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Abstract. Target identification of the known bioactive compounds and novel synthetic analogs is a very
important research field in medicinal chemistry, biochemistry, and pharmacology. It is also a challenging
and costly step towards chemical biology and phenotypic screening. In silico identification of potential
biological targets for chemical compounds offers an alternative avenue for the exploration of ligand–
target interactions and biochemical mechanisms, as well as for investigation of drug repurposing.
Computational target fishing mines biologically annotated chemical databases and then maps compound
structures into chemogenomical space in order to predict the biological targets. We summarize the recent
advances and applications in computational target fishing, such as chemical similarity searching, data
mining/machine learning, panel docking, and the bioactivity spectral analysis for target identification. We
then described in detail a new web-based target prediction tool, TargetHunter (http://www.cbligand.org/
TargetHunter). This web portal implements a novel in silico target prediction algorithm, the Targets
Associated with its MOst SImilar Counterparts, by exploring the largest chemogenomical databases,
ChEMBL. Prediction accuracy reached 91.1% from the top 3 guesses on a subset of high-potency
compounds from the ChEMBL database, which outperformed a published algorithm, multiple-category
models. TargetHunter also features an embedded geography tool, BioassayGeoMap, developed to allow
the user easily to search for potential collaborators that can experimentally validate the predicted
biological target(s) or off target(s). TargetHunter therefore provides a promising alternative to bridge the
knowledge gap between biology and chemistry, and significantly boost the productivity of chemo-
genomics researchers for in silico drug design and discovery.
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INTRODUCTION

High-throughput screening (HTS) and high-content
screening (HCS) are technologies, for rapid identification of
potent compounds, producing an explosive amount of anno-
tated biological data in the chemogenomics databases. For
example, using “high-content screening” as a keyword, 239
bioassays were retrieved in PubChem and 5,900 bioassays
were recorded with the keyword “HTS” on the date of our

study (Sep 30, 2012), which contained 1,295 compounds with
activity (IC50, etc.) ≤1 μM. Current methods of cellular
screening and pharmacogenetic profiling can rapidly reveal
phenotypic responses to chemicals, but cannot immediately
pinpoint their molecular targets (1). Meanwhile, the method-
ology of modern combinatorial chemistry has generated
thousands or even millions of organic compounds for
medicinal chemistry research. PubChem has archived 35.6
million of unique chemicals. Among them, 25.3 million satisfy
the rule of five (2), 1.85 million have been tested in at least
one bioassay, and 0.8 million have been reported as active.

How to explore the therapeutic potential of this huge
number of compounds is a major challenge. The bioactivity
records from HTS/HCS together with decades of published,
patented, and proprietary research on protein–ligand inter-
actions contain a wealth of data on biological activities. By
combining data-mining methods and diverse chemogenomics
libraries, such as PubChem (3–5) and ChEMBL databases
(6), it may be possible to map the known “chemistry space”
onto the known “biological activity space” in the form of
models that enable prediction of the targets, pathways, or
therapeutic relevance (7). Target fishing (8), target identifi-
cation, or ligand profiling is used to investigate and validate
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biological targets that interact with small organic molecules.
The target can be a therapeutic protein or a cancer cell line.
The small organic molecules can be newly or to-be-synthe-
sized chemicals, or agents that are active in phenotypic
screening (9–11) whose target or mechanism of action
remains unknown. Target identification can also include a
search for potential off-target effects of therapeutic com-
pounds and can be useful for the repurposing of drugs (12).

Various methods for computational target prediction
have been developed with the help of advances in molecular
descriptors and data-mining algorithms. The technologies
involved have been summarized in comprehensive reviews
(8,13,14). Bender et al., the pioneer researchers on target
prediction, stated that “current approaches to predicting
targets of small molecules can be broadly grouped into four
classes: chemical similarity searching, data mining/machine
learning, panel docking, and the analysis of bioactivity
spectra” (15). The basic principle, with the advantages and
disadvantages of these methods, are listed below.

Chemical similarity as a criterion for in silico target
identification is based on the well-established medicinal
chemistry concept that structurally similar compounds have
similar physicochemical properties and possibly similar bio-
logical profiles (16–22). With such methods, the small
molecules usually are represented as chemical fingerprints,
and the similarity between two molecules is measured by the
Tanimoto similarity metric (23). Meanwhile, a pharmaco-
phore-based similarity matrix, such as SHED-based approach
(24), has been developed for target identification. In addition,
statistical analysis has been added to traditional chemical
similarity scores in order to assess the statistical significance
of similarity. For example, fitting with extreme value distri-
butions, the similarity ensemble approach models the possi-
bility of the occurrence of higher scores when comparing two
ligand sets. This method has been successfully used in drug
repurpose (25) and side-effect prediction (26). If a target has
few known bioactive ligands, the prediction for this target
may be not feasible by similarity search.

