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Introduction
Discovery of new adverse drug events (ADEs) in the post-approval period is an important goal of
the health system. Data mining methods that can transform data into meaningful knowledge to
inform patient safety have proven to be essential. New opportunities have emerged to harness data
sources that have not been used within the traditional framework. This article provides an
overview of recent methodological innovations and data sources used in support of ADE
discovery and analysis.
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1. Background
Pharmacovigilance (PhV), also referred to as drug safety surveillance, is defined as: “the
science and activities relating to the detection, assessment, understanding and prevention of
adverse effects or any other drug problem”1. PhV starts at the pre-approval stage, where
information about adverse drug events (ADEs) is collected during phase I-III clinical trials
without causal relationship to the investigational product or concomitant therapies, and
continues in post-approval stage throughout a drug’s life on the market. During the initial
post-approval stage PhV may continue through phase IV clinical trials, often mandated by
regulatory agencies to obtain additional safety data on a product during routine use. While
clinical trials are used to evaluate safety issues, they are limited in the number, duration,
characteristics of patients exposed, and the type of data collected. As a result, the complete
safety profile associated with a new drug cannot be fully established through clinical trials.

Post-approval ADEs are a major global health concern accounting for more than 2 million
injuries, hospitalizations, and deaths each year in the US alone2, 3, and associated costs
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estimated at $75 billion annually4. Hence, the timely and accurate detection of ADEs in the
post-approval period is now an urgent goal of the public health system. Computational
methods at the intersection of statistics, computer science, medicine, epidemiology,
chemoinformatics, and biology that can translate data into meaningful knowledge to benefit
patient safety have proven to be a critical component in PhV. These methods have
commonly been referred to as data mining algorithms (DMAs).

Historically PhV relied on a clinical review process of case reports collected at designated
organizations. Strained by the vast quantities and complexity of data that needed to be
examined, DMAs were originally designed to aid this process and allow evaluators to peruse
large volumes of data and focus their attention on issues that may be more important to
public health. Since then however, the role, quality, and capabilities of DMAs have
dramatically expanded in order to address new challenges, leverage new information
sources, and overall improve drug safety surveillance. In what follows, DMAs will be used
to describe automated high-throughput methods that are used to uncover hidden
relationships of potential clinical significance to drug safety.

DMAs can be classified along several axes depending on the data source to which they are
applied, and the scientific function they are designed to perform. The main PhV data sources
in current use are spontaneous reporting systems. Research focus is now being shifted
towards the use of large healthcare databases such as electronic health records and
administrative claims. Other sources that have recently been considered include: the
biomedical literature, chemical and biological information sources, and patient-generated
data in health related web forums. The main class of DMAs represent methods designed to
generate measures of statistical association for large sets of drug-outcome pairs, which can
be used to prioritize and identify risk signals that warrant further attention5, 6. Newer
approaches have been designed to facilitate identification of higher-order or multivariate
associations that represent more complex safety phenomena such as drug-drug interactions,
syndromic events, or class effects. A large class of methods has been designed to address the
issues of confounding. Other approaches have been designed to abstract the data in
meaningful ways to uncover interesting patterns, such as clusters or networks of ADEs that
may convey clinically important information, while a new wave of methods have been
designed to leverage non-traditional data sources or link information from multiple data
sources.

In recognition of their importance, research into the application of DMAs to PhV has
steadily grown in the past decade (Figure 1-DMA related publication trends), and much
progress have been made. The aim of this article is to provide an overview of recent DMA
methodological innovations and data sources used in support of PhV. Extending the theme
of several related reviews6-8, we aim to cover a broader range of methods and data sources.
In addition, our discussion is restricted to works published in the past 5 years. We do not
exhaustively list all relevant work. Nor is it our goal to critically examine the works, but
rather present an informational synopsis of basic concepts, contributions, and major
findings. We begin our discussion with a description of the data and information sources
covered in this article, highlighting their strengths and limitations. Methods discussion is
organized according to the data source axis: spontaneous reports, healthcare data, and other
data sources. We also provide a brief overview of traditional approaches (disproportionality
analysis), as a foundation for discussion of other approaches.

