/or biomarker
response. If there was a poor correlation, we might need to
further investigate several factors involved in biochemical or
functional in vitro assay systems and in vivo xenograft models
in addition to compound’s physicochemical and ADME

Table I. Pharmacodynamic Parameter Estimates of Crizotinib-Mediated ALK or MET Inhibition in Mouse Xenograft Models with H3122
NSCLC or GTL16 GC Cells Following Once Daily Oral Administration

Study Model

EC50

E0 Emax

ke0

γng/mL h−1

ALK-1 I 233 (153) 1 (fixed) 1 (fixed) 0.030 (0.013) 0.56 (0.11)
MET-1 I 18.5 (2.65) 1 (fixed) 1 (fixed) 0.135 (0.020) 1 (fixed)

Precision of the estimates is expressed as S.E. in parentheses
Study ALK-1: athymic nu/nu mice bearing H3122 NSCLC xenografts; Study MET-1: athymic nu/nu mice bearing GTL16 GC xenografts
Results are cited from previous reports (21,22)
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(absorption, distribution, metabolism and excretion)
properties.

Characterizing an anticancer agent’s ADME properties
is definitely crucial to understand its antitumor efficacy in
vivo. As shown in Fig. 2, pharmacodynamic evaluation is
strongly linked to traditional ADME evaluation; therefore,
this requires an intimate collaboration between biologists,
modelers and ADME scientists. For example, when pharma-
cologically active metabolites were present, the metabolites
should also be incorporated into the extrapolation of
translational pharmacology from nonclinical models to
patients, by taking account species-difference in the metabo-
lite formation and excretion. Moreover, the rate and degree
of anticancer agent’s distribution into tumors could be
strongly associated with the rate (e.g., onset and offset) and
extent of target modulation and/or biomarker response.
When anticancer agent was a substrate of any transporter
proteins (e.g., P-glycoprotein and breast cancer resistance
protein, BCRP) and its pharmacological targets were
expressed within the cells, we might need to further
investigate the concentration of anticancer agent within the
cells relative to systemic exposure. If we could accurately
predict molecularly targeted anticancer agent’s ADME

properties including drug distribution into tumors (e.g., target
site), testing in vivo xenograft model might not even be
required for further development.

It would be of great value to relate the ADME
properties of a molecule to its pharmacodynamic character-
istics. Crizotinib consistently showed a relatively large Vss (13
to 25 L/kg) across species including humans after an
intravenous administration, and crizotinib Cmax was occurred
at relatively later time point (e.g., 4 to 6 h) after an oral
administration across species (44,47). Crizotinib has an
extensive tumor distribution profiles with an approximate
tumor/plasma AUC ratio of 4 at steady-state (in-house data).
In the in vitro cell-based assay systems, the inhibition of both
ALK- and MET phosphorylation by crizotinib was relatively
rapid (<1 h) (46,49). However, in vivo pharmacodynamic
half-lives estimated by the link model were 23 and 5.1 h for
crizotinib-mediated ALK and MET inhibition, respectively,
demonstrating the observed substantial hysteresis. Based on
these findings, the main reason for the observed hysteresis
between crizotinib plasma concentration and target modula-
tion is likely a rate-limiting distribution from plasma to the
effect site (i.e., tumors). This appears to be in line with a
theoretical hypothesis of the link model. That is, the rates of

Table II. Pharmacodynamic Parameter Estimates of Crizotinib for Biomarker Response to Tumor Growth Inhibition in Mouse Xenograft
Models with H3122 NSCLC or GTL16 GC Cells Following Once Daily Oral Administration

Study Model

EC50

ET50 Emax E0

ke0 ktg ktd Tss

ng/mL h−1 h−1 h−1 h−1

ALK-2 IV 255 (22) – 1 (fixed) – – 0.0126 (0.0008) 0.00115 (0.000003) 1410 (155)
VI – 1.03 (0.023) 1 (fixed) 1 (fixed) 0.030a (fixed) 0.0126a (0.0008) 0.00115a (0.000003) 1410a (155)

MET-2 III 213 (123) – 1 (fixed) – – 0.0130 (0.0021) 0.00672 (0.00243) –
V – 15.8 (1.2) 1 (fixed) 1 (fixed) 0.135a (fixed) 0.0130a (0.0021) 0.00672a (0.00243) –

Precision of the estimates is expressed as S.E. in parentheses. –, not applicable
Study ALK-2: athymic nu/nu mice bearing H3122 NSCLC xenografts; Study MET-2: athymic nu/nu mice bearing GTL16 GC xenografts
Results are cited from previous reports (21,22)
aThe values were estimated by the corresponding link and drug-disease models

