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Abstract. We present a unified quantitative approach to predict the in vivo alteration in drug exposure
caused by either cytochrome P450 (CYP) gene polymorphisms or CYP-mediated drug–drug interactions
(DDI). An application to drugs metabolized by CYP2C19 is presented. The metrics used is the ratio of
altered drug area under the curve (AUC) to the AUC in extensive metabolizers with no mutation or no
interaction. Data from 42 pharmacokinetic studies performed in CYP2C19 genetic subgroups and 18
DDI studies were used to estimate model parameters and predicted AUC ratios by using Bayesian
approach. Pharmacogenetic information was used to estimate a parameter of the model which was then
used to predict DDI. The method adequately predicted the AUC ratios published in the literature, with
mean errors of −0.15 and −0.62 and mean absolute errors of 0.62 and 1.05 for genotype and DDI data,
respectively. The approach provides quantitative prediction of the effect of five genotype variants and 10
inhibitors on the exposure to 25 CYP2C19 substrates, including a number of unobserved cases. A
quantitative approach for predicting the effect of gene polymorphisms and drug interactions on drug
exposure has been successfully applied for CYP2C19 substrates. This study shows that pharmacogenetic
information can be used to predict DDI. This may have important implications for the development of
personalized medicine and drug development.

KEY WORDS: CYP2C19; drug interactions; personalized medicine; pharmacogenetics; quantitative
prediction.

INTRODUCTION

Cytochrome P450 (CYP) genetic polymorphisms andCYP-
mediated drug interactions are important determinants of

variability in drug exposure (1,2). For a drug that is a substrate
of a polymorphic CYP, it is desirable to predict themagnitude of
drug interactions caused by CYP inducers or inhibitors. Also,
clinicians and pharmacologists may be interested in predicting
the alteration in drug exposure in genotype/phenotype variants
such as poor metabolizer (PM), intermediate metabolizer (IM),
or ultrarapid metabolizer (UM) subjects with respect to the
extensive metabolizer (EM) subjects.

Several approaches based on in vitro data have been
proposed to predict the magnitude of drug–drug interactions
(DDI), including mechanistic models (3) and physiologically
based pharmacokinetic models (4). Those models are attrac-
tive but quite complex, and the quantification remains
challenging. A much simpler in vivo modeling approach has
been proposed by Ohno and colleagues for CYP3A4
inhibition and induction, with good predictive performance
(5,6). Recently, our group has successfully applied this model
to drugs metabolized by CYP2D6 (7).

In a recent Food and Drug Administration (FDA) draft
guidance on clinical pharmacogenomics, it has been suggested
that the alteration in CYP substrate drug exposure caused by
either drug interactions or gene polymorphisms may be
viewed as the same general question (8). For example, the
increase in drug exposure observed in PM subjects with
respect to EM subjects is similar to that caused by a strong
inhibitor of the considered pathway in EM. Thus,
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pharmacokinetic studies performed in genetically identified
subgroups may provide important information for the pre-
diction of DDI.

In accordance with this view, we have recently derived a
model to predict the change in drug exposure caused by
CYP2D6 genetic polymorphisms based on the in vivo drug
interaction model from Ohno et al., and such an approach
showed good predictive performance (9). The objective of
this study was to propose a general framework for the
quantitative prediction of the effect of CYP genetic poly-
morphisms and CYP-mediated drug interactions on substrate
drug exposure and to present an application for drugs
metabolized by CYP2C19. The relative contribution of
CYP2C19 to the clearance of marketed drugs is small, about
5% (2), but some widely prescribed drugs are metabolized by
this pathway, such as clopidogrel, diazepam, or proton pump
inhibitors. In addition, the clinical significance of CYP2C19
gene polymorphisms and DDI in drug therapy has been
established (1,2,10).

METHODS

Background and Metrics

Our approach is based on frameworks proposed by
Ohno (5) and ourselves (9) for drug interactions and gene
polymorphisms, respectively. The general metrics used is the
ratio of the altered substrate drug area under the curve
(AUC*), where the alteration may be caused by either gene
polymorphisms or drug interaction, to the reference AUC
measured in patients with no mutation or no interaction. For
CYP2C19 gene polymorphisms, the prediction of the AUC
ratio is based on the following two-parameter equation, which
has been described in detail elsewhere (9):

AUCXM

AUCEM ¼ 1

1� CREM � 1� FAð Þ ð1Þ

where AUCXM is the substrate drug AUC in subjects with
mutated CYP2C19 alleles, who may be either PM, IM, or
UM, AUCEM is the reference drug AUC in wild-type, EM,
CREM (contribution ratio) is the fraction of the apparent drug
clearance due to CYP2C19 in EM, and FA (fractional
activity) is the fraction of activity of CYP2C19 resulting
from the combination of mutated alleles, with respect to the
reference genotype (wild-type). The contribution ratio CR is
basically an in vivo equivalent of the fraction metabolized
(often denoted fm) by a certain CYP enzyme. The FA
parameter characterizes the CYP2C19 genotype. The value
of FA in homozygote wild-type EM individuals is 1, it is lower
than 1 in IM and PM subjects, and greater than 1 in UM
subjects.