2. Data and information sources used in support of pharmacovigilance
Drug safety surveillance has predominantly relied on spontaneous reporting systems (SRS),
which are passive systems comprised of reports of suspected ADEs collected from
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healthcare professionals, consumers, and pharmaceutical companies, and maintained largely
by regulatory and health agencies. Among the prominent SRS are the US Food and Drug
Administration (FDA) Adverse Event reporting System (AERS) and the VigiBase
maintained by World Health Organization (WHO). Although the structure and content of
each SRS may differ, most are based on voluntary reporting (except for pharmaceutical
companies that are required to report to regulators suspected ADEs once they come to their
attention), and typically capture suspected and concomitant drugs, indications, suspected
events, and limited demographic information in a structured format directly amenable to
data mining. The FDA uses a data mining engine to compute signal scores (statistical
reporting associations) for all of the millions of drug-event combinations in AERS, which
offers a “hypothesis-free” view of the safety characteristics in the underlying data. It should
be stressed however, that these signals by themselves do not establish a causal ADE
relationship, but are rather considered initial warnings that require further assessment using
other sources of support. Typically, after this initial signal generation step, an intertwined
process of signal strengthening and signal confirmation follows, where drug safety
evaluators look for signs such as a temporal relationship, coherence with published case
reports, biological and clinical plausibility, similarity with other drugs, supporting data from
clinical trials, or by conducting epidemiological studies in several large health care
databases to establish causality9, 10.

SRS are pre-focused on drug-adverse event relationships, the collection and processing is
centralized, they communicate genuine health concerns, cover large populations, are
accessible for analysis, and since their inception have supported regulatory decisions for a
long list of marketed drugs11. Notwithstanding, SRS suffer from a range of limitations
including: over-reporting where drugs with known and publicized ADEs are more likely to
be reported than other drugs, misattributed drug-event combinations, missing and
incomplete data, duplicated reporting, and unspecified causal links5, 12.

Recent drug safety events, such as the Rofecoxib (Vioxx) case – a widely used anti-
inflammatory drug estimated to have caused 88,000 episodes of myocardial infarction
(MI)13, have highlighted the need to identify new data sources and improved analytic
methods to create a more effective PhV system9, 14-16. US Congress has recently mandated
the FDA to establish an active surveillance system17. Subsequently, several large scale
research initiatives, such as the Sentinel Initiative 9, 18 and the Observational Medical
Outcomes Partnership (OMOP)15, 19, were established in the US. A similar research called
the EU-ADR project was initiated in Europe by the European commission20. These new
developments rely on the expanded secondary use of electronic healthcare data such as
electronic health records and administrative claims that typically contain: time-stamped
interventions, procedures, diagnoses, medications, medical narratives, and billing codes.
Unlike spontaneous reports, electronic healthcare data are representative of routine clinical
care recorded over long periods of time. As such, they contain a more complete record of the
patient’s medical history, treatments, conditions, and potential risk factors. They are also not
restricted to patients experiencing ADEs. Consequently, electronic healthcare data offer
several advantages that may be used to complement SRS, especially confirmatory analysis
and the potential for active surveillance. Several retrospective studies have demonstrated
that the Vioxx case could have been signaled earlier using this type of data21-24. However,
the secondary use of healthcare data presents other challenges. The data often require
complex preprocessing to support analysis. The data are not oriented to capture adverse
events, which are typically not identified per se, but as diagnoses (usually based on billing
codes). There are logistical issues in storing, accessing, and sharing data across healthcare
providers, that are compounded by legal and privacy issues concerning access to patient
data9, 15. There are varying data capture and documentation styles, and varying standards for
data encoding9, 15. There is also a need for automated methods that can extract relevant
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information from free-text clinical narratives25, and methods that can address the
pervasiveness of confounding inherent in observational studies10, 26, 27.

In the recent past, researchers have begun to focus on data and information sources that have
not traditionally been used for PhV. Each source offers unique prospects that may be
leveraged to complement or augment existing approaches and we discuss several of these in
turn.

The public availability of chemical and biological knowledge bases such as DrugBank28,
which contains information on both chemical structure and drug targets, is opening new
opportunities to bridge the gap between the molecular and clinical domains and further the
study of ADEs29, 30. By leveraging this type of knowledge, e.g., protein binding sites,
biological pathways of drug action and metabolism, linking chemical substructures to
specific toxicities, and chemical similarity, the molecular determinants of ADE can better be
understood. Moreover, predictive models can be created, thereby allowing a more proactive
approach to PhV. A central premise in this domain is that ADEs are largely predictable
consequences of certain molecular actors30. Several aspects of this premise have been
validated by long experience, and exploited for high-throughput screening of active
compounds in computer aided drug design and development. It has also been used by
pharmaceutical companies in the preclinical drug design stage to predict toxicological
effects, with the main goal of decreasing late stage attrition of new drugs due to toxic
effects31. In contrast to the preclinical stage, recent successful studies have linked this
knowledge source with knowledge on post-marketed ADEs to create better predictive
models and as a tool to augment existing ADE discovery methodlogies30, 32, 33.

