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Abstract
Preeclampsia is an important syndrome complicating pregnancy. While the pathogenesis of
preeclampsia is not entirely known, poor placental perfusion leading to widespread maternal
endothelial dysfunction is accepted as a major mechanism. It has been suggested that altered
placental expression of matrix metalloproteinases (MMPs) may cause shallow cytotrophoblastic
invasion and incomplete remodeling of the spiral arteries. MMPs are also thought to link placental
ischemia to the cardiovascular alterations of preeclampsia. In fact, MMPs may promote
vasoconstriction and surface receptors cleavage affecting the vasculature. Therefore, the overall
goal of this review article is to provide an overview of the pathophisiology of preeclampsia, more
specifically regarding the role of MMPs in the pathogenesis of preeclampsia and the potential of
MMP inhibitors as therapeutic options.
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1. INTRODUCTION
Hypertensive disorders affect up to 10% of pregnancies worldwide [1], being one of the
major causes of maternal death in developed countries (~16%) and in Latin America (~26%)
[2]. The National High Blood Pressure Education Program (NHBPEP) categorizes
hypertension during pregnancy as follows [3]:

Preeclampsia-eclampsia: new-onset hypertension (>140 mmHg systolic or >90 mmHg
diastolic blood pressure) and proteinuria (>0.3 g in 24 h) after 20 weeks of gestation in a
previously normotensive women. If seizures also occur, the disease is called eclampsia;

Chronic hypertension: hypertension present before pregnancy or first diagnosed before 20
weeks of gestation;
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Chronic hypertension superimposed on preeclampsia: new-onset or acutely worse
proteinuria, sudden increase in blood pressure, thrombocytopenia, or elevated liver enzymes
after 20 weeks of gestation in women with preexisting hypertension;

Gestational hypertension: hypertension first diagnosed after 20 weeks of gestation, not
accompanied by proteinuria. If blood pressure returns to normal by 12 weeks post-partum it
is called transient hypertension, otherwise it is considered as chronic hypertension.

Besides increasing the risk of maternal mortality and morbidity, most fetal adverse events
(i.e., intra-uterine grow restriction, preterm birth, low birth weight, and perinatal death) are
attributable directly to preeclampsia [4]. In addition, recent studies have suggested that
preeclamptic women [5–7] and their offspring [8] are at increased risk of cardiovascular and
renal diseases later in life. Although its pathophysiology is not entirely known, there are
several recognized risk factors for the development of preeclampsia, such as primiparity,
multiple gestation, ethnicity, preexisting medical conditions (hypertension, diabetes), and
obesity [9–11]. A higher incidence of these risk factors in industrialized countries over the
last decades is a most likely cause for an increased rate of preeclampsia [1]. While the only
definitive cure for preeclampsia is still delivery of the fetus and placenta [12], unraveling the
etiologic mechanisms of preeclampsia may provide better approaches for treatment and
ultimately prevention [13]. Therefore, the overall goal of this review is to provide an
overview of the pathophisiology of preeclampsia, more specifically regarding the role of
matrix metalloproteinases (MMPs), and the potential of MMP inhibitors as therapeutic
options.

2. CARDIOVASCULAR ADAPTATIONS DURING NORMAL PREGNANCY
Several functional and anatomical alterations occur in the cardiovascular system of the
pregnant woman to ensure nutrient supply to the fetus. During normal gestation, there is an
expansion of 40–50% in blood volume [14–16], due to a greater increase in plasma volume
than an increase in red blood cell mass, resulting in the physiologic anemia of pregnancy
[17, 18]. An elevation in heart rate and stroke volume leads to an increase of 30–50% in
cardiac output [14, 15, 19]. Additionally, there is a widespread vasodilatation, with
increased arterial compliance and reduced peripheral vascular resistance [14, 15, 19],
enhancing the blood flow especially in the uteroplacental circulation [20–22]. There is also
an increase in renal blood flow (RBF) by 60–80% and in glomerular filtration rate (GFR) up
to 50% [14, 23]. As a result of systemic vasodilatation and renal hyperfiltration, there is a
decrease in systolic and diastolic blood pressure of about 5–10 mmHg [14, 15, 19, 24].
Moreover, these physiological alterations in preload and afterload enlarge the cardiac
chambers, particularly the left ventricle which undergoes remodeling with increased wall
thickness and mass [19, 25, 26]. Interestingly, this hemodynamic shift begins prior to
placentation, reaches a peak in the second trimester of pregnancy, and then remains
relatively constant until delivery [14, 15].