Another method for in silico target identification is based
on algorithms of data mining and machine learning. This
method tries to generate a statistical model by mining or
analyzing the properties of active compounds for a target.
The derived model predicts the probability of a query
compound being associated with this target. An example of
this method was reported by Nidhi et al. (7). The authors used
the World of Molecular Bioactivity dataset (27) to build
multiple-category models (MCM) for predicting protein
targets and therapeutic activities on MDL Drug Database
Report (MDDR; Molecular Design Ltd., San Leandro, CA,
USA) (28). This algorithm subsequently has been used for
predicting adverse drug reactions and off-target effects (29).
Such models can extract the important target-specific informa-
tion. Because one target may have thousands of the structurally
diverse ligands, one unique model may not recover all the
features, and the prediction performance may not be satisfying.
Extensive discussion and comparison studies will accompany the
description of TargetHunter prediction.

Panel docking methods are also used for in silico target
identification. A compound is docked to a wide panel of
proteins to determine its potential partners. TarFisDock (30)
is an online web service that implements panel docking for

target prediction. In TarFisDock, a query compound is
docked to 698 protein structures to explore the potential
interactions with these candidate proteins. TarFisDock iden-
tified the protein target of two anti-Helicobacter pylori probes
(31). Another example of panel docking is INVDOCK; the
early work is conducted by Chen et al. (32). Recently, this
method has been applied to the analysis of pharmacodynam-
ics mechanism of Chinese medicinal plants for chronic kidney
disease (33). Obviously, the application of such methods is
limited by availability of high-quality protein structures and
accuracy of docking programs, also by the necessity of high-
computational power.

Methods based on bioactivity spectra are more compli-
cated for in silico target identification. Bioactivity spectra are
the response of a compound to a series of cell lines, DNA
microarrays, or proteins. If two compounds target the same
signaling pathway or protein, they generate similar bioactivity
spectra. They induce similar patterns of either gene expres-
sion or phenotypic responses. The bioactivity spectra-based
computational method predicts potential targets of a chemical
by profiling similarity measurements and hierarchical cluster-
ing (34,35). For example, Cheng et al. have developed a target
identification algorithm by combining the search for similarity
bioactivity profile with mining public databases (36). These
methods require many expensive and time consuming wet
experiments to produce the bioactivity spectra.

While the foregoing algorithms or methods have advan-
tages of mining the potential biological targets of active
compounds, a public accessible, user friendly, and reliable
tool for target identification is still not available to meet the
demand of broad scientific research communities. Here, we
introduce a new target identification tool, TargetHunter, as a
method to fulfill this requirement.

TargetHunter is an online program for predicting the
biotargets of chemical compounds. It is built on biologically
annotated chemical genomic (chemogenomic) databases with
millions of bioactivity records, such as the ChEMBL data-
base. It predicts the biological targets of a query compound
by the Targets Associated with its MOst SImilar Counterparts
(TAMOSIC) algorithm, which assigns the targets associated
with the most similar compounds of a query chemical as the
predicted targets. As illustrated in Fig. 1, a graphic diagram of
the TargetHunter program shows that a query compound is
input on a web interface (Fig. 1a), and the TAMOSIC
algorithm at the server is executed by generating molecular
fingerprints (Fig. 1b) and comparing with compounds in a
chemogenomics database, e.g., ChEMBL library (Fig. 1c).
Then, the targets associated with the top N most similar
compounds of the query compound are output as the
potential targets of the queried compound with ranked
similarity scores (Fig. 1d). TargetHunter program has the
following five unique features. (a) Easy to operate. The user
can draw a structure or upload the query compound library
(such as sdf file), and click a button to retrieve the prediction
results for single molecular query or batch compound library
query. (b) Query data retrieval. The query results can be
stored for later retrieval in the web cloud computing environ-
ments. (c) Choice of desired fingerprints and databases. It
provides query functions with the user’s choice of various
molecular fingerprints and different chemical databases. (d)
High accuracy. The program has been validated on a subset
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of known high-potency compounds and also can remove false
positives and calculate confidence rating. These functions
reduce the risk of the predictions. (e) Integrated BioassayGeo-
Map or bioassay finder. The TargetHunter program allows users
to find easily the potential collaborators within a defined
distance who may already have the bioassays established to
validate the predicted biological targets or off-targets experi-
mentally. More details are described in the next section.

MATERIALS AND METHODS

Databases

We use ChEMBL (6) as an example. ChEMBL is a
chemogenomics database maintained by the European Bioinfor-
matics Institute. It serves as the knowledge database and testing
set in this study. As a manually curated chemical database of
bioactive molecules with drug-like properties (37), ChEMBL
version 11 was the largest publically available compound-target
database when the project was initiated. This database contains
1,060,258 distinct compounds, 8,603 targets, and 5,479,146
bioactivity entries from 42,516 publications and PubChem bio-
assays. It also provides a hierarchical scheme, including the
compounds, biological targets, information on bioactivity type,
and sourcing references. The request for data retrieval is
supported by the Structured Query Language (SQL). To assess
the prediction accuracy of our TAMOSIC and the reported
MCM algorithms, a subset of high-potency compounds from the
ChEMBL database was extracted. This subset was generated

according to two selection criteria. (a) For each target in
ChEMBL, compounds were used only if they had an activity
value (IC50/EC50/Ki/ED50) less than 10 μM at high confidence
level (ChEMBL level 9) for direct interactions. (b) Targets were
considered only if there were more than 30 qualified compounds.