For drug interactions by inhibition, the AUC ratio of the
substrate drug is described as follows:

AUC*

AUCEM ¼ 1

1� CREM � IR
ð2Þ

where AUCEM is the reference AUC of the drug when
administered alone in EM, AUC* is the AUC of the drug
when coadministered with a CYP2C19 inhibitor in EM

individuals, CREM is the contribution ratio of the substrate
drug (see above), and IR is the inhibition ratio, which is a
measure of the inhibitor potency. The inhibition ratio ranges
from 0 (the inhibitor has no effect on CYP2C19-mediated
clearance of the victim drug) to 1 (the inhibitor reduces
CYP2C19-mediated clearance of the victim drug to zero). For
details on Eq. 2, see Ohno et al. (5) and Tod et al. (7). Of
note, Eq. 2 only applies for DDI occurring in EM. It can be
shown that the general equation for the quantitative
prediction of drug interactions by inhibition in subjects with
any genotype XM is as follows:

AUCXM�

AUCXM ¼ 1� CREM � 1� FAð Þ
1� CREM � 1� FA� 1� IRð Þ½ � ð3Þ

where AUCXM is the AUC of the substrate drug in subjects
with genotype XM, AUCXM* is the AUC in subjects with
genotype XM who are coadministered the inhibitor, CREM is
the contribution ratio of the substrate drug in homozygote
EM subjects, FA is the fraction of activity associated with
genotype XM, and IR is the inhibition ratio of the inhibitor.
The demonstration of Eq. 8 is provided as a Supplementary
Material. In this application, we did not use this general
equation but the simpler Eq. 2, as only drug interaction data
from EM subjects were analyzed.

If the CR of a CYP2C19 substrate and the FA of a
mutant genotype are known, one can predict the AUC
increase in subjects with such a genotype using Eq. 1.
Alternatively, Eq. 1 may be used to predict the value of one
unknown parameter, CR or FA, provided that the other
parameter is known, as well as the AUC increase. Similarly,
Eq. 2 may be applied to predict either the AUC increase
caused by a CYP2C19 inhibitor or the value of one unknown
parameter, CR or IR, depending on available data.

As the contribution ratio CR is a common parameter in
Eqs. 1 and 2, pharmacogenetic data may be used to estimate
CRs of CYP2C19 substrates and then derive quantitative
prediction of DDI, and vice versa. In this study, the CRs of
various CYP2C19 substrates were first estimated from
pharmacogenetic data using Eq. 1. Then, these CR estimates
were used to predict the magnitude of DDI using Eq. 2. We
chose this procedure because much more data were available
from pharmacogenetic studies on CYP2C19 drugs than from
DDI studies. A three-step approach was carried out for the
analysis of both genotype and DDI data. First, initial values
of the model parameters were estimated from a subset of
published data, using Eqs. 1 and 2. Then, external validation
of the AUC ratios predicted from those initial estimates was
performed using a second set of published data. Finally,
refined estimates of model parameters and AUC ratios were
obtained by Bayesian orthogonal regression, using all the
data from steps 1 and 2.

Genotype-Based Prediction of Drug Exposure

Step 1: Estimation of the Initial Values of CRs and FAs

The activity of CYP2C19 alleles has been classified as
normal, null, decreased, or increased, based on in vitro and in
vivo data (11). In the initial estimation, each allele was
assumed to have its own contribution denoted as FAi and the
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fractional activity (FA) of any CYP2C19 genotype results
from the allele combination as follows (9):

FA ¼ 1
2

Xm

i¼1

ni � FAi ð4Þ

where m indicates the allele type (normal, null, decreased, or
increased) and ni indicates the number of alleles of each
category. Of note, Eq. 4 was used only for the initial
estimation of the FAs. In the final estimation step, only the
global activity of each allele combination FA was estimated,
and so the assumptions of gene–dose effect and independence
of allele activity did not stand in this final step.

The FAi of the reference allele, CYP2C19*1, was fixed at 1
(normal activity). While CYP2C19*2 and CYP2C19*3 alleles
have been reported as inactive (11), we assumed very little
activity, with FAi fixed at 0.01 for both alleles. For the gain-of-
function CYP2C19*17 allele, FAi was estimated at 2.25 using
Eq. 1 and data from a pharmacokinetic study performed with
omeprazole in homozygote *17/*17 subjects (12).

For ease of reading, both inactive alleles *2 and *3 are
denoted *2 throughout the article. As a result, six allele
combinations along with their fractional activity were consid-
ered: *1*1 (FA01), *1*2 (FA00.5), *2*2 (FA00.01), *17/*17
(FA02.25), *1*17 (FA01.625), and *2*17 (FA01.13).

The contribution ratio CR of CYP2C19 substrates was
calculated from AUC values measured in homozygous EM
and homozygous PM, after simplification and rearrangement
(see details in reference (9)), as follows:

CREM ¼ AUCPM AUCEM�� �� 1

AUCPM AUCEM�� � ð5Þ

AUC values in EM and PM were retrieved from in vivo
studies published up toDecember 2011.When several published
AUC ratios were available in PM for a given substrate, data
from multiple-dose studies were preferred over single-dose
studies.When the various studies had similar design, the median
AUC ratio reported in PM was selected to get a central
tendency of the data. All data that had not been used during
step 1 were considered in the external validation step.

Step 2: External Validation of Genotype-Based Predictions

The AUC ratios predicted by Eq. 1 with the initial
estimates of CRs and FAs were compared to AUC ratios
observed in a second set of published data. Predicted AUC
ratios were plotted versus observed AUC ratios. Predicted
values in the range 50–200% of the observed ratio were
considered acceptable, in accordance with previous works
(5,6). Bias and precision of predicted AUC ratios were
calculated as the mean prediction error (i.e., predicted minus
observed AUC ratio) and the mean absolute prediction error,
respectively.