Mining the biomedical literature holds the promise of consolidating large amounts of
biomedical knowledge for new discoveries. It has been successfully used to discover new
relationships between biomedical entities such as genes, biological pathways, diseases, as
well as for of drug repurposing (discovering new indications)34. Among others, the
biomedical literature contains ADE related information based on clinical studies and
anecdotal observations. Current use of biomedical literature by drug safety researchers (to
evaluate or confirm new ADEs) suggests that automated or data mining approaches can
supplement existing ADE discovery techniques. However, extracting information from the
biomedical literature is non-trivial and requires elaborate Natural Language Processing
(NLP) tools. Recent work has demonstrated its potential as a strategy for prioritizing ADE
associations under consideration35.

Patient social networks and forums such as Ask a Patient, DailyStrength, Yahoo Health and
Wellness, and PatientsLikeMe collect patient self-reports of drug side-effects and provide a
platform for patients to discuss and share their experiences with medications. Although the
information provided by patients may be inaccurate or even questionable, such forums can
provide valuable supplementary information on drug effectiveness and side-effects as they
cover large and diverse populations and offer unsolicited, uncensored data directly from
patients. However, extracting such information is very challenging and requires deep
statistical and linguistic methods to interpret colloquial language, correct grammatical and
spelling errors, and distinguish real experiences from hearsay. Nonetheless, recent work has
shown that the information contained in these forums is extractable and relevant to PhV36.

3. Methods applied to spontaneous reporting systems
3.1 Disproportionality analysis & basic concepts

Disproportionality analysis (DPA) is the main driving force behind most computerized PhV
methods for SRS. DPA methodologies use frequency analysis of 2×2 contingency tables to
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estimate surrogate measures of statistical association between specific drug-event
combinations mentioned in spontaneous reports. Their name stems from the idea that they
intend to quantify the degree to which a drug-event combination co-occurs
“disproportionally” compared to what would be expected if there were no association5.

DPA methodologies differ by the exact measures that are used, the statistical adjustments
made to account for low counts, and can generally be classified into two categories:
frequentist and Bayesian. Both approaches use the entries of Table 1a (or stratified versions
thereof) to derive a statistical association/disproportionality measure. This table is usually
computed for each drug-event pair in the SRS. The most widely discussed measure is the
Relative Reporting Ratio (RRR)6 defined as the ratio of the observed incidence rate of a
drug-event combination to its “baseline” expected rate under the assumption that the drug
and event occur independently. Both the FDA and WHO use a Bayesian version of RRR as
a basis for monitoring safety signals in their SRS37, 38. Other widely used measures
including their mathematical definitions are displayed in Table 1b. A true value of close to 1
for any of these measures supports the hypothesis that there is no association between the
drug and event. A value of 3 in the case of RRR for example indicates that there are 3 times
as many drug-event reports in the database than would be expected, and might support the
hypothesis of an ADE association.

Frequentist approaches use one of the measures listed in Table 1b to estimate associations,
and are typically accompanied by hypothesis tests of independence (chi-squared test or
Fisher’s exact test), which are used as an extra precautionary measure to also account for the
sample size used to compute an association. Bayesian approaches attempt to account for the
uncertainty in the disproportionality measure associated with small observed and expected
counts, by “shrinking” the measure towards the baseline case of no association, by an
amount that is proportional to the variability of the disproportionality statistic. The result of
this shrinkage is a reduction of spurious associations when there are not enough data to
support them.

Among the Bayesian approaches is the Multi-item Gamma Poisson Shrinker (MGPS)8, 39.
MGPS is the predominant DMA used in the US and the UK, and is currently used by the
FDA40 as well as several pharmaceutical companies to detect ADE signals in their
databases. MGPS is based on a modeling framework called empirical Bayes, and computes a
measure called EBGM (empirical Bayes geometric mean), which is a Bayesian
interpretation of the RRR measure (posterior expectation of the RRR distribution).
Typically, the EB05 measure, which corresponds to the lower 5th percentile of the posterior
RRR distribution is used instead for extra conservatism. The WHO uses a Bayesian
approach similar to MGPS, called Bayesian Confidence Propagation Neural Network
(BCPNN)38, which estimates a Bayesian version of the Information Component.