On the basis of these selection standards, a total of
117,535 unique compounds from 794 targets were retrieved.
The number of compounds associated with each target
ranged from 30 to 2,180, with an average of 216.6 compounds
per target. These targets included a wide variety of proteins,
such as enzymes, kinase, and receptors. A compound might
have more than one target listed in this subset. All these pairs
of compound and target were considered in this study.

Molecular Descriptors

Recently, Heikamp et al. (38) conducted a large-scale
similarity search on 266 well-defined compound activity classes
extracted from the ChEMBL database using the Extended
Connectivity Fingerprint (ECFP; 39). Inspired by their results, we
adopted the ECFPs implemented in the ChemAxon software as
molecular descriptors, either to calculate the similarity between
two compounds for the TAMOSIC algorithm or to train theMCM
(7). To be consistent with a previous MCM study, ECFPs with a
neighborhood size of six (ECFP6) were selected. For TAMOSIC,
the ECFP fingerprints of ChEMBL compounds were represented
as 1,024-bit strings for simplicity. ForMCM, the ECFP fingerprints
were represented in sparse arrays for consistency. In addition, two
other types of fingerprints, the ECFP4 fingerprint from

Fig. 1. Schematic overview of TargetHunter for the target identifica-
tion of organic compounds, showing from query window to prediction
output (a–d)
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ChemAxon and the FP2 fingerprint (40) from Openbabel, were
used in our online web service as alternative options.

TAMOSIC Algorithm

The TAMOSIC algorithm was developed and imple-
mented in TargetHunter for target identification. The algo-
rithm assigns the targets associated with the most similar
compounds of a queried chemical as its predicted targets. The
prediction is based on the known medicinal chemistry concept
that structurally similar compounds have similar physico-
chemical properties and probably similar biological profiles.

To validate the performance of the TAMOSIC algorithm,
16,790 (1/7) of these unique compounds, along with their
ChEMBL IDs and SMILES structures, were randomly selected
as the testing set. The remaining was left as the training set. The
reason for using this division is that the ratio of 1/7 is very close to
the 15%/85% splitting method in the MCM literature. For each
target, its active compounds in the training and testing sets were
identified byChEMBL IDs. These testing pairs of compound and
target were predicted by comparing the testing compounds with
all compounds in the training set, including the actives from this
target and from other targets. The similarity scores were recorded
and ranked. For comparison studies, we adopted the same
strategy as the MCM algorithm; i.e., only the top N most similar
compounds were considered to predict the possible targets. Thus,
if the most similar compound from the training set has an
associationwith the target, which is also associatedwith this query
compound from the testing set, this is named as the correct
prediction by the first guess. If the secondmost similar compound
associates with the same target, it is classified as a correct
prediction by the second guess. Finally, the prediction accuracy
for testing compounds from ith target and the whole testing set
can be estimated by Formula F1 and F2, respectively.

Pi ¼
Xm

j¼1
Nij=Ti ð1Þ

PAll ¼
X794

i¼1

Xm

j¼1
Nij=T ð2Þ

where m is the number of guesses;m is set to 3 in this study.Nij is
the number of correctly predicted pairs of compound and target
from target i by jth guess. T is the number of pairs of testing
compound and target. Ti is the number of pairs of testing
compound and target from target i. Because some compounds
are associated with multiple targets in our study, T is the total
number of pairs of testing compound and target. This number is
not exactly identical to the total number of testing compounds.

MCM Algorithm

For comparison, the MCM algorithm was tested on the
identical data set. TheMCMalgorithmwas used by Nidhi et al. to
categorize the possible targets of a query compound (7). The
concept ofMCM is based on the naiveBayes algorithmbut with a
Laplacian-corrected estimator. Given a compound that possesses
n features, the score for this compound being active against a
target is estimated as the sum of the contribution of each
individual feature.

Sactive ¼
Xn

i¼1
log Si active Fijð Þð Þ ð3Þ

Where Si active Fijð Þ ¼ AFi þ 1ð Þ= NFi � A=Nð Þ þ 1ð Þ is
the contribution of feature Fi, which is calculated from the
active compounds of this target having this feature Fi, AFi is the
number of active compounds of this target that have the feature
Fi, is the total number of compounds that possess feature Fi,
including both active and inactive ones. A is the number of
active compounds. N is the total number of compounds. “1” is
the Laplacian-corrected estimator. Intuitively, if a query com-
pound contains more features favored by most of the active
compounds of a target, the query compound has a higher
probability of being active against this target.

