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ABSTRACT. Gene expression is useful for identifying the molecular signature of a disease and for
correlating a pharmacodynamic marker with the dose-dependent cellular responses to exposure of a
drug. Gene expression offers utility to guide drug discovery by illustrating engagement of the desired
cellular pathways/networks, as well as avoidance of acting on the toxicological pathways. Successful
employment of gene-expression signatures in the later stages of drug development depends on their
linkage to clinically meaningful phenotypic characteristics and requires a biologically meaningful
mechanism combined with a stringent statistical rigor. Much of the success in clinical drug development
is hinged on predefining the signature genes for their fitness for purposes of application. Specific
examples are highlighted to illustrate the breadth and depth of the potential utility of gene-expression
signatures in drug discovery and clinical development to targeted therapeutics at the bedside.

KEY WORDS: clinical molecular signatures; molecular signatures of disease; signature genes; target
engagement; toxicological pathways.

INTRODUCTION

With the increased availability and lowering costs of
DNA technologies, gene expression has become a more
readily used tool indispensable in drug discovery and
development. Educational institutes and NIH have joined
forces to produce several sizable publicly accessible gene
expression databases, such as the Connectivity Map (1) and
the Tox 21 project (2); these have been compiled to provide
resources for mining, with the hopes to provide drug
discovery opportunities and repurposing of drugs (3–5). In
order to treat orphan diseases where it is difficult to pool
enough data to provide an approvable drug, an enriched data

source with multiple databases integrated properly is being
pursued (6). Beyond discovery, examples of gene expression are
being used in the clinic and demonstrate attempts to optimize
personalized medicine (7,8). In light of the breadth and diverse
application of gene expression in drug discovery and clinical
application, this paper will briefly review examples of gene
expression in various stages of drug development followed by a
high-level strategic map of the fit-for-purpose application of
gene expression with the recognition that this type of platform
will continue to advance rapidly.

EARLY DISCOVERY

Depicting Drug Actions at the Molecular Level

One major advantage in drug development is the ability
to leverage known biology by developing drug candidates
that can either target or avoid specific pathways or networks.
For example, the cellular pathways leading to cell death
(apoptosis) can be a differentiator in oncology drug candi-
dates; on the other hand, being able to avoid the same cell
death pathways could lead to an improved drug safety profile
in other therapeutic areas. Gene expression technologies,
including microarray, quantitative real-time polymerase chain
reaction, and next-generation sequencing, are useful for
achieving that goal by illustrating engagement of the targeted
receptor(s), pathway or network through the downregulated
or upregulated pattern(s) of the intended drug target(s). As
gene expression technologies advance, gene expression
profiling of the whole genome has become affordable and
thus more rapidly adopted. Whole genome expression
profiling offers the advantage of providing a series of
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snapshots of the cellular transcriptional patterns to reveal the
temporal cellular responses following exposure to a drug
candidate and, thereby, depicts its extent of intracellular
actions (9), as well as identifies the genes untowardly
perturbed due to its suspected off-target actions (10). An
adequate analysis of genome-wide expression data to com-
prehensively capture all the key actions at the molecular level
is, however, challenging because of the complex multiple
layers of genetic regulatory mechanisms and feedback loops
which are mediated over time. To address this issue, one
widely used tactic is gene clustering which groups genes into
individual functional categories (11) in order to facilitate
proper interpretation of gene expression results. Gene
clustering can be used in conjunction with curated knowledge
bases of pathways in aiding the interpretation of gene
expression results (12). Though several pathway databases
are publicly accessible (13,14), there exists known inconsis-
tencies in the annotation/curation and vocabulary standards,
as well as in pathway details (15). For example, inconsistency
in the signaling pathways and networks can arise between
primary and immortalized cells even though they are both
derived from the human liver (16). Another challenge in the
assessment and prediction of target engagement is when only
one cell line is used, perhaps because of cost issues. That
interpretation of one cell line could lead to an incorrect
conclusion. Furthermore, the environmental milieu surround-
ing the cell may cause different cellular responses at both
gene and protein levels (16). Most importantly, a few cell
lines derived from some individuals will never adequately
represent the broad genetic diversity and variability of the
whole human population. The results of a gene expression
study are often extrapolated beyond the scope of its study
design. Thus, correct illustration of target engagement or off-
target effect is hinged on our understanding of the context of
a pathway in a specific cell line and on incorporation of both
translational and biochemical phenotypic characteristics for
the interpretation of transcriptional results.