The cardiovascular adaptations to gestation are mainly induced by humoral and neural
mechanisms, with multiple receptors and effectors interacting to regulate blood pressure
[27]. Placental hormones, such as estrogen, progesterone and human chorionic
gonadotropin, also exert a significant effect on maternal hemodynamics [28]. These
hormones interact with the the renin-angiotensin-aldosterone system (RAAS) [29] and the
nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway to control blood
pressure during pregnancy [30]. Studies in humans and pregnant models have implicated
NO [31, 32] and prostacyclin [33, 34] as key vasodilators responsible for the reduced
vascular resistance seen in pregnancy [35]. Another important mechanism contributing for
the systemic vasodilatation is a decreased vascular responsiveness to angiotensin II [36].
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These changes initiate further baroreceptor-mediated neurohormonal events, including
activation of the RAAS [14, 37–39], with a subsequent increase in body sodium and water
retention. Alterations in cortisol, vasopressin, kallikreins, vascular endothelial growth factor
(VEGF), atrial natriuretic peptide, and in the sympathetic nervous system may also mediate
cardiovascular adaptations during pregnancy [27, 35]. In addition, relaxin, an ovarian
hormone secreted in large amounts by the placenta and decidua during gestation, appears to
be an upstream mediator of the increased renal NO synthesis, resulting in an elevated RBF
and GFR [40]. However, preeclamptic pregnancies are not accompanied by many of these
alterations, being characterized by high vascular resistance, low plasma volume and reduced
cardiac output [41–43], which ultimately leads to increased blood pressure in order to
guarantee placental and fetal demands for oxygen and nutrients.

3. PATHOPHYSIOLOGY OF PREECLAMPSIA
Experimental studies in animals and humans have implicated placental ischemia and
hypoxia as a central causative factor in the etiology of preeclampsia [44–46]. The
pathophysiology of preeclampsia is thought to occur in two stages. The first stage is a poorly
understood abnormality in the normal placentation process which is maternally
asymptomatic. The second symptomatic stage is associated with altered proangiogenic and
antiangiogenic factor balance, increased maternal oxidative stress, and immunological
dysfunction. There is also widespread activation/dysfunction of the maternal vascular
endothelium which results in enhanced formation of endothelin and decreased nitric oxide
synthesis and/or bioavailability. These endothelial abnormalities, in turn, cause hypertension
by impairing renal function and increasing total peripheral resistance. Recent research into
both of these stages has revealed glimpses into the underlying origins of the disease and the
mechanisms of the resulting maternal symptoms.

There is now growing awareness that immunological dysfunction is an important factor in
the pathogenesis of preeclampsia [47]. While it is well established that pregnancy alone sets
off an increased maternal inflammatory response, the secretion of inflammatory cytokines in
preeclamptic women is markedly increased. Recent work has demonstrated that the
production of tumor Necrosis Factor-α (TNF-α) and other inflammatory cytokines is primed
by circulating syncytiotrophoblast microparticles, which are elevated in preeclamptic
women [48]. In the reduced uterine perfusion pressure (RUPP) animal model of
preeclampsia, circulating levels of interleukin-6 (IL-6) and TNF-α are elevated, and these
alterations are consistent with those found in human subjects [49, 50]. Furthermore, infusion
of IL-6 or TNF-α to levels consistent with those seen in preeclamptic women leads to
gestational hypertension in rats [51]. Moreover, TNF-α blockade by the soluble TNF-α
receptor etanerecept in the RUPP model partially attenuates the associated hypertension
[51].