As currently implemented, independent scoring models
are created separately for each ChEMBL target according to
Formula F3. When building a multiple-category model for
one target, training compounds associated with this target are
defined as active, while other training compounds are defined
as inactive. A total of 794 models are generated.

To predict the target of a query compound from the
testing set, the molecular fingerprint of the query is generated
and relative estimator scores are evaluated by all the 794MCM
models. The target with the highest score is assumed to be the
most likely one for the query compound. Similarly, the target
with the next highest score can be assigned as the second most
likely and so on. To be consistent with the previous MCM
study, only the top 3 plausible target predictions are
considered.

To assess how the results of these two algorithms will
generalize to an independent dataset, sevenfold cross-valida-
tions were also performed for both TAMOSIC and MCM. As
described in the above paragraphs, these 117,535 unique
compounds were assigned to seven subsets of equal size. In
each round, one of the subsets was used as the test set and the
remaining subsets were used as the training set. This process
was repeated seven times using the different possible test sets.
The resulting accuracies were averaged for each method.
Differences in the prediction accuracies of these two
approaches were tested for statistical significance using a
paired t test implemented in the R package. Significance was
accepted at the 0.05 level of probability (p<0.05).

Parameters for TAMOSIC

An important parameter of TAMOSIC is the Tanimoto
threshold that excludes irrelevant targets. If all of the
Tanimoto similarities between a query compound and any
of the annotated ChEMBL compounds are less than this
threshold, TargetHunter considers this query as inactive to
any of the archived targets in ChEMBL. The Tanimoto
threshold is determined by analyzing the relationship be-
tween Tanimoto similarity and the prediction accuracy. First,
the similarity scores between the testing compounds and their
most similar counterparts in the training database are plotted
to obtain the primary estimation of this threshold. Then, the
Tanimoto similarities with different ranges and the
corresponding accuracies are explored to determine inactiv-
ity. The range of Tanimoto coefficients from 0 to 1.0 is split
into 11 bins. Each bin contains the percentage of correct
predictions within the first three guesses if the Tanimoto of
the first guess is in the range of this bin.

The foregoing steps aim at revealing an appropriate
Tanimoto threshold score in order to remove potential false
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positives. If a query compound has more than one similar
compound with a Tanimoto coefficient higher than this
threshold, ranking is needed to identify the targets with
top priority. The targets can be ranked according to
Tanimoto scores between the ligands of these targets
and the query compound. However, in order to make
confidence-rated predictions and effectively remove
false positives, the conditional probability of a com-
pound being active against a target (T) is estimated
using logistic regression. The target-specific similarity
model is based on the hypothesis that targets require
different structural patterns for ligands to bind. The
divergent ligand–receptor interaction modes may result
in different thresholds of similarity scores that have
identical sensitivity and precision for ligand screening.
Based on these assumptions, the logistic regression is
conditioned on specific targets and the similarity score
between the compound and its nearest neighbor associ-
ated with the targets.

The probability of a compound being active given T and
score is

P Y ¼ active score;Tjð Þ
¼ exp aT þ bT � scoreð Þ= 1þ exp aT þ bT � scoreð Þð Þ ð4Þ

where T is the target; score is the highest Tanimoto
coefficient between the compound and its nearest neighbor
associated with T; Y is the categorical label. In addition,
P Y ¼ inactive score; Tjð Þ ¼ 1� P Y ¼ active score;Tjð Þ . aT

and bT are intercept and slope, and must be estimated from
observations. Note that aT and bT are constant regarding T.
To “learn” aT and bT, both active and inactive compounds
are randomly sampled from the whole ChEMBL dataset for
each target T. For a given target with index k, i.e., Tk, let
CTk represent the active compound set associated with Tk.

To study the similarity threshold for Tk, calculate the
following scores for each active compound Ai; Ai 2 CTk; i ¼
1; 2; . . . ; CTkj j , and create a score set:

STk ¼ scorei : scorei ¼ max
Aj2CTk ;j 6¼i

Tanimoto Ai;Aj
� �

;Ai 2 CTk ; i ¼ 1; 2; . . . ; CTkj j
( )

ð5Þ

On the other hand, a set of negative observations are
required to estimate the parameters in logistic regression. To

create the negative score set, the following protocol is
conducted:

STk
¼ scorei : scorei ¼ max

Aj2CTk

Tanimoto Ai;Aj
� �

; 8Ai;Ai=2CTk ; i ¼ 1; 2; . . . ; 5� CTkj j
� �

ð6Þ

In this step, we assume compound Ai;Ai=2CTk is not
active against Tk, which is not always true. The intercept and
slope aTk, bTk, for Tk are estimated by a maximum likelihood
estimator:

argmax
aTk ;bTk

Y
i;Scorei2STk

exp aTk þ bTk � scoreið Þ
1þ exp aTk þ bTk � scoreið Þ

0
@

1
A

Y
i;Scorei2STk

1
1þ exp aTk þ bTk � scoreið Þ

0
B@

1
CA

ð7Þ

The aTk and bTk have to be solved numerically. The
default similarity threshold is chosen for Tk when
P Y ¼ active scorej ;Tkð Þ ¼ 0:5 . Therefore, a ligand is pre-
dicted to be active against Tk if the score is greater than � aTk

bTk
,

or inactive otherwise. The training error rate is calculated as the
ratio of correct predictions with default threshold to the total
number of sampled compounds.