Step 3: Final Estimation of CRs, FAs, and AUC Ratios

A Bayesian approach was used to obtain refined
estimates of CRs and FAs in the Winbugs software, version
1.4.3 (13). Equation 1, initial estimates of CRs and FAs, and
all available data from steps 1 and 2 were imported into the

Winbugs software to perform Bayesian orthogonal regres-
sion, as described in detail elsewhere (9).

Briefly, for each substrate i and genotype j, the predicted
AUC ratio was coded in Winbugs as follows:

predij ¼ 1 1� CRZi � 1� FAZj
� �� ��

AUCratioij � N predij; tauAUC
� � ð6Þ

where predij and AUCratioij are the predicted and observed
AUC ratios for each (CRi, FAj) pair, respectively, CRZi and
FAZj are the refined (Bayesian posterior) estimates of the
contribution ratio and fraction of activity, respectively, and
tauAUC is the precision (i.e., reciprocal of the variance) of the
AUC distribution. We assumed normal distribution for AUC
ratios and logistic distribution for CRs and FAs. The mean of
each distribution was set to the initial estimates found in step
1. We assumed that the precision of these distributions,
denoted tau, followed a gamma distribution as follows:
tauCR∼G(4, 1), tauFA∼G(4, 1), and tauAUC∼G(0.1, 2.5),
for CR, FA, and AUC distributions, respectively. These
gamma distributions were set so that the expected standard
deviations of CRs and FAs on the logit scale and of AUC
ratios were 0.5, 0.5, and 5, respectively.

In Bayesian statistics, the gamma distribution G(α, β) is
commonly used as prior for the precision (i.e., the reciprocal
of the variance) of a normal distribution (14). The mean of
such a gamma distribution is α/β. In our application, the mean
of the precisions denoted tau were 4 for CRs and FAs and
0.04 for AUC ratios. Therefore, the expected variances of the
parameters are the reciprocal of those values, 0.25 and 25,
and the expected standard deviations are 0.5 and 5 for CRs/
FAs and AUC ratios, respectively.

The posterior distributions of the AUC ratios, CRs, and
FAs were obtained by Monte Carlo Markov chain simulation
in Winbugs. Convergence was assessed by checking the
stability of the posterior distributions. Goodness-of-fit was
assessed by visual examination of the residual scatter plots.
The Bayesian posterior distributions were examined to detect
multimodal distributions, which would have indicated a
conflict between specified prior distribution and data. The
means of the posterior distributions were used as point
estimates of CRs, FAs, and AUC ratios. A 90% confidence
interval was calculated for each result as the interval between
the 5th and the 95th percentile of the posterior distribution of
each variable.

Quantitative Prediction of Drug Interactions

Step 1: Estimation of the Initial Values of IRs

Point estimates of CRs obtained from the analysis of
pharmacogenetic data described above, as well as AUC ratios
from published drug interaction studies were used to estimate
initial values of IRs, by rearranging Eq. 2 as shown below:

IR ¼ AUC* AUCEM�� �� 1

AUC* AUCEM�� �� CREM ð7Þ

AUC* and AUCEM values for various (substrate, inhibitor)
pairs were retrieved from studies published up to December
2011.
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Step 2: External Validation of Drug Interaction Predictions

The AUC ratios predicted by Eq. 2 with the initial
estimates of IRs and final estimates of CRs were compared to
the AUC ratios observed in a second set of published data.
Predictive performance of the model was assessed using the
same criteria as those used in the analysis of pharmacogenetic
data.

Step 3: Final Estimation of IRs and AUC Ratios

We used a Bayesian orthogonal regression procedure in
Winbugs similar to that previously described, except that only
IRs and AUC ratios were reestimated. CRs were fixed at
their point estimates obtained from the previous Bayesian
analysis of pharmacogenetic data (CRZi). Briefly, for each
substrate i and inhibitor k:

predik ¼ 1 1� CRZi � IRZkð Þ=
AUCratioik � N predik; tauAUCð Þ ð8Þ

where predik and AUCratioik are the predicted and observed
AUC ratios for each (CRi, IRk) pair, respectively, CRZi is the
final point estimate of the contribution ratio, and IRZk is the
refined (Bayesian posterior) estimate of the inhibition ratio.
The precision tauAUC was set as stated above for genotype-
based prediction (tauAUC∼G(0.1, 2.5)). We assumed logistic
distribution of the IRs, with tauIR∼G(4, 1). Results were
critically examined as explained above. Point estimates, as
well as 90% confidence intervals, were calculated from the
Bayesian posterior distribution of IRs and AUC ratios.

Prediction of AUC Ratios for Unpublished Substrate–
Genotype and Substrate–Inhibitor Pairs

The final estimates of CRs, FAs, and IRs were used to
calculate AUC ratios for all possible CYP2C19 substrate–
genotype and substrate–inhibitor pairs, using Eqs. 1 and 2,
respectively. This provided insights about the magnitude of
the alteration in drug exposure for unpublished rare geno-
types and drug interactions.