Another interesting recent development in our understanding of the role of immunity in the
pathophysiology of preeclampsia is the identification of a circulating angiotensin II type-I
receptor agonistic autoantibody (AT1-AA) [52–54]. The AT1-AA was found in the
circulation of preeclamptic patients, and its epitope eventually mapped to the second
extracellular loop of the AT1 receptor [54]. In response to placental ischemia in pregnant
rats AT1-AA is produced to levels comparable to those seen in preeclamptic women [53].
Furthermore, chronic administration of the purified autoantibody to normal pregnant rats to
levels seen in pregnant women and RUPP rats resulted in concurrent ~20% increases in
blood pressure and dramatic increases in tissue expression of ET-1 [52].

Another promising area of research on the etiology of preeclampsia is the interplay between
pro- and anti-angiogenic factors [55–58]. Soluble fms-like tyrosine kinase-1 (sFlt-1) is a
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splice variant of the longer VEGFR-1 cell surface receptor in which the cytoplasmic and
transmembrane domains have been post-transcriptionally excised. This molecule, which is
produced by placental trophoblasts in its soluble form (sFlt-1), acts as an antagonist for the
proangiogenic proteins VEGF and PlGF by sequestering free protein in the plasma, making
them unavailable for receptor binding. Furthermore, elevated levels of sFlt-1 in both
placenta and plasma were shown in preeclamptic women when compared to women with
normal pregnancy [57].

Observations from a number of animal models of preeclampsia also implicate sFlt-1 as an
important factor in the pathology of the disorder. Adenovirus vector expression of sFlt-1 in
pregnant rats produced a preeclampsia-like phenotype, with increased arterial pressure,
glomerular endotheliosis, and proteinuria [57]. Furthermore, placental ischemia induced by
reductions in uterine perfusion pressure in rats resulted in increased plasma and placental
sFlt-1 concentrations, results confirmed in a non-human primate model of placental
ischemia [59, 60]. Chronic infusion of sFlt-1 into rats to circulating levels mimicking those
seen in preeclamptic women leads to significant increases in maternal blood pressure, with
concomitant decreases in fetal weight and increases in both placental and vascular reactive
oxygen species, an important factor in endothelial dysfunction [61, 62].

Human studies indicate that the decidua in preeclampitic women has significantly higher
levels of lipid hydroperoxides and free isoprostane, a byproduct of free-radical peroxidation
of arachodonic acid. A number of oxidative stress markers have also been reported
systemically in preeclamptic women, among these peroxynitrite [63–65]. In the placental
ischemia rat (RUPP model) there is also an increase in oxidative stress during gestation,
suggesting a link between placental ischemia/hypoxia and the production of reactive oxygen
species [66]. The administration of a SOD mimetic drug (tempol) attenuated the
hypertensive responses to placental ischemia [66]. In a related study, administration of the
NADPH oxidase inhibitor apocynin also significantly attenuated placental ischemia-induced
hypertension, suggesting this enzyme as an important player in the pathogenesis of
preeclampsia in the RUPP animal model [63–66].

One promising target in the study of preeclampsia pursued by our group in recent years is
the potent vasoconstrictor peptide endothelin [67]. The majority of clinical studies which
have investigated endothelin showed elevated levels of this peptide in preeclamptic women
when compared to healthy controls [68], although this difference has not been universally
observed [69]. Interestingly, the hypertension induced by placental ischemia or TNF-α
infusion in pregnant rats are completely abrogated by pretreatment with an endothelin
receptor type A (ET-A) antagonist [67]. In addition, studies utilizing the AT1-AA infusion
in a rat model of preeclampsia demonstrated elevated tissue endothelin production [67].
Administration of ET-A specific antagonists blunted the hypertension associated with this
model [67]. Finally, increased cortical endothelin transcription was found in the animal
model of preeclampsia induced by sFlt-1 infusion, and the ET-A receptor blockade
normalized blood pressure [60]. The elevation in endothelin concentrations in response to
these varied models of preeclampsia argues for an important role of this peptide in the
pathophysiology of preeclampsia.

4. ROLE OF MMPS IN THE PATHOGENESIS OF PREECLAMPSIA
Trophoblasts are important precursor cells from the human placenta which exert critical
roles to promote a healthy gestation including embryo implantation, hormone production,
fetal immune protection, and placental vascularization. In the first trimester of a normal
pregnancy, cytotrophoblastic cells invade the uterine tissue and migrate against the
bloodstream into the maternal spiral arteries, where they undergo differentiation into cells
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with endothelial phenotype. The trophoblastic invasion of maternal vessels results in
extracellular matrix remodeling, which gives rise to high uteroplacental vessel distensibility
to accommodate the increased blood flow [70–72]. In preeclampsia, however, trophoblastic
invasion is reduced, leading to incomplete modification of maternal spiral arteries and
therefore to decreases in placental perfusion [46, 73–75].