Beyond the cell lines described above, comparisons
between healthy and diseased tissues could potentially
identify druggable targets (17). The pattern in the gene
expression of a diseased tissue is expected to be the complete
opposite after being treated with an effective drug. For
example, if a signature gene set is upregulated in the diseased
condition, then it is expected to be downregulated compared
to pretreatment when treated effectively. Based on this
differing pattern notion, gene expression profiles of individual
FDA-approved drugs in Connectivity Map were compared to
100 diseases from the Gene Expression Omnibus database of
NCBI; there was a statistical association between cimetidine
with small-cell lung cancer (18) and topiramate (19) with
inflammatory bowel disease (IBD). The current approved
therapeutic diseases were gastric ulcer for cimetidine and
epilepsy for topiramate. With the statistical associations,
investigators demonstrated the preclinical efficacy of top-
iramate in treating IBD in a rat model and cimetidine in
treating non-small cell lung carcinoma with a tumor xenograft
mouse model. These preclinical findings await further repli-
cation prior to entering clinical development; however, these
studies demonstrate the utility of integrating disease-associ-
ated and drug-caused perturbations at the transcriptional
level for drug discovery and repurposing of already approved
drugs.

Genetic mutations create diverse characteristics within
an ethnic population and among all ethnic groups and form
the basis for the variability in the sensitivity of patient
responses to a drug treatment. Recent advance in the next-
generation sequencing technology has made whole exome
sequencing more accessible and affordable for detecting
genetic mutations in a more comprehensive way. Genome-
wide expression profiling with a limited number of cell lines
when used in conjugation with genetic mutation data can
better predict and understand the variability of patient
response to a drug treatment. Such an approach integrating
both genetic and transcriptomic levels of information is
important to ensure the success of large phase 3 clinical trials
and adequate post-approval efficacy of a drug. Since it is not
practical to access the organ tissues from a very large number
of human subjects for genome-wide expression profiling, a
compendium of close to 1,000 human cell lines with diverse
lineage and genetic mutation is shown to be a useful
alternative to gather the needed information for computa-
tional assessment of the varying effect of a drug candidate
(20). This large number of cell lines increased the confidence
in the finding that neuroblastoma RAS viral (v-ras) oncogene
homolog (NRAS) mutant cell lines were sensitive to MAPK/
ERK kinase (MEK) inhibitors (20).

Taken together, next-generation DNA sequencing and
genome-wide expression analysis allow detailed dissection
and delineation of context-specific cellular responses at the
molecular level (21) for discovering new drug targets and for
repurposing of an FDA-approved drug to treat the diseases
for which it has not been indicated and for focusing on
developing those drug candidates that have a greater
likelihood to show clinical efficacy at the population level.

Targeting Pathways Common to Multiple Diseases

Several studies have reported analysis of large gene
expression data sets focusing either on specific disease areas,
such as respiratory diseases (22,23), infectious diseases (24),
and cancers (25), or on profiling a specific tissue type, such as
peripheral blood mononuclear cells (PBMC) (26) or whole
blood (27), across multiple diseases. These studies collectively
provide a rich data set for identifying distinct common
pathways/gene modules that are shared by pathophysiological
processes of multiple diseases. Other approaches integrate
both genetics and transcription profiles from crucial tissues to
identify the causal genes that are associated with the
phenotype of a disease (28,29). These disease phenotype-
associated causal genes often reside in the same genetic
network. One such network, the macrophage-enriched met-
abolic network, was found to be highly enriched in the genes
that are causal for metabolic syndrome and was identified in
both rodent (30) and human (31). These genes identified via
disease or tissue specific pathways could be further studied to
potentially identify new targets for drug discovery.

Recently, a gene signature composed of ∼2,500 genes
was identified in 12 expression profiling data sets derived
from 9 different tissues of rodent inflammatory disease
models, including ovalbumin-challenged asthma model
(lung), IL-1β transgenic emphysema model (lung), TGFβ
Tg transgenic pulmonary fibrosis model (lung), high-fat diet-
treated ApoE knockout atherosclerosis model (aorta), db/db
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diabetes model (adipose and islet), ob/ob obesity model
(adipose) carrageenan-induced inflammation pain model
(skin), Chung neuropathic pain model (dorsal root ganglia),
middle cerebral artery occlusion (experimental stroke model,
brain), LPS-treated acute injury model (liver), and age-
related sarcopenia model (muscle) (32). These genes signif-
icantly overlapped with the known drug targets and contained
co-expressed genes linked to metabolic disorders, infectious
diseases, and cancers. A large proportion of the genes in this
“inflammatome” are connected in several tissue-specific
Bayesian networks built from multiple independent mouse
and human cohorts. Both the “inflammatome” signature and
the corresponding consensus Bayesian network were highly
enriched in immune response-related genes which have been
found causal for adiposity, adipokine, diabetes, aortic lesion,
bone, muscle, and cholesterol traits, thereby supporting the
causal nature of the “inflammatome” signature. A further
integrated analysis with multiple Bayesian networks high-
lighted 151 key regulators potentially and biologically rele-
vant to several disease phenotypes (32). Hematopoietic cell
kinase (Hck), one of the key regulators identified, for
example, has been shown to be associated with chronic
obstructive pulmonary disease (33) and with a poor outcome
of chronic myeloid leukemia (34). Tyrobp/Dap12 contains an
immunoreceptor tyrosine-based activation motif which is a
key regulator implicated in presenile dementia with bone
cysts and in a cognitive disorder Nasu–Hakola disease
(35,36). There are common molecular characteristics and
pathways shared by these various diseases, indicating that
there are potential targets for developing individual drugs
possibly useful for treating more than one disease (37).