RESULTS

Genotype-Based Prediction

Initial Estimation

Ninety-nine AUC ratios from 42 published studies were
available for 5 genotypes (*1*2, *2*2, *17*17, *1*17, and
*2*17, with respect to the reference *1*1 genotype) and 25
CYP2C19 oral substrate drugs. Of note, these substrates
included the R- and S-enantiomers of lansoprazole, the S-
enantiomer of citalopram (escitalopram), and the active
fraction of nelfinavir as separate entities, in addition to parent
drugs, whose total was 21.

The initial values of FAs are given in the “Methods”
section. The initial estimates of CRs for 25 CYP2C19 drug
substrates are given in Table I, as well as literature references.
The highest contribution of CYP2C19 to the oral drug
clearance was observed for mephobarbital R (CR00.99),

proguanil (CR00.93), lansoprazole S (CR00.87), omeprazole
(CR00.85), and diazepam (CR00.84).

External Validation

AUC ratios predicted using Eq. 1 and the initial
estimates of FAs and CRs were compared with 75 AUC
ratios reported in published studies. Published AUC ratios
and corresponding references are provided in Table II.
Figure 1 shows observed versus predicted AUC ratios. The
mean error of prediction of the AUC ratio was −0.27 and the
mean absolute error was 0.71. Only 5 out of 75 (6.7%)
predicted AUC ratios were out of the 50–200% range of
observed AUC ratios.

Final Estimation of CRs and FAs

The final estimates of CRs and FAs with their confidence
interval are presented in Tables III and IV, respectively.
Table IV also indicates the frequency of CYP2C19 genotypes
reported in the literature and associated phenotypes (57).
The plot of observed AUC ratios versus predictions based on
the final estimates of FAs and CRs is shown in Fig. 1 (n099).
Compared with the initial estimation step, the predicted
performance was improved, with mean error and mean
absolute error of prediction of −0.15 and 0.62, respectively.
Only one outlier remained at this step, the AUC ratio of
omeprazole in *2*2 PM reported by Chen et al. (45), which
was still overestimated.

Table I. Initial Estimate of the CYP2C19 CR for Various Substrate
Drugs

Drug CR Reference

Amitriptyline 0.28 (15)
Citalopram 0.54 (16)
Cilostazol 0.30 (17)
Clomipramine 0.43 (18)
Clopidogrel 0.66 (19)
Diazepam 0.84 (20)
Escitalopram 0.46 (21)
Fluoxetine 0.66 (22)
Gliclazide 0.81 (23)
Lansoprazole 0.74 (24)
Lansoprazole R 0.75 (25)
Lansoprazole S 0.87 (25)
Mephobarbital R 0.99 (26)
Moclobemide 0.72 (27)
Nelfinavir 0.47 (28)
Nelfinavir active moietya 0.25 (28)
Omeprazole 0.85 (29)
Pantoprazole 0.80 (30)
Praziquantel 0.17 (31)
Proguanil 0.93 (32)
Rabeprazole 0.74 (24)
Sertraline 0.69 (33)
Sibutramine 0.71 (34)
Trimipramine 0.48 (35)
Voriconazole 0.67 (36)

CR contribution ratio
aThe active moiety of nelfinavir is nelfinavir+M8 active metabolite
(nelfinavir hydroxy-t-butylamide)

418 Goutelle et al.



Table II. Published AUC Ratios Used for the External Validation Step

Drug Genotype FAa Number of subjects Observed AUC ratio Reference

Amitriptyline *1*2 0.5 18 1.29 (15)
Citalopram *2*2 0.01 5 1.23 (37)
Citalopram *1*2 0.5 7 1.44 (16)
Cilostazol *1*2 0.5 18 1.2 (17)
Clomipramine *1*2 0.5 25 1.41 (18)
Clopidogrel *1*2 0.5 8 1.67 (19)
Diazepam *1*2 0.5 6 2.47 (20)
Escitalopram *17*17 2.25 5 0.79 (38)
Fluoxetine *1*2 0.5 4 1.58 (22)
Gliclazide *2*2 0.01 3 3.42 (39)
Gliclazide *1*2 0.5 12 1.25 (39)
Lansoprazole *2*2 0.01 3 1.88 (40)
Lansoprazole *2*2 0.01 4 5.41 (41)
Lansoprazole *2*2 0.01 6 4.03 (42)
Lansoprazole *1*2 0.5 5 1.67 (24)
Lansoprazole *1*2 0.5 2 1.32 (40)
Lansoprazole *1*2 0.5 7 2.31 (41)
Lansoprazole *1*2 0.5 7 2.14 (43)
Lansoprazole *1*2 0.5 4 1.68 (30)
Lansoprazole *1*2 0.5 6 1.78 (42)
Lansoprazole *1*17 1.63 1 0.45 (30)
Lansoprazole *2*17 1.13 1 1.34 (30)
Lansoprazole R *1*2 0.5 6 1.46 (25)
Lansoprazole S *1*2 0.5 6 1.85 (25)
Mephobarbital R *1*2 0.5 10 4.4 (26)
Nelfinavir *1*2 0.5 22 1.49 (28)
Nelfinavir active moietyb *1*2 0.5 22 1.29 (28)
Omeprazole *2*2 0.01 6 7.42 (44)
Omeprazole *2*2 0.01 6 2.03 (45)
Omeprazole *2*2 0.01 6 9.03 (46)
Omeprazole *2*2 0.01 6 3.8 (30)
Omeprazole *2*2 0.01 6 7.54 (42)
Omeprazole *2*2 0.01 6 7.79 (47)
Omeprazole *2*2 0.01 8 5.68 (48)
Omeprazole *1*2 0.5 5 2.29 (29)
Omeprazole *1*2 0.5 6 1.72 (44)
Omeprazole *1*2 0.5 8 2.66 (46)
Omeprazole *1*2 0.5 2 3.67 (30)
Omeprazole *1*2 0.5 6 2.84 (42)
Omeprazole *1*2 0.5 6 2.85 (47)
Omeprazole *1*17 1.63 1 0.77 (30)
Omeprazole *2*17 1.13 1 1.83 (30)
Pantoprazole *1*2 0.5 7 2.16 (49)
Pantoprazole *1*2 0.5 2 4.2 (30)
Pantoprazole *1*17 1.63 1 0.79 (30)
Pantoprazole *2*17 1.13 1 1.41 (30)
Proguanil *1*2 0.5 5 2.99 (32)
Rabeprazole *2*2 0.01 6 3.13 (50)
Rabeprazole *2*2 0.01 4 5.26 (29)
Rabeprazole *2*2 0.01 4 4.34 (51)
Rabeprazole *2*2 0.01 6 3.73 (42)
Rabeprazole *2*2 0.01 5 2.68 (52)
Rabeprazole *1*2 0.5 5 1.71 (24)
Rabeprazole *1*2 0.5 8 1.38 (50)
Rabeprazole *1*2 0.5 5 3.02 (29)
Rabeprazole *1*2 0.5 6 2.05 (51)
Rabeprazole *1*2 0.5 6 1.57 (42)
Rabeprazole *1*2 0.5 8 1.1 (52)
Sertraline *1*2 0.5 22 1.4 (33)
Sertraline *17*17 2.25 5 0.99 (33)
Sertraline *1*17 1.63 40 1.1 (33)
Sertraline *2*17 1.13 7 1.9 (33)
Sibutramine *1*2 0.5 26 1.13 (34)
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Quantitative Prediction of Drug Interactions