Fig. 2. PKPD modeling summary of crizotinib-mediated target modulation and antitumor efficacy in human tumor xenograft models. Cp,
plasma concentration; F, oral bioavailability; ka, absorption rate constant; V, volume of distribution; k, elimination rate constant; t, time after
dosing; Ce, effect-site concentration; ke0, rate constant for equilibration with the effect site; E, biomarker response ratio to baseline (E0); EC50,
concentration causing 50% of maximum effect (Emax); T, tumor volume; R, logistic function (1-T/Tss), where Tss is a maximum sustainable tumor
volume (R01 for exponential growth model)
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onset and offset of biological response are governed by the
rate of drug distribution to and from a hypothetical effect site
(34). There are also some circumstances where the indirect
response model may mimic a direct pharmacological response
because of a relatively short lag time to develop its response
(50). Therefore, the factors controlling target modulation, i.e.,
crizotinib-mediated ALK- and MET-inhibition, may be of
little importance to the observed hysteresis in the present
nonclinical models. The intermediary components between
drug concentration and PD response in an effect site (e.g.,
drug distribution to the effect site, indirect pharmacological
mechanisms, cascading transduction steps and others) are
generally not known in advance. To be able to distinguish
between the different processes contributing to the drug
distribution rate and the indirect pharmacodynamic response,
it requires intensive sampling at multiple doses in relation to
the half-lives of ke0 and the rate of biosignal turnover, in
addition to understanding of compound’s ADME property
and biological mechanism. The complexities of signaling
networks within cancer cells during tumorigenesis and tumor
progression have been intensely studied (26,51), whereas the
recent PKPD models rarely contain the degree of such
mechanistic detail. It is also possible for these networks to
undergo adaptive changes in response to anticancer agents. It
would be difficult, if not impossible, to completely understand
the effects of these factors on PKPD relationships; therefore,
it is important to properly design and run nonclinical studies
by selecting appropriate xenograft models (based, e.g., upon
clinical disease understanding, or relevance to patient popu-
lation) (16,52). It is also required to evaluate study results
quantitatively based on appropriate experimental endpoints.

Mechanistic PKPD modeling (and also dynamic systems
modeling approach) is often required to correctly analyze
these endpoints in a quantitative manner, and can greatly
facilitate a deeper understanding of translational pharmacol-
ogy. In contrast, tumor biopsies from cancer patients during
drug treatment are quite challenging to acquire under most
practical circumstances, and the primary endpoint in clinical
trials is generally overall survival with progression free
survival as secondly (or surrogate) endpoint in most cases
(53). Therefore, any surrogate markers from accessible
tissues, such as plasma, peripheral blood, mononuclear cells
and skin, which would be modulated in vivo by the drug,
would be of great value to quantitatively evaluate in vivo
drug potency. Ultimately, if a quantitative PKPD relationship
was deeply understood and well established in appropriate
nonclinical models, drug concentration in plasma from
patients could even be used as a reliable surrogate marker
for pharmacological response.

Projection of Crizotinib Antitumor Efficacy in Patients

In drug discovery and development, a target efficacious
concentration (Ceff) of clinical drug candidate is routinely
projected by characterizing a quantitative PKPD relationship
in nonclinical pharmacological models. We generally target
>50% TGI as the minimum required antitumor efficacy in
nonclinical xenograft models. This was defined based on in
house historical data and appeared to be consistent with a
recently reported analysis of antitumor efficacy of anticancer
agents between nonclinical xenograft models and cancer
patient (54). This analysis suggests that anticancer agents

Table III. Summary of Crizotinib Pharmacokinetic and Pharmacodynamic Parameters for the Projection of Crizotinib-Mediated ALK and
MET-Inhibition in Patients

Species Target

Dosea CL/Fb V/Fb ka
b ke0

b EC50,total
b EC50,free

fu,plasmamg/kg/day L/h/kg L/kg h−1 h−1 ng/mL ng/mL

Xenograft ALK 25 to 200 1.9 to 4.4 1.0 to 17 0.1 to 1.8 0.030 233 8.4 0.036
MET 6.3 to 50 1.5 to 14 3.2 to 56 0.24 to 0.34 0.135 18.5 0.67