Avoiding Toxicological Pathways

Gene expression profiling, due to its capacity to detect
comprehensive transcriptomic alterations in the target cells or
tissues, has been used to de-risk therapeutic agents under
development in all major drug categories including small
molecules, biologics, and small interfering RNA (siRNA) as
exemplified in the succeeding paragraphs.

An analysis of liver transcriptomes led to the identifica-
tion of several key cellular pathways affected by ritonavir, an
HIV protease inhibitor (PI) (38). The results were then
compared to a gene expression compendium from 52
unrelated compounds and to other PIs, including atazanavir
and 2 experimental HIV PIs. As a result, the key biological
pathways associated with the ritonavir signature genes were
cholesterol and fatty acid biosynthesis. Ritonavir reportedly
upregulated the ubiquitin proteasome system (UPS) as well,
which contains multiple proteasomal subunit transcripts and
genes involved in ubiquitination (39). As a result, the
established association between proteasomal induction and
lipid elevations from the analysis was applied to screen for the
novel PIs that do not induce the UPS (40), in hopes of
avoiding the unwanted lipid elevations associated with those
earlier approved PIs.

IL-13 shows direct actions on lung epithelial and smooth
muscle cells (41) and is implicated in airway hyperreactivity;
thus, the IL-13 pathways provide an attractive target for drug
development for asthma treatments. Two types of signaling
IL-4/IL-13 receptors have been characterized. IL-4Rα chain

and the common γ (γC) chain constitute the type I receptor,
which is utilized solely by IL-4 and is expressed primarily in
the lymphoid cells, while IL-4Rα and IL-13Rα1 form the type
II receptor, which is shared by both IL-4 and IL-13 and is
ubiquitously expressed (42). The blocking of IL-13Rα1
provides an advantage in the initial differentiation of CD4 T
cells into Th2 cells, and subsequently, the IL-4 signaling
through the type I receptor will be not be impacted. Under
this notion, three humanized anti-IL13Rα1 mAbs with
affinity maturation were developed and gene expression
profiling was conducted in a primary normal human dermal
fibroblast (NHDF) cell line. IL-13 generated a robust and
consistent signature in the NHDF line and all three human-
ized anti-IL13Rα1 mAbs significantly inhibited the signature.
An IL-13 activity index ranked the relative potency of the
overall inhibitory effect of each mAb. By establishing a
specific cutoff in the number of signature genes generated by
each antibody alone in the absence of IL-13 (i.e., off-target
effect), the same rank order as the activity index was
observed, thus suggesting that the top ranked mAb would
provide a most favorable safety profile since it induced the
least number of potentially off-target genes.

RNA interference (RNAi) is a gene regulatory pathway
which can be employed to effectively knock down any target
gene and is currently being developed into potential novel
therapies (43). One of the most common issues with RNAi
therapeutics is the off-target effects which could lead to
adverse events (AEs) in the clinic (44). Many strategies have
been adopted to improve RNAi specificity in order to reduce
off-target gene expression and to reduce immune stimulation.
For example, 2′-O-methyl ribosyl substitution at position 2 in
the guide siRNA strand and structurally asymmetric siRNA
design could be adopted to achieve improved siRNA
specificity; in addition, Fucini et al. showed that 2′-fluoro
modification of adenosine significantly reduced cytokine
induction by siRNA in human PBMC (45–47). Gene expres-
sion technologies have been the most widely used technology
to monitor RNAi-induced off-target effects. Jackson et al. was
the first group to apply genome-wide expression profiling to
assess the specificity of siRNA knockdown in cultured human
cells and discovered that off-target silencing could occur in
genes containing as few as 11 identical contiguous nucleotides
to the siRNA (48,49).