Ad-hoc thresholds are typically applied to the association measures (regardless of the
approach or measure) in order to highlight strong associations worthy of further
investigation. The thresholds selected usually do not have theoretical or empirical
justification. They are rather used as a preliminary means of filtering or sorting. Deshpande
et al. provide a review of published threshold criteria for qualifying signals of
disproportionate reporting in SRS41. A graphical illustration of DMA output is provided in
Figure 2.

As of yet there is no consensus on which DPA approach is best, and no gold standard has
been established to evaluate their performance. It is widely accepted that none of the
approaches is universally better than any other 5, 6. As the number of reports of a specific
drug-event combination increases, the different methods tend to give similar results. Some
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have argued that for small counts frequentist approaches are more prone to extreme values
and therefore generate more false positives. Others have argued that the Bayesian
approaches are too conservative delaying the detection of novel ADEs. Frequentist
approaches are computationally more efficient than Bayesian approaches, but the latter offer
the convenience of being able to sort associations along a single dimension as they
incorporate information about both disproportionality and sample size. That said, none of
the approaches can effectively address reporting biases or confounding in SRS.

3.2 Multivariate methods
Although cumulative experience with DPA has shown it to be a promising adjunct in safety
analysis, the reduction of ADE analysis to two dimensions may result in loss of clinically
crucial information. 2-D DPA approaches do not support the discovery and/or analysis of
more complex or higher-dimensional drug safety phenomena that involve more than just one
drug and one event. The importance and difficulty associated with the detection of these
more complex drug safety phenomena was noted in several prominent PhV reports5, 7, 8,
suggesting that more elaborate methods, henceforth collectively referred to as “multivariate”
methods, are required.

More complex drug safety patterns may correspond to drug-drug interaction adverse events,
such as the pharmacodynamic drug interaction between Tramadol and Fluoxetine, where
Tramadol (a pain reliever) can enhance the effect of Fluoxetine (Prozac) increasing
serotonin levels, which may lead to seizures. Recent studies showed that many ADEs (close
to 50% in hospital patients42) are due to drug interactions, suggesting that many of the
ADEs reported to SRS are plausibly due to drug interactions and not due to the single
suspected drug that was reported. Other more complex drug safety patterns of clinical
interest are class effects and syndromic events (drug induced syndromes). For example, the
class of statins (cholesterol lowering drugs) is known to cause rhabdomyolysis. The drug
varenicline (indicated for smoking cessation) may cause a syndrome of sleeping disorders
and other neuro-psychiatric disorders. Additionally, these patterns are important in
highlighting the etiology of other ADEs, the further probing of simpler associations, and
overall contribute to greater understanding of drug safety risk factors7.

Another limitation of the 2-D DPA approaches is that they are not properly equipped to deal
with confounding, which is key to association analysis. A confounder is an extraneous
variable, either observed or unobserved, that mediates an association between two other
variables. If not properly accounted for, confounding may lead to the discovery of spurious
associations and therefore erroneous study conclusions. Confounding can be addressed
either through experimental design prior to data collection (e.g., selection of appropriate
controls), or in the analysis stage when the data has already been collected (as in the case of
SRS). Simpler types of confounding such as confounding by age, gender, and year, have
been effectively dealt with within DPA approaches through stratification and Mantel-
Haenszel type adjustments6, 7. Although there are many types of confounding, e.g.,
confounding by indication where the reported event is associated with the indication for
treatment, most SRS related publications have focused on confounding by drug co-
administration, where a drug is associated with an event just because it is frequently co-
prescribed or reported with another drug, which is the real cause of the adverse event.

In recent years several SRS multivariate approaches have been proposed to address these
issues. They can generally be classified as DPA extensions, multivariate logistic regression
based approaches, and unsupervised machine learning approaches such as associations rule
mining, clustering, and network analysis. DPA extensions to larger dimensions have been
applied to mostly 3-D associations corresponding to drug-drug interactions43, where
observed to expected ratios are calculated in a similar manner but based on 3 elements
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(drug1-drug2-event). Logistic regression based approaches have been applied mostly to
eliminate confounding by co-medication (due to lack of other confounding information in
SRS), whereas unsupervised machine learning approaches have been used for the
identification of more complex or higher-dimensional drug safety phenomena, as well as for
data abstraction and pattern discovery.