Web Service

An online service, TargetHunter, is built on the TAMO-
SIC algorithm to automate the target prediction calculation

and make it accessible to academic and industrial researchers.
The server is constructed on the LAMPP (Linux, Apache,
MySQL, PHP, and Python) platform (http://www.cbligand.org/
TargetHunter). It also embeds a key function, a geograph-
ical bioassay locator that can assist users to find suitable
bioassays available nearby in order to validate the target
prediction. If compounds are predicted to interact with a
particular target by TargetHunter, the next likely step is
finding a collaborator to perform biological experiments
and validate the hypothesis. A researcher usually can find
a candidate laboratory nearby, for example on the same
campus. Accordingly, GeoMap of Bioassay service in
TargetHunter is designed to facilitate the search for possible
collaborators in the geographic vicinity. This function
helps to identify laboratories with established bioassays
against a particular target through Google Map technolo-
gy. Our rationale is that if a bioactivity record of a target
for any compound is reported, the technology and
protocols for testing the bioactivity of a new sample
usually are easy to apply. Based on this assumption, the
affiliation information was collected from the references in
the ChEMBL database and was then converted into
geographic coordinates through the Geocoding technology
in Google MAP. This geographic coordinate-affiliation
information was then stored in the TargetHunter data-
base, allowing a search for nearby available bioassays.
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RESULTS

Performance of TAMOSIC Algorithm and its Comparison
with MCM Algorithm

According to the previously mentioned protocols, the
prediction performances of TAMOSIC and MCM were
assessed with a subset of high-potency compounds from
ChEMBL. The average accuracy of sevenfold cross-valida-
tions of TAMOSIC is 90.9% (±0.2%), while that of MCM is
74.8% (±0.2%) by the top 3 guesses. The differences in
prediction accuracy for these two methods are statistically
significant (paired t test, p value06.41e-13<0.05). The varia-
tions of prediction accuracies on different subsets are small
because the dataset size is large. As such, only the first round
of calculations was analyzed in the following steps. Figure 2
compares the prediction accuracy (PAll) of the first round of
calculations using TAMOSIC and MCM. The TAMOSIC
algorithm correctly identifies 85.0% of all testing compound-
target pairs from 794 targets by the most similar compound or
first guess, 4.4% by the second guess, and 1.7% by the third
guess (Fig. 2). Overall, 91.1% of the compounds are correctly
assigned to their known targets within three guesses. The
MCM algorithm only reaches an overall accuracy of 74.8%
with the top three guesses, e.g., 50.9% by the first guess,
16.3% by the second guess, and 7.6% by the third guess.

To assess further the two algorithms, 10 individual
targets along with their ligands were selected to illustrate
the prediction capabilities of TAMOSIC and MCM. These 10
targets are representative for popular drug targets, such as
hydrolases, kinases, and GPCRs. Table I lists the names of
these targets, the corresponding ChEMBL IDs, and the
quantity of associated testing samples. In all ten cases,
TAMOSIC outperforms MCM, as shown in Fig. 3.

Threshold of Tanimoto Coefficient for TargetHunter

An important advantage of TargetHunter is the applica-
tion of a Tanimoto threshold for excluding irrelevant targets
or false positives. These exclusions are deficient in MCM and
other established methodologies. If the similarities (Tani-
moto) between a query compound and any ChEMBL
compounds fall below the defined threshold, TargetHunter
will regard the query as inactive to the targets associated with
these compounds, regardless of the ranking of the database

compounds in the score list. To determine the threshold, the
similarity scores from each compound in the testing set and its
closest neighbor in the training set are plotted out in Fig. 4,
showing the distribution of these calculated Tanimoto coeffi-
cient (Tc) values. As illustrated in Fig. 4, specifically, 81.6% of
the testing compounds have similarity scores larger than a Tc
of 0.60 to the most similar ones in the training compounds,
and 89.4% have similarity scores larger than a Tc of 0.50.
These percentages indicate how to select a proper threshold.