TRANSITION TO EARLY CLINICAL DEVELOPMENT

Gene expression profiling can provide a scientific bridge
between cellular transcriptomic characteristics and clinical
phenotypes following treatment with a drug. For example,
increased expression of a suspected immunosuppressive gene
signature, regulated by the nuclear factor of activated T cells
in transplant patients receiving cyclosporine, associated with
recurrent infection and development of skin cancer (50,51).
Surrogate tissues, such as blood, skin, or hair follicles, are
used to understand the on-target and off-target effects in
more inaccessible organs (52–54), such as the kidney or liver.
In advanced renal cancer treated patients, a set of gene
transcripts observed in PBMC was associated with the
cumulative exposure to a drug (55). The changes in the
expression of Ki-67 (proliferation-related Ki-67 antigen),
phospho-S6 (phosphorylated S6 ribosomal protein), cyclin
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D1, and progesterone receptor signatures in breast cancer
tissues were shown to be useful pharmacodynamic bio-
markers that associated with fewer events in estrogen
receptor-positive patients by combining everolimus with
letrozole as compared to everolimus alone (56). These results
suggested that the PI3K/Akt/mTOR pathway plays a key role
in patients’ response to anti-endocrine therapy (56–58). These
examples demonstrate potential applications of using gene
transcript signatures to support our molecular level under-
standing and prediction of clinical responses. At the present
time, gene expression profiles, however, cannot quantitatively
link, in a precise predictive manner, the cellular response to in
vivo patients’ responses for an appropriate choice of dose
without translational functional/response studies in animals.

Disease Molecular Signatures

One common practice is to use animal models to predict
human responses in the clinic; gene expression profiling is one
tool that can be leveraged to associate the changes in animals
with the human clinical outcome. The gene expression
changes can be tested in either direction. Either the disease
biomarker of transcriptomic nature is first modeled in animal
models and then tested for consistency in humans or findings
in humans can be extrapolated back into the animal models
since the preclinical setting typically requires a shorter time
frame, costs less, and can help differentiate backup com-
pounds. Transcriptomic analysis can also be used in a
longitudinal manner for understanding the progression of a
disease or changes in treatment. Gene expression can be
useful for understanding diseases; for example, exploratory
studies include mRNA expression profiling for diabetic
nephropathy using urinary pellets (59), hepatic tissues from
subjects with normal liver and with alcoholic hepatitis (60),
and cartilage/synovium from osteoarthritic patients and
animal models as detailed in the succeeding paragraphs.

Osteoarthritis (OA), a disease associated with reduced
synovial joint function and increased pain, afflicts greater
than 30 million individuals (61). No consistently effective
method exists for preventing OA or halting its progression
despite the available clinical treatments. There are several
potential biomarkers associated with the clinical progression
of OA, including the detection of proteolytic products of
cartilage matrix components (62) and gross changes in the
structure and content of articular cartilage, subchondral bone,
synovial membrane, joint ligaments, and tendons (63). Due to
the slow and intermittent progression of this disease, there is
a critical need to identify biomarkers that determine the OA
disease course and predict its rate of progression. Since
human samples are relatively inaccessible, an integrated
analysis was performed on the OA-related samples derived
from four species (64), including human OA knee cartilage,
cartilage from the mouse STR/Ort model, cartilage from the
rat anterior cruciate ligament (ACL) transection model, and
synovium from the dog ACL model. Approximately 3,000
cartilage signature genes were identified in human OA
samples which were in common with at least one preclinical
species. Annotation of the upregulated common signature
genes pointed to the pathways related to skeletal develop-
ment, extracellular matrix–receptor interaction, focal adhe-
sion, phosphate transport, and blood vessel development.

Additional analyses were performed between human OA
cartilage and six mouse inflammatory disease models. By
focusing on the human OA-specific genes, a set of potential
OA biomarkers, including asporin (ASPN), gremlin 1
(GREM1), and matrilin 3 (MATN3), were identified. The
literature confirms the biological relevance of the previously
identified human OA-specific gene signature. ASPN has been
shown to be highly expressed in tenocyte, synoviocyte, and
chondrocyte. An aspartic acid repeat polymorphism in the
promoter of the ASPN gene inhibited chondrogenesis in-
duced by TGFβ and increased susceptibility to OA (65).
Skeletal overexpression of GREM1 impaired bone formation
and caused osteopenia (66). MATN3 is also highly expressed
in chondrocytes, and a sequence variant of MATN3 is a risk
factor for OA (67). In addition, MATN3 knockout mice
caused chondrocyte prematuration to hypertrophy and in-
creased bone mineral density and OA (68). This gene
expression signature could be a potential OA biomarker for
identifying future drug candidates to treat OA but needs
additional research to demonstrate its clinical utility.