3.2.1 Logistic regression based approaches—The traditional approach to handle
confounding during the analysis stage, i.e., stratification, is not effective in situations where
a large number of potential confounders need to be examined44. A more appropriate
approach to handle confounding is by the use of multiple logistic regression, which allows
the estimation of a drug-event association by controlling or adjusting for the presence of
other covariates (potential confounders)44. Confounding by co-medication can theoretically
be addressed by using all drugs in a SRS as regression predictors for an event. However, the
regression of a specific event against all the thousands (>10,000) of drugs included in a SRS
represented a significant computational as well a theoretical barrier until recently. New
extensions of logistic regression to very large dimensional data called Regularized or
Bayesian Logistic Regression (BLR) can now carry out regressions with millions of
covariates45. Caster et al.46 describe an application of BLR to the WHO SRS, in an attempt
to address confounding by co-medication and a “masking” effect. The latter corresponding
to cases where an increase of background reporting for a specific event (e.g., due to media
influences) can attenuate disproportionally measures of true associations towards lower
values of no association, thereby masking the true association. The authors describe several
real examples of false positive associations due to confounding by co-medication that were
corrected by their method, and true ADEs masked by media influences surrounding the
withdrawal of a drug causing rhabdomyolysis. In earlier work, Solomon and DuMouchel47

applied standard DPA along with BLR to AERS as part of a study to estimate associations
between several contrast media (CM) agents and events related to contrast-induced
nephropathy. All methods were adjusted for demographic variables. BLR was also adjusted
for 200 drugs co-reported with CM as potential confounders and as proxies for unobserved
confounders. The authors found that the results were consistent among the different methods
(including the rank order of associations), but that BLR odds ratio estimates were generally
50% larger. The authors explain that this difference stems from the different comparators
used by each method and a masking effect related to the agents investigated.

3.2.2 Unsupervised machine learning approaches—Multi-item ADE associations
are associations relating multiple drugs to possibly multiple adverse events. Association rule
mining (ARM)48 is a well established data mining method for discovering interesting
relationships between variables in large databases. ARM can be applied to discover multi-
item ADE associations - a special case of association rules. For example,

chantix, darvocet → memory impairment, abnormal dreams, fatigue, insomnia

(Chantix may interact with darvocet - a pain reliever, and cause various sleeping or mental
disorders).

Computing association rules is inherently a very hard combinatorial problem that can easily
become computationally intractable. The Apriori algorithm48 can alleviate the problem, but
does not completely resolve the computational challenge. Rouane et al.49 applied ARM to
the SRS of the French Medicines Agency to identify rules related to anti-HIV drugs. The
authors proposed the use of formal concept analysis as a means for reducing the
computational complexity, but their approach was restricted to only 3-item associations. In a
recent study Harpaz et al.50 applied ARM with rules of up to 6 items to AERS. Noting the
inappropriateness of standard ARM scores to ADE applications, the authors used the RRR
score instead, with the additional constraint that each rule must have an RRR larger than any
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of its subsets. The latter was used to exclude rules that can better be explained by smaller
sets of drugs or events43. The authors showed that roughly 66% of the rules corresponded to
known associations, thereby demonstrating the potential value of SRS for the discovery of
multi-item clinically relevant ADE associations. A promising Bayesian approach to ARM
has recently been proposed by McCormick et al.51, which has direct application to ADE
discovery and can address the sparseness of SRS data when computing association rules.

Currently the main bottleneck in the widespread application of ARM to SRS is its
computationally intensive requirements. It is likely that its adaptation will grow as
computing power increases. As an alternative, a recent pilot study by Fan et al.52 have
demonstrated the potential applicability of the highly parallelized and distributed computing
paradigm - MapReduce - to the same problem.

Clustering is routinely used in many biomedical areas, but until recently its potential was not
investigated in the context of ADE analysis. Harpaz et al.53 proposed a non-standard
clustering approach suited to deal with the high-dimensional nature and sparseness of SRS
data. The method, called biclustering was applied to AERS and defines an ADE cluster as a
group of drugs that are all statistically associated with the same group of adverse events. The
authors demonstrated how biclustering can be used as an exploratory tool in PhV with which
the underlying large and complex structure of SRS can be summarized and described in a
macroscopic manner (e.g., 40% of ADEs in AERS are cancer related). They demonstrated
how biclustering can be used to highlight class effects (e.g., bisphosphonates), and
syndromic events (e.g., sleeping disorders), and how it could be used to support the
discovery of potentially new ADEs. They found that a large proportion (41%) of the
clustered relationships contained associations that are currently unrecognized, signaling
potentially new ADEs by allowing these unrecognized associations to borrow support from
confirmed ADE associations within the same cluster. Examples include the associations:
chlorpromazine–hepatotoxicity, methotrexate–pancytopenia, and bosentan–hepatic steatosis,
which are supported by published case reports.