A prerequisite for the trophoblastic invasion success, angiogenesis and embryogenesis is the
degradation and remodeling of the uterine extracellular matrix (ECM) [76, 77]. Remodeling
of the umbilical cord vessels may also contribute to decreased blood flow to the fetus of
women with preeclampsia.

Matrix metalloproteinases (MMPs) are a family of structurally related, zinc-dependent
enzymes with multiple functions and tissue distribution [78]. Their activity target
extracellular matrix components during development and morphogenesis. Specifically,
MMP-2 and MMP-9 are involved in remodeling of placental and uterine arteries [79, 80],
and abnormal expression of these MMPs has been reported in hypertensive disorders of
pregnancy. Indeed, there is now evidence that MMPs may affect the vascular function and
play a role in the vascular alterations found in preeclampsia and in other cardiovascular
diseases [81–86].

Under normal circumstances, MMP activity is regulated at the level of transcription,
activation of latent forms, and inhibition by endogenous MMP inhibitors (tissue inhibitors of
metalloproteinase; TIMPs) [87]. Interestingly, functional genetic polymorphisms apparently
modify MMP-2 transcriptional levels and may contribute to disease conditions by affecting
MMP-2 transcriptional levels [88]. While MMP-9 activity is regulated at different levels
including activation of MMP-9 latent forms, by interaction with TIMPs, especially TIMP-1,
it is also regulated at the transcriptional level [89]. Again, genetic polymorphisms in the
MMP-9 gene were also shown to affect MMP-9 transcription [90] and disease susceptibility
[91, 92].

The ischemic placenta releases vasopressors into the maternal circulation that modify
endothelial function by altering the balance between vasodilators (nitric oxide, prostacyclin)
and vasoconstrictors (endothelin-1, increased response to angiotensin II) [13, 93–95]. The
endothelial dysfunction affects multiple maternal organs, and the impaired control of
vascular function contributes to hypertension and increased glomerular vascular
permeability, thus leading to proteinuria, an important feature of preeclampsia.

Although unproven in the particular context of preeclampsia, it is possible that upregulated
MMP activity in preeclampsia promotes increased concentrations of vasoconstrictors
including endothelin-1-related peptides, and reduced concentrations of vasodilators
including adrenomedullin and calcitonin gene related-peptide, as previously suggested [96–
99]. These previous studies suggest that imbalanced MMP activity apparently generates
vasoconstrictors and degrades vasodilators, promoting vasoconstriction and hypertension
[96–99]. In addition, the release of the proform of TNF-α from its membrane-bound site is
an MMP-dependent process [100, 101]. Conversely, TNF-α indirectly stimulates the
proteolytic activity of MMPs [102], especially during the implantation process [103, 104],
suggesting that abnormal MMPs and inflammatory mediators may interact contributing to
the features of this syndrome.

Moreover, endothelial dysfunction in preeclampsia may result of oxidative stress and
reduced nitric oxide bioavailability [62–65, 82]. Indeed, increased concentrations of reactive
oxygen species including superoxide may enhance vascular concentrations of peroxynitrite,
a powerful oxidizing agent that contributes to the pathogenesis of many cardiovascular
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including preeclampsia [64]. This agent may directly activate MMPs [84], although this
mechanism has not been clearly shown in preeclampsia.

Activated MMPs may also contribute to cardiovascular dysfunction in preeclampsia through
proteolysis of cell surface receptors, such as VEGFR-2 and β(2)-adrenergic receptor, as
previously shown in other animal models of cardiovascular diseases (Fig. 1) [105–109].
However, these suggestions remain to be proved in preeclampsia.