Safety

There have been several studies employing gene expression
technologies to understand drug-induced adverse reactions
(10,69,70). Multiple types of data are often needed to pinpoint
the mechanism of action involved in a clinical drug-induced
adverse reaction. Both gene expression patterns of myeloma
plasma cells and single-nucleotide polymorphisms from each
patient were used to compare and contrast the early onset and
late-onset neuropathy after the administration of bortezomib or
vincristine (69). The genes associated with late-onset differed from
early onset peripheral neuropathies after the administration of
bortezomib; genes associated with late-stage neuropathy also
differed between bortezomib and vincristine treatments. The
genes responsible for the absorption, distribution, andmetabolism
of vincristine seemed to be associated with its treatment-related
neuropathy. Despite the compelling results, these gene-expression
signatures and genetics cannot explain the drug-induced adverse
reactions completely. Carfilzomib is the second in the class of
proteasome inhibitors developed; when compared to bortezomib,
carfilzomib treatment did not cause neuropathy as frequently or as
severely (70). ThoughHtrA2/Omi was upregulated by both drugs,
it was only inhibited by bortezomib. HtrA2/Omi is a member of
mitochondrial serine protease involved in mitochondria homeo-
stasis (71). This example illustrates the complexity of gene
expression, and perturbation of a gene (upregulated or down-
regulated) by a drug does not necessarily reflect any direct
interaction (positive or negative) between the drug and the gene.
The observed differential inhibition by bortezomib indicates that
integrating the genomic, transcriptomic, and biochemical informa-
tion with the safety phenotypic data for comparisons between
treatments is important to clearly delineate and precisely pinpoint
the true mechanism underlying severe adverse reactions associat-
ed with treatment administration.

Vaccination is one of the most effective methods for
controlling infectious diseases. Typically, laborious antibody
titer measurements and T cell response assays are used to
evaluate the efficacy of vaccines. As for vaccine safety,
conventional animal toxicity tests which assess development-,
reproduction-, and immunogenicity-associated safety issues are
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evaluated by repeated dosing and animal weight change monitor-
ing; the animal toxicity tests are costly and time-consuming as the
vaccine safety tests. Intuitively, amore rapid andprecise assessment
of vaccine efficacy and safety can provide a market advantage in
developing vaccines. Several reports have been published in the
past few years using gene expression profiling technology to
evaluate vaccine safety. In general, the gene expression results
were consistent with the degree of toxic effects observed in more
traditional assays, such as the abnormal toxicity test and the
leukopenic toxicity test (72–74). More recently, the systems
vaccinology approach describes using the genome-wide gene
expression underlying the host responses to vaccination (75–78).
In these studies, blood signature genes associated with B cell or T
cell response were flagged as potential biomarkers to help
differentiate vaccine efficacy or immunogenicity.

For assessing vaccine safety or reactogenicity, additional
analysis methodologies, such as gene module approach (26) and
metagene model (79), were employed to characterize the
vaccine-modulated blood signature genes. Signature genes
obtained were then annotated by pathway analysis tools (80).
The gene module approach (26) was developed to generate
gene expression fingerprints which provide a stable framework
for the visualization and functional annotation of blood gene
expression results. Essentially, that frameworkwas derived from
gene expression profiles generated using the Affymetrix Gen-
eChips (>44,000 probe sets) in 241 PBMC patient samples with
8 diseases (systemic juvenile idiopathic arthritis, systemic lupus
erythematosus, type I diabetes, metastatic melanoma, Escher-
ichia coli infection, Staphylococcus aureus infection, influenza A
infection, and liver transplant recipients). The co-expressed
transcripts were segregated into 28 modules by k-means
clustering, and each module contained between 22 and 322
transcripts. The genes within the majority of modules were
associated with a particular cell type, biological pathway, or
process (26). A module scoring algorithm was developed to
obtain module fingerprints with easily distinguishable module
scores which allowed association with clinical measurements,
such as antibody titer (immunogenicity) or adverse reaction
(reactogenicity). When the association analysis for a pilot study
was performed between the reactogenicity scores derived from
7 marketed or experimental vaccines (Adacel, Menactra,
Havrix, Prevnar, RabAvert, and Merck’s V512/influenza and
MRKAd5gag/HIV vaccines) and the 28 blood gene modules
(26), the modules identified to be significantly associated with
the severity of AEs included one module containing multiple
interferon-inducible genes and immune-related transcription
factors. The interferon regulatory factor-1 (IRF1) results
describing a key transcription factor regulating cellular interfer-
on response are consistent with a literature report by Reif et al.
(81), in which smallpox vaccine-associated adverse effects in
healthy, vaccinia virus-naive adult volunteers were shown to be
associated with two single-nucleotide polymorphisms in the
IRF1 gene. Such evidence from both levels of gene expression
and genetic mutations are mutually supportive for understand-
ing the role of the IRF1 gene in AEs associated with vaccines.