Ball et al.54 proposed the use of Network Analysis (NA) to facilitate the identification of
clinically interesting multi-dimensional patterns of adverse events. The authors applied NA
to FDA’s Vaccine Adverse Event Reporting System, where nodes in the network correspond
to vaccines and events. They focused on identifying “hubs”, which are tightly clustered
elements within the network that reveal strong informative structures. The authors found
patterns linking the vaccine HPV4 with syncope and syncope with seizures in adolescents.
They also found patterns of serious gastrointestinal adverse events with the vaccine
rotavirus. Last, they demonstrated that VAERS has the characteristics of a “scale free” (non-
random) network, where certain vaccines and events act as hubs.

4. Methods applied to electronic healthcare data
Methods applied to electronic healthcare data (HCD) can generally be classified as those
based on modified DPA ported from spontaneous reporting, and those based on
epidemiological study designs such as the cohort, case-control, and self-controlled study
designs. One of the major challenges in the use of HCD is the pervasiveness of confounding.
While DPA approaches are simpler, methods based on epidemiological study designs may
be better equipped to deal with confounding, but present challenges in scaling to high-
throughput settings and require many design decisions to be made. Another major challenge
in the use of HCD, are the definition and ascertainment of exposures and outcomes. Because
HCD are not collected for PhV purposes it must be ensured that the data contain sufficient
clinical information to correctly capture and validate the exposures and outcomes of interest.
Outcomes can be defined in various different ways, each of which may have different

Harpaz et al. Page 8

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



operating characteristics55. Often the exposures and outcomes of interest may not be
captured or do not reflect actual experience, e.g., over-the-counter or dietary supplements
may not be captured because they are not prescribed or associated with reimbursement. Mild
symptoms, which are not treated, or extreme conditions such as death without medical care
may also not be captured. Actual ingestion, dosage, or prescription fulfillment of a drug is
hard to ascertain. Once defined, actual identification of exposures and outcomes may be
challenging when portions of the data are in unstructured uncoded format, such as with
health record medical narratives, which may require NLP. A key distinguishing feature of
HCD based methods is the use of temporal information to identify time frames (known as
surveillance windows, drug/condition eras, hazard periods) in which drug-outcome pairs are
identified and analyzed, e.g., outcomes recorded 30 days from drug exposure. Essentially all
HCD based methods define and use some form of time frames to detect ADEs. Using this
temporal information , drug safety analysis with HCD can be visualized and analyzed using
patient timeline graphs – Figure 3.

4.1 Disproportionality analysis
There are several ways in which drug-outcome pairs can be counted and mapped into 2×2
contingency tables. Zorych et al.56 from OMOP discuss three approaches called ‘distinct
patients’, ‘SRS’ and ‘modified SRS’. The first counts the number of distinct patients that
experience an outcome within a drug era (even though the same patient may experience
multiple outcomes in several drug eras). The second approach attempts to mimic SRS and
treats each drug-outcome occurrence as a spontaneous report. The last approach attempts to
take advantage of other information and to augment SRS like reporting with denominator
information by also counting exposures without outcomes and outcomes without exposure
(SRS only counts exposures reported with an event). Another distinction is made between
incident conditions where only the first occurrence of an event is counted, and prevalent
conditions where all occurrences are counted, giving a total of six ways to map the data into
2×2 tables. Based on a large scale systematic evaluation of these counting approaches using
the DPA metrics described in Section 3.1, the authors conclude that the SRS and modified
SRS approaches using Bayesian metrics provide the best performance.