To estimate the threshold further, the prediction accura-
cies for both TAMOSIC and MCM in these 11 bins are
calculated. Figure 5 shows that the performance of TAMO-
SIC is better than MCM when Tc values are larger than 0.3.
Each of these Tc values is calculated between one compound
in the testing set and its most similar compound in the
training set. For TAMOSIC, the prediction accuracy increases
when the Tc values rise. For example, when the Tc values
range from 0.5 to 0.6, the prediction accuracies by the first,
second, and third guesses are 74.2%, 9.6%, and 5.0%,
respectively. An expected accuracy of 88.8% therefore can
be obtained by guesses from the top three most similar
compounds; when Tanimoto falls into a range of 0.3–0.4, the
accuracy of the top 3 guesses is only 37.5%. A prediction
based on low Tc therefore is not satisfactory. From the
foregoing analysis, we suggest a default Tanimoto threshold
of 0.5 to eliminate ambiguous predictions. However, users
have the option to adjust it according to their knowledge and
preferences.

Confidence-Rated Prediction for Individual Targets

Logistic regression was applied to model the probability
of a ligand being active against a certain target. The
probabilistic model forms a sigmoidal curve regarding simi-
larity score and determines a decision threshold value
correspondingly. Intuitively, a decision function can be
formulated as y ¼ ftðxÞ , where x is the similarity score, t is
a given threshold value, and y represents a categorical label
(0, inactive; 1, active), y01 if x≥ t, y00 o/w. Logistic
regression yields a relaxed form of this function by calculating
(y|x,t).

The basic assumption of the target-conditioned model is
the discrepancy in the thresholds of similarity scores for
different targets. To examine the rigor of this hypothesis, the
distribution of the similarity thresholds and the corresponding

Fig. 2. The plots of the prediction results of TAMOSIC and MCM
algorithms on the testing compounds from theChEMBL subset. The x-axis
denotes the number of top N guesses by TAMOSIC andMCM, and the y-
axis is the prediction accuracy.N ranges from 1 to 100 in the left figure and
ranges from 1 to 10 in the right figure. TAMOSIC Targets Associated with
MOst SImilar Counterparts,MCMmultiple-category models
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logistic functions are plotted in Fig. 6. As shown in Fig. 6a, the
solved threshold values span mostly from 0.2 to 0.5. The
average and standard deviation are 0.364±0.086. Figure 6b
displays the 794 solved logistic functions that express the
fitted probability of a ligand being active against the 794
corresponding targets. The threshold value depends both on
the definition of ECFP and the occurrence of common
structural patterns observed in active compounds. Figure 6
demonstrates that the structural boundary between active and
inactive compounds greatly depends on the targets and that
target-dependent models can provide more informative
suggestions for target prediction.

Case Study of the use of TargetHunter for Target Prediction

Cell-based phenotypic screening has generated a huge
amount of bioactivity data and tools integrated with knowl-
edge databases would help to interpret these results and
guide further experimental validations. For example, Cheng
et al. (36) have reported a target identification by bioactivity
profile similarity search. Here, we take a test compound from
PubChem bioassays to illustrate how TargetHunter can be
used to identify a target and also explore the mechanism of
action for small organic molecules.

As shown in Fig. 7, compound CID 46907796 can induce
cellular apoptosis with an activity concentration (AC50) of
0.4136 and 4.908 μM, reported in PubChem by cell-based
bioassay with assay IDs (AIDs) of 488848 and 488931,
respectively. However, the mechanism of action for this
bioactivity is not known. Queried with CID 46907796, Target-
Hunter retrieved two related compounds (ChEMBL IDs
1724922 and 1711746, with Tanimoto scores of 0.78 and 0.63,
respectively). Both of these compounds target the nuclear factor
erythroid 2-related factor 2 (Nrf2, tested in PubChem bioassay
AID: 504444). Nrf2 is known to act as an anti-apoptosis protein
(41). Therefore, inhibition of Nrf2 is very likely the cause of the
cellular apoptosis induced by compound CID 46907796.

Case Study for the Application of TargetHunter in Drug
Repurposing

Drug repurposing (12) discovers novel therapies from
already approved drugs. It has advantages (12,25) over the
discovery of new chemical entities, which is often lengthy and
costly. TargetHunter can help in the data mining of the
chemogenomics database through querying commercial drugs
and predicting drug repurposing. Figure 8 shows two inter-
esting examples. Darifenacin from Novartis, a selective
antagonist of the muscarinic M3 receptor, is used to treat

Table I. Ten Showcases of Protein Targets and Qualified Compounds that were Used for Evaluating the Performance of TAMOSIC in
Comparison with MCM

CHEMBL ID Target name Qualified compounds

CHEMBL220 Acetylcholinesterase 657
CHEMBL221 Cyclooxygenase-1 228
CHEMBL230 Cyclooxygenase-2 607
CHEMBL243 Human immunodeficiency virus type 1 protease 2,180
CHEMBL247 Human immunodeficiency virus type 1 reverse transcriptase 1,418
CHEMBL203 Epidermal growth factor receptor erbB1 704
CHEMBL204 Thrombin 1,098
CHEMBL2056 Dopamine D1 receptor 290
CHEMBL260 MAP kinase p38 alpha 850
CHEMBL235 Peroxisome proliferator-activated receptor gamma 991