LATE-STAGE DRUG DEVELOPMENT AND BEDSIDE
APPLICATION

As described in the many examples described previously,
genome-wide expression analysis is useful to depict the

biological networks that could be acted upon by a drug
candidate; this technology can disclose information beyond
the traditional quantitative structure–activity relationship
methods. A recent gene array study indicated that anthracy-
clines and etoposide are both known DNA topoisomerase II
inhibitors, but anthracyclines, not etoposide, could also act as
global transcription repressors (82). Coadministration of
transcriptional repressors was shown to counteract the
pharmacological actions of the drugs that increased the
expression of the proapoptotic protein. As a result, the
investigators proposed that bortezomib should not be coad-
ministered with anthracyclines or other transcriptional
repressors. Given that these drugs are being used clinically
together, leveraging the biological knowledge gained from the
genome-wide association at the bedside would help avoid
cancelling efficacy as a result of drug–drug interaction and
exposing patients to toxicity.

At the patient level, gene expression results are influ-
enced by each individual’s diverse genetic and disease back-
grounds and epigenetic factors; therefore, results are much
more difficult to interpret than in vitro or animal results. A
real-time “integrative personal omics profile analysis” (iPOP)
in an individual over 14 months illustrates the impact of
environmental factors on the development of disease over
time (83). Close monitoring with multidimensional phenotyp-
ic data (proteomic, metabolomic, transcriptomic, and ge-
nomic) provided the linkage between the immunological
responses to a viral infection with the development of type
II diabetes in this individual. This connection allowed steps to
be taken to rectify and eliminate the disease. Gene expression
data provide snapshots at specific time points; this is a
limitation that prevents delineating a complex human disease
in the population or depicting the etiology of a disease.
However, gene expression profiling does allow one to focus
on the differentially expressed genes caused by a disease
condition, which are likely the most relevant genes (for
example, tumor genetics) to associate with clinical responses
(Fig. 1). Statistical associations with relevant clinical end-
points are expected to become stronger as testing in the
clinical trial populations increases (84). Gene-expression
signature and genetic mutations have been used for evaluat-
ing the prognostic outcome of cancer (85–89). Clearly, the
utility of gene-expression signatures has been demonstrated
for dissecting the complexity and heterogeneity of a cancer,
but their utility in chronic diseases is not as well understood
and needs more research in clinical studies. The framework of
clinical application would entirely depend on the disease of
concern, its clinical endpoints, and the context of a clinical
application. During the late-stage drug development, under-
standing of the variability in patient responses (no or partial
or complete) to a treatment could be achieved if a combined
and integrated analysis of genomics, transcriptomics, and
phenomics at the individual and population levels can be
conducted.

This comprehensive iPOP combining genomic, transcrip-
tomics, proteomic, metabolomic, and autoantibody profiles as
described previously (83) could possibly be more routine in
the future with the advancement in next-generation sequenc-
ing technology. However, due to the cost and the large
amount of data to analyze, the iPOP approach will remain a
research tool for quite some time.
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FIT-FOR-PURPOSE FRAMEWORK