Some have hypothesized that metrics based on person-time rather than person-counts could
produce more accurate association estimates, because length of exposure is a more granular
and information carrying quantity than number of persons. Exploiting the temporal
information available in HCD, Schuemie57 proposed an approach called Longitudinal GPS
(LGPS), which is a modification of the original MGPS approach, that uses person-time
rather than person-counts to estimate the expected number of events. In LGPS the expected
number of occurrences of an event is calculated as the total time patients are exposed to a
specific drug multiplied by the number of occurrences of the event per unit time when the
patients are not exposed. Schuemie also proposed a heuristic to apply in conjunction with
LGPS in order to remove spurious associations caused by protopathic bias. The heuristic is
based on the assumption that an increase of the number of prescriptions after an event
compared to before the event is an indication of protopathic bias. LGPS has been shown to
outperform related methods, including MGPS, and was the winner of the 2010 OMOP cup
competition based on simulated data19. A similar approach to LGPS was proposed by Noren
et al., who argue that their approach has several important advantages over LGPS that better
protect against confounding58. Using their method applied to longitudinal HCD from the
UK the authors were able to demonstrate the timely identification of the association between
terbinafine and angioedema.
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4.2 Cohort designs
Although there are many variants, the basic concept underlying cohort designs is to partition
the subject population into two groups: those that are “exposed” (taking a specific drug) and
those that are “unexposed” (taking a comparator drug/s). The relationship between the
exposure and the outcome is then examined by comparing the prevalence of the outcome in
both groups. An association is identified when the outcome occurs more often in the
exposed than the unexposed group. Comparators can be those not taking the drug or those
taking a drug/s from the same therapeutic drug class. Yet, due to the non-random assignment
of groups, increased attention must be given to the selection of appropriate comparators.
Inappropriate selection may lead to confounding and biases such as channeling (commonly
observed when comparing drugs with similar indications), where imbalances of risk or
prognostic factors between groups results in biased effect estimates and thus unreliable
conclusions. To address and minimize these issues - matching, where the two groups are
matched based on a set of covariates (e.g., gender, age, length of exposure, and co-
morbidities), or propensity scores are often employed.

Propensity Score (PS) methods have become a common analytic approach to control
confounding in cohort designs by impersonating the role of randomization in clinical
trials10, 27. A PS is the conditional probability that a subject receives treatment given a set of
measured preselected covariates (potential confounders). Among subjects with the same
propensity to receive treatment, the treatment is conditionally independent of the
confounders, suggesting that within groups of subjects with the same PS any difference in
outcome between the treated and untreated cannot be attributed to the confounders. A PS
can also be viewed as 1-D (scalar) value that summarizes a large number of covariates.
Treatment-outcome effects can then estimated by using the PS for matching, stratification,
or as an adjustment factor in regression models59. A central challenge in the use of PS is the
selection of covariates to be included in the model. Incorrect selection may introduce bias
into the analysis. There are differing views as to the type of covariates that should be
included, i.e., whether the covariates should be related to: exposure only, both outcome and
exposure, or outcome regardless of exposure60.

Schneeweiss et al.61 proposed an algorithm for PS covariate selection that has received
much attention lately called High-Dimensional Propensity Score (HDPS). The method
automatically identifies and selects empirical confounders, estimates propensity scores, and
integrates them into an exposure-outcome PS-based confounder adjustment model. The
authors claim that adjusting for large numbers of covariates ascertained from patients’
healthcare claims data may improve control of confounding, as these variables may
collectively be proxies for unobserved factors. Empirical confounders are automatically
identified based on a function that incorporates both the prevalence of a covariate and its
association with the outcome. Covariates are then ranked based on this function and the top
k covariates are selected as the final set of empirical confounders (in addition to the usual
demographic covariates). Based on the empirical confounders, a logistic regression is used
to estimate a PS for each subject. These PSs are converted into indictor variables based on
PS deciles, and then used in the final logistic regression model of exposure-outcome to
estimate confounder adjusted associations. In one experiment conducted by OMOP, HDPS
achieved a sensitivity of 56%, specificity of 82%, and positive predictive value of 38% in
the detection of 53 associations corresponding to true ADEs and negative controls19.

4.3 Case-control designs
In a case-control study the subject population is divided into those experiencing the outcome
under investigation called “cases” and a comparator group called “controls”. The
relationship between the exposure and the outcome is then examined by comparing the
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prevalence of the exposure in both groups. An association is identified when the exposure
occurs more often in the cases than the comparator group. In case-control designs the
controls will typically consist of subjects that did not experience the outcome being studied,
but are otherwise similar. Other options for selecting controls include subjects experiencing
another set of conditions of interest, or subjects with conditions indicated for the same types
of drugs. The main advantage of case-control studies over alternative study designs such as
cohort designs is in their data efficiency, which permits the study of rare events44. Matching
is often employed to control for potential confounding factors. In a matched case-control
study each case is matched to one or more controls based on a set of predetermined
covariates. Over-matching may introduce bias and should be discouraged62. As part of
OMOP’s experiment in which HDPS was evaluated, an implementation of a case-control
design achieved close to 100% sensitivity but at the expense of extremely low 15%
specificity19.