Patients ALK
7.1 1.0 21 0.75

0.030 90 8.4 0.093
MET 0.135 7.2 0.67

aDaily dose in patients was calculated from clinically recommended dose (500 mg/day) with a body weight of 70 kg
b Pharmacodynamic parameters in xenograft models were estimated in athymic nu/nu mice bearing H3122 NSCLC (ALK) or GTL16 GC
(MET). Results are cited from previous reports (21,22). Pharmacokinetic parameters in patients were adjusted from the clinically observed
single-dose PK parameters to simulate comparable steady-state plasma concentrations to the clinically observed results previously reported
(30). The EC50,total values in patients were calculated from those estimated in the xenograft models following the correction for the difference
in unbound fraction in plasma (fu,plasma) between mice and humans. Other pharmacodynamic parameters such as Emax, E0 and γ were fixed as
unity for the simulation in patients

Table IV. Summary of Crizotinib Effective Concentration Estimates for Target Modulation and Antitumor Efficacy in Mouse Xenograft
Models with H3122 NSCLC or GTL16 GC Cells

Xenograft Model PD Parameter

EC50,vitro EC50,vivo EC90,vivo

nM free nM free nM free

H3122 NSCLC ALK 60 19 –
TGI – 20 –

GTL16 GC MET 10 1.5 13
TGI – 17 –

–, not calculated
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that lead to >60% TGI in nonclinical xenograft models at
clinically relevant exposures are more likely to lead to
antitumor efficacy in the clinic. It should be noted that target
TGI% would depend upon several factors, such as the
nonclinical xenograft models used, a possible attainable
maximum TGI%, a relationship of biomarker response to
TGI, and clinical indication/unmet need. These factors should
be carefully considered to set a target TGI% for the minimal
Ceff projection, and tumor stasis or even regression might be
an appropriate target in some cases.

It could be instructive to draw a comparison of EC50

values required to achieve target modulation and antitumor
efficacy. As mentioned above, the EC50 for ALK inhibition
(19 nM free) was comparable to the EC50 required for TGI
(20 nM free) in H3122 NSCLC xenograft model, whereas the
EC50 for MET inhibition (1.5 nM free) was approximately 10-
fold lower than the EC50 required for TGI (17 nM free) in
GTL16 GC xenograft model. Therefore, the EC90 value
(13 nM free) for MET inhibition was roughly comparable to
the EC50 for TGI. These relationships appeared to be
consistent among different xenograft models such as Kar-
pas299 anaplastic large cell lymphoma model for ALK
inhibition (22) and U87MG glioblastoma model for MET
inhibition (21). To further characterize these PKPD relation-
ships, the integrated PKPD modeling was performed for
linking target modulation to antitumor efficacy with crizotinib
exposure, by simultaneously accounting for an effect of ALK
or MET inhibition on TGI. The integrated PKPD modeling
results suggested that 50% ALK inhibition and 94% MET
inhibition would be required for 50% TGI in H3122 NSCLC
and GTL16 GC xenograft models, respectively. Thus, these
results from the integrated PKPD modeling were consistent
with a direct comparison of EC50 values between the link and
drug-disease model. The integrated PKPD model is more
mechanistic approach, and can in principle cover the full
dynamic PD range to properly estimate the PKPD relation-
ship (e.g., exposure-to-response or response-to-response).
This model can also link some different biomarker responses
to a pharmacological response, and simultaneously estimate/
simulate biomarker and pharmacological responses. Assum-
ing comparable PKPD relationships between the xenograft
models and patients, crizotinib PKPD relationships between
target modulation and antitumor efficacy suggest that

targeting ALK would be more effective than MET to achieve
similar levels of antitumor efficacy in cancer patients. In fact,
crizotinib has been approved by FDA for the treatment of
ALK-positive patients with locally advanced or metastatic
NSCLC as a “single agent”.

The overview of crizotinib minimal target Ceff projection
for ALK and MET inhibition in cancer patients are graph-
ically illustrated in Figs. 3 and 4, respectively. Crizotinib
minimal target Ceff for ALK-positive patients was projected
as the steady-state crizotinib plasma concentrations required
for >50% TGI (i.e., TGI EC500255 ng/mL total or 20 nM
free) which corresponded to >50% ALK inhibition (i.e., ALK
EC500255 ng/mL total or 19 nM free) in H3122 xenograft
models (Fig. 3). Similarly, crizotinib minimal target Ceff for
MET-positive patients was projected as the plasma concen-
trations required for >50% TGI (i.e., TGI EC500213 ng/mL
total or 17 nM free) which corresponded to >90% MET
inhibition (i.e., MET EC900167 ng/mL total or 13 nM free) in
GTL16 GC xenograft models (Fig. 4). In phase I dose-
escalation study, this projected crizotinib minimal target Ceff