Initial Estimation of IRs

Fewer data were available for CYP2C19-mediated drug
interactions. Twenty-two AUC ratios from 18 published
studies were used in the analysis. The initial estimates of
IRs for 10 CYP2C19 inhibitors are given in Table V, as well as
literature references. Fluvoxamine (IR00.97), fluconazole
(IR00.76), and voriconazole (IR00.66) were identified as
the strongest CYP2C19 inhibitors. The proton pump inhib-
itors omeprazole and pantoprazole showed limited inhibition
potency.

External Validation and Final Estimation

In the external validation step, model-based (Eq. 2)
predictions of the AUC ratio were compared with 13 ratios
reported in the literature. Values and references of published

AUC ratios are shown in Table VI. The mean error and mean
absolute error of predictions were −1.20 and 1.76, respective-
ly. Figure 2 shows the observed versus predicted AUC ratios
from both the external validation and final estimations steps
of the analysis.

The final estimates of IRs for the 10 inhibitors are
provided in Table VII, as well as their confidence
intervals. As the inhibitor dose may influence the value
of the inhibition ratio (7), the ranges of inhibitor doses
used in published studies should be considered when
interpreting the results. The AUC ratios predicted in the
final analysis better correlated with the observed ratios
(n022), as shown in Fig. 2, with mean error and mean
absolute error of prediction of −0.62 and 1.05, respec-
tively. After the final estimation step, three AUC ratios
were slightly underestimated, for the R- and S-enan-
tiomers of lansoprazole coadministered with fluvoxamine
(25) and for omeprazole coadministered with fluconazole
(64).

Trimipramine *1*2 0.5 7 2.04 (35)
Voriconazole *2*2 0.01 8 3.45 (53)
Voriconazole *2*2 0.01 5 2.78 (54)
Voriconazole *2*2 0.01 6 4.02 (55)
Voriconazole *2*2 0.01 4 2.90 (56)
Voriconazole *1*2 0.5 8 2.28 (36)
Voriconazole *1*2 0.5 11 1.56 (54)
Voriconazole *1*2 0.5 8 1.3 (56)
Voriconazole *1*2 0.5 6 2.88 (55)
Voriconazole *1*17 1.63 4 0.52 (53)
Voriconazole *1*17 1.63 8 0.82 (54)
Voriconazole *2*17 1.13 2 0.78 (54)

a Initial estimate of the fraction of CYP2C19 activity for each genotype, with respect to the reference genotype (*1*1)
bThe active moiety of nelfinavir is nelfinavir+M8 active metabolite (nelfinavir hydroxy-t-butylamide)

Table II. (continued)

Drug Genotype FAa Number of subjects Observed AUC ratio Reference

Fig. 1. Observed area under the time–concentration curve (AUC) ratios versus genotype-based predictions from the external validation (left
panel, open circles) and final estimation (right panel, filled circles) steps. The dashed line is the line of identity (y0x). The upper and lower solid
lines represent y02x and y00.5x, respectively
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Prediction of AUC Ratios for All Substrate–Genotype
and Substrate–Inhibitor Pairs

The Bayesian orthogonal regression analysis provid-
ed point estimates and confidence interval of the AUC
ratios for all possible CYP2C19 substrate–genotype (n0
125) and substrate–inhibitor (n0250) pairs, including
unpublished cases. Figure 3 shows the predicted AUC
ratios for 10 CYP2C19 substrate drugs in PM (*2*2) and
UM (*17*17) subjects. The predicted AUC ratios of the
same CYP2C19 substrates for all possible interactions

with five CYP2C19 inhibitors are provided as Supple-
mentary Material.