Fig. 3. Comparison of prediction accuracies of ten showcases of
protein targets by TAMOSIC and MCM algorithms. TAMOSIC
Targets Associated with MOst SImilar Counterparts, MCM multiple-
category models

401TargetHunter: An In Silico Target Identification Tool



urinary incontinence (42). TargetHunter found that the most
similar compound is UK-201844 (with ECFP6 fingerprints,
the Tanimoto coefficient is 0.83), which can inhibit the gp160
process of human immunodeficiency virus type 1 as reported
by Pfizer (43). Although these two compounds have different
chiral centers and ring size, they share multiple features.
Darifenacin, therefore, is predicted to be an inhibitor of HIV-
1 gp160. Another example shows that an antihypertensive
drug from Pfizer, Polythiazide, is very similar to a compound

named CHEMBL1577 (with ECFP6 fingerprints, the Tanimoto
coefficient is 0.64), which is an inhibitor of Nrf2 reported in
PubChem bioassay AID 504444. Since Nrf2 is a transcription
factor that maintains cellular redox homoestasis and protects
cells from xenobiotics (44,45), inhibition of Nrf2 would repre-
sent a novel therapeutic method that could improve survival of
patients undergoing chemotherapy or radiotherapy. The pre-
diction implies that Polythiazide may be an Nrf2 modulator with
therapeutic potential for cancer treatment.

Fig. 4. The distribution of the Tanimoto coefficient values comparing any pair of a compound from the
testing set with its most similar counterpart from the training set

Fig. 5. The plot of Tanimoto coefficient ranges and prediction accuracies of TAMOSIC (T) and MCM
(M). The Tanimoto scores are calculated from the pairwise comparisons of each query compound in the
testing set with its most similar counterpart in the training set. The range of Tanimoto coefficients is split
into 11 bins. In each bin, the percentages of correct target prediction by first, second and third guesses are
calculated separately for all testing compounds with Tanimoto coefficients falling into this bin. TAMOSIC
Targets Associated with MOst SImilar Counterparts, MCM Multiple-Category Models
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Web Service and BioassayGeoMap

TargetHunter is available online (http://www.cbligand.org/
TargetHunter) and the TAMOSIC algorithm is also imple-
mented on the server side. Through a web browser, users can
either sketch or upload a file containing a compound
structure and submit it as a query. Upon receipt of the query
compound, the server searches the ChEMBL database to
identify the most similar compounds based on Tanimoto
similarity. Those compounds, together with the associated
protein targets, bioactivity information, and references are
retrieved and displayed in the web browser. TargetHunter
also lists compounds with lower bioactivity, if they are
reported in the ChEMBL database, because these records
also provide valuable information for the prediction of
improbable targets. Another important feature is that the
implemented function of GeoMap of Bioassay or Bioassay-
GeoMap (www.cbligand.org/TargetHunter/bioassay_
geomap.php) can help users easily to identify the reported
bioassays for possible collaborations in order to validate the
target prediction. Figure 9 shows an example of the target
prediction of Darifenacin together with the GeoMap function
for searching potential collaborators. We previously stated that
Darifenacin is predicted to interact with human immunodefi-
ciency virus 1. Our TargetHunter program also identifies three
different groups at the University of Pittsburgh that have
already reported technologies for testing anti-HIV compounds.
We believe that TargetHunter can help to originate collabo-
rations across different scientific communities. For example, a

chemist can find a biological laboratory nearby to test com-
pounds that are predicted to be active by TargetHunter.

DISCUSSION

The in silico identification of the biological targets of
small organic molecules has attracted substantial attention
from biologists, chemists and pharmacologists. Computational
“target hunter” demonstrates many advantages over tradi-
tional experimental methods, including high throughput
nature, the wide coverage of candidate targets, and the
capability of processing virtual compounds. More impor-
tantly, it assists the discovery of off-targets and identification
of mechanisms of action (46), thereby playing a crucial role in
many scientific projects. In silico methods have been success-
fully applied in many chemogenomics tasks, but are still far
from perfect. For example, docking-based methods depend
on precise scoring functions, crystal structures of target
proteins, and extensive computational resources. Methods
based on the bioactivity profile rely on large amounts of
bioactivity data tested experimentally, such as Cerep Bioprint
database (34), which is usually proprietary in large pharma-
ceutical companies. All these requirements limit their usage
and availability to the scientific communities. A new
approach, TargetHunter, therefore is presented here for
target identification, and its performance is evaluated by
comparison with the published method MCM.

Our pilot study shows that TargetHunter outperforms
MCM on the high-potency subset of the ChEMBL dataset.