based on the nonclinical PKPD relationships was set to be
targeted for steady-state oral exposure to achieve the
expected significant antitumor efficacy in cancer patients.
Based on the observed results in phase I dose-escalation
studies from a starting dose of 50 mg once daily to the highest
dose of 300 mg twice daily, crizotinib Cave,u reached the
projected minimal target Ceff for ALK and MET inhibition at
the dose of 200 mg once daily. The observed crizotinib steady-
state plasma concentrations (50 to 60 nM free as Cave,u) at the
RP2D of 250 mg twice daily were 2 to 3-fold higher than the
minimal target Ceff for the ALK and MET inhibition.
Consistently, the predicted crizotinib-mediated ALK (>75%)
and MET inhibition (>95%) by the PKPD modeling based on
the clinically observed steady-state plasma concentrations at
the RP2D was higher than their projected minimal required
target modulation, i.e., >50% for ALK and >90% for MET
inhibition (Figs. 3 and 4, respectively). Assuming linear
pharmacokinetics, the simulated ALK inhibition at steady-
state would reach near 90% at twice daily doses of 600 mg
(1,200 mg/day). In principle, it would be interesting to
compare target modulation and/or subsequent biomarker
responses between nonclinical models and patients. However,
no clinical data regarding clinical ALK- or MET-related

Fig. 3. Overview of the projection of crizotinib minimum efficacious concentration (Ceff) in patients
based on the exposure-response relationships for ALK inhibition versus antitumor efficacy in
nonclinical xenograft models. Concentration-response curves for crizotinib-mediated ALK
inhibition and tumor growth inhibition (TGI) were simulated at the concentration range of 1 to
10,000 ng/mL with sigmoidal Emax model using the pharmacodynamic parameters (EC50, Emax and
γ) obtained from a mouse xenograft model with H3122 NSCLC cells
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biomarker responses are available. Up to this point, the
promising clinical responses by crizotinib as a single agent
have been reported in ALK-positive NSCLC patients, the
majority of whom had received multiple previous therapies
(24,28). Interestingly, a preliminary analysis of clinical study
results indicated a positive correlation between the propor-
tion of patients with clinically observed objective response
rate (ORR) and crizotinib steady-state trough concentration
(44): the proportion of patients with ORR was increased with
the increase in the crizotinib concentration. In addition, this
analysis suggests that a maximal effect of the proportion of
patients with ORR has not been achieved yet at the RP2D.
That is, higher clinical response rate may be attainable at

higher doses, where greater than 75% ALK inhibition (e.g.,
near maximal inhibition) by crizotinib can be projected by the
present PKPD modeling. Thus, despite the lack of ALK- or
MET-related biomarker data in cancer patients, the approach
to apply the PKPD simulation to phase I dose-escalation
study supported the RP2D selection and associated systemic
exposure that later demonstrated promising clinical responses
(24,55). Promising clinical response in MET-positive patients
could also be expected on the basis of projected crizotinib-
mediated MET inhibition of >95% at steady-state along with
the recent case reports describing clinical activity in some
patients with MET-amplified NSCLC, gastroesophageal car-
cinoma and glioblastoma (25); however, extensive clinical

Fig. 5. Main work streams to predict clinically efficacious concentration and dose by
PKPD modeling and simulation

Fig. 4. Overview of the projection of crizotinib minimum efficacious concentration (Ceff) in patients
based on the exposure-response relationships for MET inhibition versus antitumor efficacy in
nonclinical xenograft models. Concentration-response curves for crizotinib-mediated MET
inhibition and tumor growth inhibition (TGI) were simulated at the concentration range of 1 to
10,000 ng/mL with sigmoidal Emax model using the pharmacodynamic parameters (EC50, Emax and
γ) obtained from a mouse xenograft model with GTL16 GC cells
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results have not been reported yet. Overall, it is believed that
the projection of crizotinib minimal target Ceff based on
nonclinical quantitative PKPD modeling has been and will be
helpful in guiding dose escalation and/or de-escalation to
maintain efficacious exposure to crizotinib in cancer patients.

CONCLUSION

Based on the lessons learned from this case study, the
general main work streams required for projection of
clinically efficacious concentration and dose as translational
pharmacology are summarized in Fig. 5. PKPD modeling and
simulation is key to translate in vivo drug potency from
nonclinical models to patients by providing a quantitative
assessment of in vivo drug potency with mechanistic insight of
drug action. The present paper presents crizotinib as an
anticancer drug example to demonstrate that quantitative
PKPD modeling can be used for predictive translational
pharmacology from nonclinical to clinical development.
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