5. CLINICAL FINDINGS SHOWING MMP ALTERATIONS IN PREECLAMPSIA
Although MMPs have an important function in tissue formation and remodeling during
pregnancy, only few studies have evaluated the role of MMP-2 and MMP-9 in the
pathophysiology of preeclampsia. Huisman et al. studied MMP-2 and MMP-9 in placental
bed biopsies as early as 10–12 weeks of gestation, but their levels were not different when
uncomplicated pregnancies were compared with pregnancies complicated by preeclampsia/
HELLP syndrome [110]. These findings are not in agreement those reported by Kolben et al.
[111] and Shokry et al. [112], who observed reduced immunologically defined MMP-9
levels in preeclamptic placental tissues collected at delivery. In addition, Galewska et al.
used distinct techniques to show that preeclamptic umbilical cord tissues (artery and vein)
had lower MMP-2 and MMP-9 levels than healthy tissues [113]. However, they found
increased MMP-9 levels in plasma obtained from umbilical cord blood samples from
preeclamptic newborns, and no significant differences in MMP-2, TIMP-1 and TIMP-2
compared with those measured in healthy pregnancies [114]. Furthermore, Lavee et al.
demonstrated increased MMP-2 (by ELISA) and TIMP-2 (by western blotting) levels in
aminiotic fluid of women who subsequently develop preeclampsia [115]. Interestingly, they
determined pro-MMP-9 levels in normal amniotic fluid, but zymogram wells loaded with
preeclamptic amniotic fluid did not present any MMP-9 bands [115].

Regarding circulating MMP-9 and TIMP-1, Kolben et al. found no significant differences in
immunoreactive plasma MMP-9 concentrations between preeclamptic/eclamptic patients
and healthy pregnant women [111]. While we have used zymography to show no differences
in pro-MMP-9 levels [116], ELISA assays revealed that plasma MMP-9 concentrations may
be increased in preeclampsia [117]. Moreover, we found elevated plasma TIMP-1
concentrations in preeclampsia, but no differences in MMP-9/TIMP-1 ratios [116, 117].
Montagnana et al. also observed no differences in serum immunoreactive MMP-9 and
increased TIMP-1 concentrations in preeclampsia [118]. Conversely, Myers et al. found that
western blotting defined plasma TIMP-1 levels were not altered in preeclampsia, although
they reported decreased levels in the same patients before diagnosis [119]. Interestingly,
Poon et al. showed that plasma MMP-9 concentrations are increased in women prior to
presentation of preeclampsia. However, this biomarker did not contribute significantly to
prediction of disease [120].

With respect to circulating MMP-2 and TIMP-2 levels, Davidge’s group has used
zymographic techniques to show higher plasma MMP-2 levels in preeclamptic patients
[121] and in women who subsequently develop preeclampsia [119] compared to healthy
pregnant. Although plasma pro-MMP-2 (by zimography) and TIMP-2 levels were not
statistically different in our small cohort with 32 weeks of gestation [116], MMP-2 (by
ELISA) and TIMP-2 concentrations were elevated in preeclampsia when we studied a larger
number of patients at 36 weeks of gestation [122]. None of our studies revealed differences
in MMP-2/TIMP-2 ratios [116, 122]. Additionally, Montagnana et al. observed increased
serum immunoreactive MMP-2 concentrations, but no significant differences in TIMP-2, in
preeclamptic patients compared with healthy pregnant women [118].
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Genetic reports have also been divergent regarding the association of MMP-2 and MMP-9
polymorphisms with preeclampsia. Coolman et al. observed a reduced prevalence of the rare
T allele of the MMP-9 C−1562T polymorphism in preeclampsia [123]. Intriguingly, in vitro
studies have showed that the “C” to “T” substitution at −1562 position of the MMP-9
promoter increases MMP-9 gene expression [90]. Therefore, the lower frequency of the
1562T allele in preeclamptic patients suggests that they may have decreased MMP-9 levels,
which might predispose them to maladaptation of the spiral arteries and decreased
degradation of the decidua. However, MMP-9 polymorphisms were not linked to
preeclampsia in Fraser et al. [124] and our studies [117, 125]. In addition, we did not find
significant associations between MMP-2 polymorphisms and preeclampsia [122, 126],
although genetic variations of the C−1306T and C−735T polymorphisms were associated with
altered plasma MMP-2 and TIMP-2 concentrations in preeclamptic patients [122]. Taken
together, these findings suggest that altered MMPs and TIMPs levels may contribute to
preeclampsia. However, further studies are warranted to establish how imbalanced MMP
activity may contribute to the pathogenesis of preeclampsia.