One of the major pitfalls in the application of gene
expression technologies is the difficulty in translating the results
from animal models to humans successfully. The first hurdle is
the biological curation of the signature genes from the
preclinical models. Adequate interpretations of the gene
expression results in the context of biology and pharmacology
are intimately linked to the accuracy of our prior knowledge of
metabolic or apoptotic pathways. How should the genes be
reduced into a meaningful set or related to a pharmacological
network is the key issue that will ultimately determine the
usefulness of the signature genes to facilitate drug development.
Even research performed in human cell lines could possibly fail
to translate in the early human studies, since the conditions of
the cell culture experiment are tightly controlled and the
epigenetic impact on the clinical outcome is usually not
observed in the cell line models. A limited number of human
cell lines will not be able to represent the population-level
outcome, and so there is a need to utilize a large number of cell
lines in order to extrapolate the in vitro gene-expression
signatures and predict clinical efficacy when the drug is taken
by patients with diverse demographic characteristics. Another
problem often faced by drug discovery scientists is the difficulty
in mapping the observed change in cell line or animal gene
expression profiles to an equivalent change within an expected
degree of variability in the signature genes in human subjects.
The inability to observe a statistically meaningful change in the
gene-expression signature in the early clinical studies may be a
result of incorrectly estimating the appropriate sample size for a
future study or the genes proposed from the animal model are
not the same genes that are highly statistically significant in the
human. This can easily occur since gene expression data are
prone to multiplicity issues given that the high number of genes
observed far outstrips the number of subjects (∼40,000 genes
versus 10 or 12 animal subjects or a similar number of patients in
the smaller clinical trials). Therefore, understanding of the
molecular characteristics of a disease at the molecular and
cellular levels as well as its phenotypic characteristics at the
organ level is the prerequisite before embarking on a resource-
consuming drug development program. Figure 2 shows a
strategicflowchart illustrating the application of gene expression
in drug discovery and development. The statistical rigor in

qualifying a specific gene-expression signature as a biomarker
depends on its fit-for-purpose use (90,91) and will become more
stringent the further along a drug development program moves.
In fact, when the gene-expression signature is used as an efficacy
or safety marker in late-stage drug development, the quantita-
tive rigor needs to meet appropriate assay characterization for
any other clinical parameter measured. When the genetic
networks associate with the clinical manifestation of a human
disease or phenotypes, specific gene-expression signatures can
be leveraged as a translational tool for drug development,
especially when the biological pathways of a particular target
align as well. Take ectonucleotide pyrophosphatase/phosphodi-
esterase as a target example, its gene-expression signature
translates the in vitro results into the proof of concept studies
for treating type II diabetes (92).

The pertinence of a gene-expression signature qualified
for advancing a drug candidate or for predicting the safety
profile of a drug relies on an array of scientific supportive
evidence (90,93) and depends on its statistical association
with the functional, structural, and phenotypic changes
following exposure to a drug, as illustrated in Fig. 3. The
gene-expression signature should be integrated with relevant
clinical information so that patients can either receive the
intended clinical benefit or avoid the adverse effects. There
are several public genomic or pathway knowledge bases of
high quality that one can reference for designing clinical trials
where a gene-expression signature can add value to dose
selection and assessment of clinical outcomes (13,94). During
the efficacy-defining trials of first-in-man and other early
small clinical studies, only limited signals of drug-induced
adverse reactions are observed. The link of a gene-expression
signature to the treatment-associated adverse reactions tends
to be more difficult in the early phases for several reasons: (1)
there usually are not enough cases of adverse reactions, (2)
study population demographics can vary from study to study
(for example, untreated, healthy in the first-in-man study and
then disease population with treatment in different studies),
(3) the study is not usually conducted long enough to get the
link to the adverse reactions of concern, and (4) different
doses or formulations of the drug may be utilized in different
clinical trials during various phases of its development. To
overcome these problems, the drugs that have been
withdrawn from the market due to various serious adverse
reactions or dropped from the development program,
when studied, could be used to depict the toxicological
pathways, forming the basis for predicting, for a new
chemical entity, its possible extended pharmacological
effects and off-target effects (95,96). The large amounts
of data generate pose a real challenge to statistically
reduce and find the key signal among the data. As the
technology advances and drops in cost combined with
increasing genetic information rolls in for each human or
preclinical subject, the analyses of this data will be a
significant hurdle to finding true signal.

DATA ANALYSIS CHALLENGES

Drug Discovery and Development

Gene array technologies demand the integration of a
substantial amount of dynamic data across time with very

Fig. 1. Gene expression profiling does allow one to focus on the
differentially expressed genes caused by a disease condition, which
are likely the most relevant genes to associate with clinical responses
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limited and valuable samples; the ability to perform a robust
statistical analysis to answer the study question and to
translate a gene-expression signature to a relevant clinical
endpoint continues to remain very challenging.

Applications of the gene-expression signatures change as
the signature moves from discovery to use in the clinic per the
fit-for-purpose framework. In the discovery stage, there is
much more flexibility in the statistical analyses and study
design. Though clustering is a common method used, it is
important to point out that other methods of statistical
analyses are also being used and that many of these analyses
methods used in this space can lead to overfitting. Under-
standing the limitations of how vastly different data sets are
combined can help drive the statistical methodology chosen.
As described previously in many of the examples, separation
of conditions (disease versus no disease or treated versus no
treatment) aid in the discovery of relevant adverse experi-
ences or subgroup with increased efficacy; the cleaner that
divide, the easier it is to pick up “true” signal. In addition, the
multiplicity adjustment can be relaxed to allow more false

positives in for consideration when merged together with the
biological interpretation on the back-end. Though the lack of
or limited biological knowledge needs to also be considered
in assessing the molecular phenotypes.