DISCUSSION

The variability in drug exposure caused by cytochrome
gene polymorphisms and CYP-mediated drug interactions
may have important clinical implications (10). For example, it
has been shown that CYP2C19 gene polymorphisms influ-
ence the healing of gastroesophageal reflux disease and
eradication rate of Helicobacter pylori infection treated by
proton pump inhibitor-containing drug regimens (71).
CYP2C19 alleles associated with both increased
(CYP2C19*17) and decreased (CYP2C19*2) enzyme activity
have been linked with cardiovascular outcomes in patients
with coronary artery disease treated by clopidogrel (72).

In this study, a unified modeling approach for in vivo
quantitative prediction of the effect of CYP gene polymor-
phisms and DDI has been presented and applied for CYP2C19
substrate drugs. This is not a fully new approach, as it has been
first proposed by Ohno and colleagues for CYP3A4-mediated
drug interactions (5) and then applied to CYP2D6 inhibition
and CYP2D6 gene polymorphisms (7,9). However, in these
previous works, DDI and genetic polymorphisms have been
studied separately. Here, we used pharmacogenetic information
to predict CYP2C19-mediated drug interactions. This was
possible because the contribution ratio (CR), which is the
substrate drug parameter in the model, is a common parameter
in Eqs. 1 and 2. To our knowledge, such sequential approach for
in vivo prediction of the effect of CYP gene polymorphisms and
DDI has not been performed so far.

In the analysis of pharmacogenetic data, the model
provided overall good predictive performance, as only one
outlier remained in the final estimation of the AUC ratios.
For *1*2 and *2*17 genotypes, the final estimates of FA (0.30
and 0.80, respectively) were quite different from the initial
estimates (0.50 and 1.13, respectively). In the initial estima-
tion step, we assumed gene–dose effect, as well as indepen-
dent contribution of each allele FAi (see Eq. 4 in the
“Methods” section) to estimate the FA values. However, in
the final estimation step, only the total FA values of allele
combinations were estimated and the individual contribution
of each allele was not estimated. While a slightly increased
CYP2C19 enzyme activity was initially expected in *2*17

Table III. Final Estimate of CYP2C19 CR to the Apparent Oral
Clearance of Various Substrate Drugs

Drug CRa 90% CIb

Mephobarbital R 0.99 0.99–1.0
Proguanil 0.89 0.87–0.90
Lansoprazole S 0.87 0.85–0.88
Omeprazole 0.84 0.82–0.86
Diazepam 0.84 0.81–0.86
Pantoprazole 0.80 0.76–0.83
Gliclazide 0.76 0.71–0.80
Lansoprazole R 0.74 0.68–0.79
Lansoprazole 0.73 0.67–0.78
Rabeprazole 0.72 0.65–0.77
Moclobemide 0.71 0.64–0.77
Sibutramine 0.69 0.61–0.75
Voriconazole 0.68 0.60–0.74
Sertraline 0.67 0.59–0.74
Clopidogrel 0.65 0.55–0.72
Fluoxetine 0.64 0.55–0.72
Citalopram 0.49 0.37–0.60
Trimipramine 0.49 0.36–0.60
Nelfinavir 0.46 0.33–0.58
Clomipramine 0.42 0.30–0.55
Escitalopram 0.45 0.33–0.57
Cilostazol 0.30 0.19–0.42
Amitriptyline 0.28 0.18–0.40
Nelfinavir a.f. 0.26 0.16–0.37
Praziquantel 0.18 0.10–0.27

CR contribution ratio, CI confidence interval
aCR was calculated as the mean of the Bayesian posterior distribution
bCI was calculated as the range between the 5th and the 95th
percentiles of the Bayesian posterior distribution

Table IV. Final Estimate of the FA of CYP2C19 for Various Genotypes with Respect to the Wild-Type (*1*1) Genotype

Genotype

Frequencya (%)

Phenotypea FAb 90% CIcCaucasian Asian African American Hispanic

*2*2 3.2 8.4 5.2 2 PM 0.005 0.002–0.008
*1*2 16.8 44.4 18.8 17.2 IM 0.30 0.25–0.36
*2*17 3.2 3.6 9.2 4.4 Unknown 0.80 0.50–1.19
*1*17 22.8 5.6 20.4 20.4 EM 1.59 1.24–1.85
*17*17 2.8 1.6 2.8 2.4 UM 2.03 1.28–2.62

FA fractional activity, CI confidence interval
a Frequencies and phenotypes as reported by Martis et al. (57). The frequencies of the reference *1*1 genotype reported in the study from
Martis et al. were 49.2%, 36.4%, 38.4%, and 50.4% in Caucasians, Asians, African Americans, and Hispanics, respectively

b FA was calculated as the mean of the Bayesian posterior distribution
cCI was calculated as the range between the 5th and the 95th percentiles of the Bayesian posterior distribution
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subjects, the final estimate of FA (mean, 0.80; 90% CI, 0.50–
1.19) suggests a slightly decreased activity instead. This
finding is supported by the modest AUC increase in drug
exposure reported in *2*17 subjects for omeprazole, panto-
prazole, and lansoprazole (30) and sertraline (33). A limited
decrease (AUC ratio, 0.78) in drug exposure in *2*17 subjects
has been reported only for voriconazole so far (54). While
more research in this specific subgroup is required, the
magnitude of the change in drug exposure associated with
the *2*17 genotype appears to be small anyway.