6. EVIDENCE SUPPORTING THE USE OF MMP INHIBITORS IN
PREECLAMPSIA

Although antihypertensive drugs do not reverse the pathogenic processes in preeclampsia,
they are used to prevent and treat severe hypertension, and to extend pregnancy for as long
as possible. A major challenging issue is to decide what blood pressure levels should be
targeted to minimize maternal and neonatal complications and avoid fetal distress and
toxicity [127]. Currently, options of anti-hypertensive drugs for preeclampsia are limited,
and only few drugs have been adequately evaluated in pregnant women. Methyldopa is the
drug of choice based on its well documented first trimester safety and long follow-up in
neonates. Second-line agents include nifedipine, hydralazine and labetalol, which are
commonly used when monotherapy with methyldopa is insufficient or in cases of
methyldopa intolerance [3, 12, 127, 128].

As highlighted previously, many complex mechanisms mediate the widespread endothelial
dysfunction seen in preeclampsia, leading to diverse clinical features, such as hypertension,
proteinuria, edema, and cerebral and hepatic disturbances. The key role of MMPs in these
cardiovascular alterations has been demonstrated in different animal models of hypertension
[129–132]. Collectively, these reports have found increased MMP-2 or MMP-9 activity in
different tissues, and treatment with doxycycline (a nonspecific MMP inhibitor) ameliorated
hypertension, vascular dysfunction and artery/cardiac remodeling associated with this
condition. Moreover, another broad-spectrum MMP inhibitor markedly blunted the age-
associated increases in arterial pressure via retardation of age-associated proinflammatory
signaling, preservation of intact elastin fibers, and reduction of collagen deposition [133].

To our knowledge, only one study has tested MMP inhibitors in experimental models of
preeclampsia [134]. Verlohren et al. showed that doxycycline treatment from gestational day
12 to 18 resulted in lighter placentas and intrauterine growth restriction in both control and
preeclamptic pregnant rats. Additionally, doxycycline reduced trophoblastic invasion and
placental perfusion only in the preeclamptic group. However, they did not evaluate the effect
of doxycycline on the development of pregnancy-induced hypertension [134]. Although,
previous studies have also reported adverse effects of MMP inhibitors on pregnant animals
[135–138], such effects were not reported by others [139–141]. Indeed, doxycycline is the
only MMP inhibitor currently approved by the U.S. Food and Drug Administration (FDA)
[142] and, when prescribed as an antibiotic during pregnancy, it is classified as a potentially
teratogenic medication (class D: potential benefits from the use of the drug in pregnant
women may be acceptable despite its potential risks) [143]. However, human studies have
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led to the conclusion that the teratogenic risk of doxycycline is unlikely [144–146].
Moreover, since it is used as an MMP inhibitor at sub-antimicrobial doses [147], we would
expect that doxycycline causes minimal or no fetal adverse reactions when used at this
dosage. Nevertheless, its use should be carefully monitored during pregnancy.

It is now clear that some antihypertensive drugs may have important effects on circulating
MMP concentrations [148]. Among the drugs usually prescribed to patients with
preeclampsia, clinical studies have evaluated only the effect of calcium channel blockers on
MMP levels [149–151]. For example, lercanidipine therapy for 15 days decreased plasma
MMP-9 activity, whereas MMP-2 and TIMP-1 levels remained unaltered [151]. Conversely,
treatment of hypertensive patients with amlodipine for 6 months increased plasma MMP-9
levels back to the concentrations seen in controls [150]. Treatment with felodipine increased
plasma MMP-2 concentrations, whereas diltiazem had no effects on circulating MMPs
[149]. In addition, studies in rodent hypertensive models suggest similar effects of different
calcium channel blockers (lercanidipine, nifedipine, nimodipine, and amlodipine) on
vascular MMP-2 activity, which inhibited cardiovascular remodeling [152–154].