As the gene expression signatures are significantly
qualified in scope for clinical use, for example, stratifica-
tion onto treatment, the statistical analyses become much
more straightforward and clinical trial statistics can be
applied with more rigorous multiplicity adjustments. One
real challenge is the development of a companion
diagnostic in a timely fashion that would enable bedside
use given the fine balance among discovery, replication,
and determination of the threshold levels that accompany
the assay development.

In summary, there exists no one solution, statistical
methodology, or paradigm to move from discovery to clinical
use in this space given the high dimensional nature of the data
which quickly overwhelms the much smaller sample size.
Biological knowledge is also changing and evolving as rapidly
as technology. So, as exemplified by many of the examples
described above, the ideal path is to (1) focus the study
question, (2) cast a wider net at first by integrating many of
the technologies with phenotypes and then (3) tighten that
net in terms of the set giving the most signal with biological
relevance, and (4) replicate findings.

Identifying Clinical Molecular Signatures for Complex
Diseases

Building clinically relevant molecular signatures that
can be used for the diagnosis, prognosis, and management
of complex diseases is the key of personalized medicine.
Data analysis is very critical to the development of
clinically robust molecular signatures (97). Less stringency
is often applied when analyzing molecular profiling
technologies for exploratory purposes as compared to

Surrogacy

Characterization

Demonstration

Outcome

Exploration

Utility

Are certain genes 
up- or down-

regulated in the 
pathway of 

interest?

Microarray

Microarray

Microarray 

Taqman or 
Microarray
Diagnostic

Preclinical to 
clinical space 

Does the signature 
show statistical 
significance?Are there genes that change 

with treatment? (predictive)
Are there genes that change 

with disease condition? 
(prognostic)

Certain genes 
change with 

association to 
disease outcome 
and treatment Conversion

to Taqman?
Depends on number

of probes/genes

Acceptance of gene expression
signatures in place of accepted 

clinical endpoint

High 
hurdle

Emerging Evidence of direct 
link to disease Outcome
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use in the clinic for say treatment assignment. Whereas
suboptimal data analysis protocols (e.g., biased, under-
powered, leading to redundant biomarkers, etc.) exist for
exploratory research and hypothesis generation, they are
not acceptable for clinical use. Clinical-grade molecular
signatures are typically subject to very stringent require-
ments and even have a separate regulatory path, depend-
ing on its use in the trial. Closing the gap between the
standards for exploratory versus clinically successful mo-
lecular signatures entails a thorough understanding of
possible biases in the data analysis phase and the
development of strategies to avoid them. Some pitfalls of
data analyses for identifying gene expression-based pre-
dictive signatures include (1) using unsupervised methods
(e.g., clustering) (98); (2) biasing signature accuracy
estimation by conducting supervised gene selection both
on training and testing data (98); (3) failing to identify
predictive signal because of the lack of power in the study
or by conducting gene selection for a different phenotype
(99); (4) selecting an arbitrary molecular signature without
accounting for other equally predictive coexisting molec-
ular signatures (i.e., the phenomenon of “molecular
signature multiplicity”) or without testing for statistical
redundancy of molecular signatures; and (5) not account-
ing for the effect of normalization and/or other data
preprocessing on selecting molecular signatures, on build-
ing of predictive models, and on estimating their accuracy
(100). Concerted efforts on establishing agreed-upon
guidelines for development as well as validation of
molecular signatures (101) and development of more
standardization of software are needed to avoid the above
biases. The most important gap is the replication of
significant associations per description in the fit-for-pur-
pose model.

CONCLUSION

Gene expression profiling and many of the emerging
molecular profiling technologies have become an integral part
of drug discovery/development and even personalized patient
care. As of now, gene expression profiling is being used
especially in oncology to attempt to tailor a better treatment
regimen based on tumor subtypes. The challenge is in
developing a companion diagnostic in a timely fashion to
enable use at the bedside given the fine balance among
discovery, replication, and determination of the threshold
levels that accompany assay development. Opportune appli-
cations of gene-expression signatures change as the signature
moves from discovery to use in the clinic per the fit-for-
purpose framework. Gene array technologies enable the
integration of a substantial amount of dynamic data across
time; the ability to perform a robust statistical analysis to
answer the study question and to translate a gene-expression
signature to a relevant clinical endpoint continues to remain
very challenging.
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