Fewer data were available to predict CYP2C19-mediated
DDI. After the final estimation step, the predictive perfor-
mance was acceptable, but three AUC ratios were under-
estimated, for omeprazole coadministered with fluconazole
(predicted AUC ratio, 3.04; observed AUC ratio, 6.3 (64))
and for the R- and S-enantiomers of lansoprazole coadminis-
tered with fluvoxamine (predicted AUC ratios, 3.60 and 6.50;
observed AUC ratios, 8.99 and 13.97, for R- and S-lansopra-
zole, respectively (25)). Interestingly, in the study from Miura
and colleagues, the AUC of R- and S-lansoprazole were also
measured in *2*2 and *2*3 PM subjects, and the observed
AUC ratios (AUCPM/AUCEM) were 4.0 and 7.4 for R- and S-
lansoprazole, respectively (25). So, fluvoxamine-induced

AUC increase was significantly greater than that observed
in homozygote PMs. This observation is not compatible with
the theoretical basis of the method and indicates a conflict
between pharmacogenetic and drug interaction data in this
study.

The contribution ratios of substrate drugs and inhibition
ratios of inhibitors may be compared with results from in vitro
metabolism studies. Kita and colleagues studied the contri-
bution of CYP2C19 to the in vitro metabolism of omeprazole
and lansoprazole using antihuman CYP antibodies. They
found percent inhibition of PPI hydroxylation by anti-
CYP2C19 antibodies of 71.1–77.8% and 54.4–68.6% for
omeprazole and lansoprazole, respectively (73). Relative
metabolic contributions of CYP2C19 of 37% and 33% have
been reported for S-citalopram (or escitalopram) and R-
citalopram, respectively (74), while a 94–95% contribution
has been reported for diazepam (75). Overall, the rank order
of substrates in terms of relative contribution of CYP2C19
from these in vitro data (diazepam>omeprazole>lansopra-
zole>escitalopram) is in agreement with our results (see

Table VI. Published AUC Ratios Used for the External Validation
Step

Inhibitor Substrate drug

Observed AUC
ratio of substrate
drug Reference

Clopidogrel Sibutramine 2.27 (63)
Fluconazole Omeprazole 6.29 (64)
Fluvoxamine Lansoprazole 3.83 (65)

Lansoprazole R 8.99 (25)
Lansoprazole S 13.97 (25)
Rabeprazole 2.82 (66)
Diazepam 2.80 (67)

Omeprazole Moclobemide 2.21 (27)
Nelfinavir 0.70 (68)
Diazepam 1.64 (69)
Proguanil 1.47 (70)
Clopidogrel 1.51 (61)
Clopidogrel 1.44 (61)

Fig. 2. Observed area under the time–concentration curve (AUC)
ratios versus model predictions for CYP2C19-mediated drug inter-
actions. Plus signs predictions from the external validation step (n0
13), filled circles predictions from the final estimation step (n022).
The dashed line is the line of identity (y0x). The upper and lower
solid lines represent y02x and y00.5x, respectively

Table V. Initial Estimate of the IR for Various CYP2C19 Inhibitors

Inhibitor Daily dose (mg) IR Reference

Clopidogrel 75a 0.26 (45)
Fluconazole 400/200b 0.76 (58)
Fluoxetine 60 0.44 (59)
Fluvoxamine 50 0.97 (47)
Moclobemide 300 0.62 (48)
Omeprazole 40 0.43 (60)
Pantoprazole 80 0.25 (61)
Ticlopidine 300 0.52 (62)
Voriconazole 800/400b 0.66 (58)

IR inhibition ratio
aA single dose of 300 mg was administered on the first day and then a
75-mg dose was administered once daily for three consecutive days

bThe daily dose was halved on the second day of the study. Doses are
given as first dose/second dose

Table VII. Final Estimate of the IR of Various CYP2C19 Inhibitors

Inhibitor Daily dose (mg)a IRb 90% CIc

Fluvoxamine 50–150 0.98 0.95–0.99
Fluconazole 100–400 0.78 0.62–0.90
Voriconazole 400–800 0.64 0.43–0.82
Moclobemide 300 0.61 0.39–0.80
Ticlopidine 300 0.51 0.29–0.72
Fluoxetine 60 0.44 0.24–0.66
Omeprazole 40–80 0.43 0.24–0.64
Clopidogrel 75 0.28 0.13–0.48
Pantoprazole 80 0.26 0.12–0.45

IR inhibition ratio, CI confidence interval
aRange of the daily dose used in published drug interaction studies
b IR was calculated as the mean of the Bayesian posterior distribution
cCI was calculated as the range between the 5th and the 95th
percentiles of the Bayesian posterior distribution
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Table III). Quantitative discrepancies between in vitro
estimates of CYP2C19 metabolic contribution and CRs are
not surprising, as our approach uses the apparent oral drug
clearance, not the intrinsic clearance. In addition, it has been
shown that the various methods used for in vitro study of
hepatic drug metabolism may provide significantly different
results (75,76).