Fig. 6. a Histogram plots of similarity threshold values according to
794 solved logistic functions. b Fitted probability plots of being active
against 794 targets as functions of the Tanimoto coefficients

Fig. 7. Structure of compound CID 46907796 (AC5000.4136 and 4.908 μM) and its similar compounds, ChEMBL 1724922 and
ChEMBL1711746 (two Nrf2 inhibitors)
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Despite the simplicity of TargetHunter, its nearest neighbor
search effectively retrieves the targets of 91.1% of testing
compounds within the first three guesses. Moreover, mecha-
nisms for the removal of false positives and confidence-rated
predictions, which are not well addressed in MCM, are built
into TargetHunter. The removal of false positives reduces the
risk of yielding predictions that could incorrectly affect the
downstream experiments for drug discovery.

It is very surprising that a simple algorithm could achieve
such high accuracy comparable with MCM. As we discussed
before, for MCM, modeling tens to thousands of compounds
with one unique formula is a challenging mission. For our
TAMOSIC, “While any single similarity score used in a
chemoinformatics method may, like a firefly, cast only a small
point of light, even fireflies are bright-when collected in the
billions.” (47) With the increasing size of the ChEMBL
database and also by incorporating other chemogenomics

databases, we believe that TargetHunter will provide more
powerful service for target prediction.

A limitation of the use of the TAMOSIC algorithm is the
subjective definition of structural similarity. It is difficult for
TargetHunter to make predictions for compounds having
structural features that are not represented in the current
database. Of course, such limitation is also true for other
ligand-based predictions, such as MCM models. For example,
as shown in Fig. 5, MCM-based prediction is only a little better
than TAMOSIC-based when Tc values fall in ranges of 0.1–0.3,
which means that MCMgives better prediction than TAMOSIC
only if query compounds have fewer features common to target-
annotated compounds. However, the prediction accuracies for
both of these methods are less than 15% in this range. For 2D
fingerprints, the bits are usually from the structural features, not
from pharmacophores, such as hydrogen bond donors and
hydrogen bond receptors. The 3D molecular descriptors have

Fig. 8. Case study of new target prediction by TargetHunter for known drugs on the market

Fig. 9. An illustration of target prediction for Darifenacin and the assistant hyperlink by BioassayGeoMap
for finding potential collaborators
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proven superior for probes with low structural similarity to other
compounds in the database (1). Accordingly, the introduction of
3D similarity may improve the prediction accuracy for targets
with fewer available ligands.

TargetHunter relies on the huge amount of high quality
chemogenomics data in the current literature. TargetHunter
can easily incorporate, although currently does not, other
commercial databases. Most of the commercial databases
obtain a better integration of biological activity spectrum
information, which may be more useful to link chemical
samples to therapeutic usage. The prediction of therapeutic
activities (7) and ADME properties (34) may be feasible for
TargetHunter by the integration of other systematically
annotated databases such as MDDR (28).

Meanwhile, many sources of bioactivity data are now
open to academic users. How to integrate such data in the
target prediction is still a challenge. The prediction of targets
with higher accuracy will be enabled by the integration of
different algorithms (48), more chemogenomics data, such as
proteomics and transcriptome information (49,50), new
methods, such as combining information on target sequences
and on ligands (51,52), new technologies, such as GPU for the
acceleration of Tanimoto calculation (53), and even clinical
data (54,55). In addition, all the target prediction relies
heavily on the experimental validation. In most case, the
testing assays for the predicted targets are not available in the
researcher’s laboratory. Collaboration with other laboratories
that have well-established assays therefore is essential. Our
BioassayGeoMap will meet this need and could boost the
cooperation of chemogenomics researchers who study ligand-
target interactions and explore biochemical mechanisms in
addition to drug repurposing.

Currently, only bioassays from the literature archived in the
ChEMBL database are considered by BioassayGeoMap, which
represents only portions of all the reported ones. The static
literature reference neglects updates of the bioactivity data from
various laboratories, for example, the relocation of a laboratory
and bioassays that have become obsolete. To remedy this
shortcoming, we plan to provide an option to select the most
recent research literature in order to highlight more accurate
information.We also plan to create a self-sustaining data curation
platform to allow researchers to report their published bioassays
and data to TargetHunter and amend them at any time.

CONCLUSION

This article presents a web-interfaced target identification
program, TargetHunter with a built-in powerful data-mining
algorithm (TAMOSIC) for predicting potential biological
targets of query compounds. The variables used in the Target-
Hunter program have been thoroughly evaluated and discussed.
The performance of TargetHunter has been compared with the
reported MCM method. As a practical tool introduced to
interdisciplinary researchers, TargetHunter also provides a
convenient BioassayGeoMap service. The case studies demon-
strate that TargetHunter is a promising technique for new target
identification or repurposing drugs. Its BioassayGeoMap ser-
vice can help to locate potential collaborators who are capable
of performing relevant bioassays for validation of the predic-
tions. The developed TargetHunter web portal with its imple-
mented data mining algorithm can facilitate the study of

biological mechanisms and discovery of new drugs by scientists
in academic institutes and pharmaceutical industries.
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