Since some antihypertensive drugs affect cardiovascular MMP activity, we examined
whether circulating MMP-2 and MMP-9 levels are different in preeclamptic women who
respond to antihypertensive therapy as compared with those who do not respond to therapy.
We found lower plasma MMP-9 concentrations and MMP-9/TIMP-1 ratio (an index of net
MMP-9 activity) in non-responsive patients compared to responsive patients, thus
suggesting that the most severe cases of the disease may have undergone abnormal
remodeling of placental and uterine tissues [117]. Conversely, we observed higher plasma
MMP-2 concentrations and MMP-2/TIMP-2 ratio (an index of net MMP-2 activity) in non-
responsive patients compared to responsive patients [126], thus suggesting that
antihypertensive drugs may ameliorate preeclamptic symptoms by decreasing net MMP-2
activity.

We have also examined whether MMP-2 and MMP-9 polymorphisms affect the responses to
antihypertensive therapy in preeclampsia. While a MMP-9 haplotype (the combination of T
and H alleles of the C−1562T and −90(CA)13-25 polymorphisms, respectively) was associated
with lack of responsiveness [117], MMP-2 polymorphisms were not linked to variability in
responsiveness [126]. In view of these findings, we might speculate that preeclamptic
patients would benefit from the use of MMPs inhibitors, at least during the systemic phase
of the disease.

Finally, low-dose aspirin has been suggested as a pharmacological treatment to prevent the
development of preeclampsia [155, 156] especially in high risk patients [157–159]. Since,
aspirin may also affect MMPs [160–163], the association of doxycycline with aspirin may
have synergic action in this syndrome. However, despite the growing evidence indicating
that MMPs are pharmacological targets in cardiovascular diseases [142, 164, 165], it
remains to be determined whether the use of MMPs inhibitors would improve maternal and
fetal outcomes in preeclampsia.

CONCLUSIONS AND FUTURE PERSPECTIVES
The primary event in preeclampsia is proposed to be poor placental perfusion which leads to
widespread maternal endothelial dysfunction. However, the causes of the reduction in the
placental blood flow have yet to be fully elucidated. It has been suggested that decreased
placental MMP expression may cause shallow cytotrophoblastic invasion and incomplete
remodeling of the spiral arteries. MMPs are also thought to act by linking placental ischemia
and cardiovascular dysfunction. Supporting a potential role of MMPs in preeclampsia are
findings that placental and amniotic liquid MMP-9 levels are decreased, and plasma
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concentrations of MMP-2 and MMP-9 are elevated in preeclamptic women, even before the
appearance of clinical symptoms. MMP-2 can stimulate vasoconstriction through the
cleavage of different peptides. Moreover, MMP-9 cleaves surface receptors involved in
angiogenesis and vasodilatation processes. Nevertheless, MMP-9 haplotypes have been
associated with lack of responsiveness to antihypertensive drugs in preeclampsia.
Collectively, these findings suggest that MMP-2 and MMP-9 may play a role in causing
hypertension during pregnancy through multiple complex pathways.

The determination of plasma MMP-2 and MMP-9 concentrations and genotypes for MMP-9
polymorphisms may be valuable tools to predict which patients are at increased risk of
developing preeclampsia, and which will respond to antihypertensive therapy, respectively.
Such patients could benefit from the use of MMPs inhibitors such as doxycycline. However,
the quantitative importance of MMPs in mediating high blood pressure and other features of
preeclampsia remains unclear, and new basic and clinical studies are required, especially
those designed to examine MMP inhibitors as adjuvant therapy of preeclampsia.
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Fig. 1.
Possible involvement of MMPs in the pathogenesis of preeclampsia. MMP inhibitors such
as doxycycline may prevent the alterations associated with imbalanced MMP activity in
preeclampsia. MMP, matrix metalloproteinase; ROS, reactive oxygen species; sFlt-1,
soluble fms-like tyrosine kinase-1; VEGFR2, vascular endothelial growth factor receptor-2;
β(2)-AR, β(2)-adrenergic receptor; CGRP, calcitonin gene related-peptide; ADM,
adrenomedullin; VEGF, vascular endothelial growth factor; PlGF, placental growth factor;
NO, nitric oxide.
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