The in vitro [I]/Ki ratio, where [I] is the inhibitor
concentration available to the enzyme and Ki is the inhibition
constant, has been proposed as a predictor of in vivo
magnitude of drug interactions (77), as the larger the [I]/Ki

ratio, the greater the predicted AUC ratio and the inhibition
potency. Using data from Obach et al., we calculated [I]/Ki

ratios of 0.22, 1.37, 7.39, and 7.87 for moclobemide, ticlopi-
dine, fluconazole, and fluvoxamine, respectively, using the
free hepatic inlet maximal concentration estimated by the
authors as the in vivo concentration available to the enzyme,
[I] (78). Again, a fair agreement is observed with the
inhibition potency provided by the IR parameter in our
approach (ticlopidine<moclobemide<fluconazole<fluvox-
amine; see Table VII), as our results show quite large
overlapping in the 90% confidence interval of the IR for
ticlopidine and moclobemide. Although available in vitro
data are not sufficient to perform a systematic compari-
son, it appears that results from our in vivo modeling
approach are in accordance with those from in vitro predictive
approaches.

The paucity of data on drug interaction and in patients
with rare genotypes, such as *2*17 subjects, is a clear
limitation of the study. Also, this approach is based on a
number of assumptions and has several limitations that have
been discussed elsewhere in part (7,9). Briefly, the method is
valid only for oral drugs with linear pharmacokinetics. For
example, phenytoin, which is a substrate drug of both
CYP2C9 and CYP2C19, was not included in the analysis

because its pharmacokinetics is nonlinear (79). In addition,
the model cannot deal with multiple, complex drug interac-
tion patterns, and it can accommodate only one cytochrome
pathway at a time. Some subjects may carry genetic mutations
of several CYP metabolic pathways. For example, a haplo-
type with two CYP2C loss-of-function alleles (2C19*1–
2C9*2–2C8*3) has been described in various ethnic groups,
with a frequency ranging from 1.2% to 8.9% (57). This
means that some individuals may be PM for both CYP2C9
and CYP2C8. For a drug that is a common CYP2C9 and
CYP2C8 substrate, the application of our approach might
lead to an overestimation of the CR of each individual
CYP. In the future, it may be advantageous to refine the
model in order to accommodate multiple CYP and
mutations.

Despite the categorical nature of the CYP genotype, we
used continuous distributions of the genotype parameter FA
in our Bayesian modeling approach. Actually, the entire
distribution of the FA parameter was described as a mixture
of distributions, each genotype being characterized by its own
distribution of the FA parameter. As illustrated by isoniazid
clearance (80), mixture models are relevant methods to
describe genetically determined characteristics that are ob-
served at the phenotype level.

Finally, we only predict the magnitude of drug inter-
actions in EM subjects. While Eq. 3 may be used for
quantitative prediction of DDI in subjects with mutated
genotype, little information exists on the drug interactions in
genetic variants. Further work is required to assess the
predictive ability of this general equation.

The translation of pharmacogenetic knowledge into
personalized pharmacotherapy at the patients’ bedside has
been quite laborious so far (10). This work may have
important implication for routine patient care. The predicted
AUC ratios may be used directly by clinicians for prior dose

Fig. 3. Model-based predictions of the AUC ratio for 10 CYP2C19 substrate drugs in poor
metabolizer (PM) *2*2 and ultrarapid metabolizer (UM) *17*17 subjects. The squares and
circles indicate the point estimate (mean of the Bayesian posterior distributions) of the
AUC ratio in PM *2*2 and UM *17*17, respectively. The error bars indicate the 90%
confidence interval of the AUC ratio
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adjustment in routine when it seems clinically relevant to do
so. Assuming that the exposure in EM is the target exposure
to be achieved in an XM patient, one has to divide the usual
maintenance dose by the predicted AUC ratio, AUCXM/
AUCEM. This may be most useful for substrate–genotype or
substrate–inhibitor pairs for which no clinical data have been
reported so far. In such case, the prediction is based on all the
available prior knowledge about this drug from other drug
interactions and other genetic subgroups. However, one
should be careful in the interpretation of the AUC ratio,
taking into account the clinical behavior of the drug. For
prodrugs, such as clopidogrel, that are converted to an active
moiety by CYP2C19, the increase in drug exposure in PM
subjects might lead to a decreased activity of the drug. It is
noteworthy that this approach only provides an average
prediction of the alteration in CYP2C19 substrate drug
exposure, and so the clinical alteration may vary between
individuals.

This work has shown that it is possible to use information
from pharmacogenetic studies to predict drug interactions in
vivo. While further research in other CYP is necessary to
confirm this proof-of-concept of the FDA statement (8), this
approach may have important implications for the optimiza-
tion of the design of drug interaction and clinical pharmaco-
genetic studies in new drug development. For a new drug,
once its contribution ratio has been estimated, the method
may be used to predict the alteration in drug exposure for a
number of drug interactions and in various genetic subgroups.
This may be very useful to identify the most relevant
situations that need to be confirmed by clinical studies.

CONCLUSION

A unified modeling approach for the quantitative
prediction of the alteration in CYP substrate drug exposure
caused by either genetic polymorphisms or drug interaction
has been presented. Applied to drugs metabolized by
CYP2C19, the approach provides quantitative predictions of
the effect of five genotype variants and 10 inhibitors on the
exposure to 25 oral substrate drugs. This work illustrates how
pharmacokinetic information from genetic subgroups may be
used to predict DDI and may have implications for both
patients’ care and drug development.
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