4.3 Self-controlled designs
A self-controlled design can be viewed as a special variant of the case-control design, where
subjects are used as their own controls, and outcome rates are compared between periods
when a subject is exposed to periods when the subject is unexposed. Because exposure data
is provided by the same person, these designs implicitly control for all time-invariant
confounders that do not vary within a subject (e.g., comorbidities, smoking status, and
chronic use of drugs) without the need for confounders to be measured. They also eliminate
selection bias. Another advantage of this design is that only “cases” need to be included in
the analysis. Self-controlled designs can be used when subject data include multiple
exposure risk periods.

The self-controlled case series (SCCS)63 is a type of a self-controlled design. SCCS assumes
that adverse events arise according to a non-homogeneous Poisson process, where each
subject has an individual baseline (non-exposure) event rate constant over time, and periods
of exposure result in a multiplicative effect on the baseline rate. The goal is to estimate the
multiplicative effect, which corresponds to the relative risk of an adverse event during
exposure. Simpson et al.21 from OMOP were able to demonstrate that applying SCCS to one
of OMOP’s observational data sources (i3 claims data-approximately 50 million subjects)
would have led to detection of the Vioxx-MI association 3 years prior to the drug
withdrawal (2004), when AERS based DPA failed to detect the association. It was also
demonstrated that SCCS outperformed DPA methods on most performance metrics.

Although much progress has been made, methodological research into the use of HCD is
currently in its early stages64. Ultimately, it is unlikely that an optimal solution will apply a
one-size-fits-all methodological solution; instead, a process may be developed to refine the
analysis to the characteristics of the medical product, outcome, and databases in question.
Gagne et al.65 provided a taxonomy of study design considerations based on anticipated
drug safety questions but substantial research is required to validate such recommendations.
Establishing best practices requires further empirical evaluation to measure performance of
alternative methods across the continuum of expected scenarios. Absent such information,
heuristics are applied using expert subjective assessment without supporting empirical
evidence.
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5. Methods using non-standard data sources or linking multiple data
sources
Chemical and Biological information

In a series of articles Matthews et al. 32, 33 from FDA’s Center for Drug Evaluation and
Research discuss an implementation of a system based on Quantitative Structure Activity
Relationship (QSAR) models to predict ADEs and possible mechanisms of action (MOA)
responsible for adverse events. QSARs are mathematical models that are used to predict
measures of toxicity from physical characteristics of the structure of chemicals. Drug
candidates for QSAR modeling were indentified from AERS using standard DPA and were
supplemented with literature findings. Commercial QSAR software was then applied to the
drug candidates to identify chemical properties of molecules that correlate with adverse
events. The authors built separate QSAR models for several adverse events including:
cardiac, liver, and urinary related ADEs. They report an average of 78% specificity and 56%
sensitivity noting that when data based on the literature was added there was usually a
substantial improvement in performance. They remark that roughly half of drugs related to
hepatobiliary and urinary tract ADEs that were missed in pre-market clinical trials could
have been predicted using QSAR models. They also found that cardiac ADEs correlate with
MOAs affecting cardiovascular and cardioneurological functions, such as the alpha/beta
adrenoceptors, the dopamine and hydroxytryptomine receptors, and that screening new
drugs based on these MOAs could predict the majority of cardiac ADEs. The QSAR models
are now being used internally by the FDA to provide decision support information for a
variety of regulatory activities.

Villar et al.66 proposed a SAR modeling technique to prioritize ADE associations generated
from AERS. The authors compiled a reference set of drugs related to rhabdomyolysis from
the literature, and mapped them to 2-D molecular fingerprints (bit vectors that represent the
presence/absence of specific structural features) using information available in DrugBank
and commercial software. The initial drug candidates, generated from AERS by the MGPS
algorithm, were then screened by comparing their structural fingerprints with the reference
set of fingerprints, and highly similar candidates were then retained as the final set of drug
candidates. Using this approach the authors achieved 70% sensitivity, 45% positive
predictive value, and an over 2-fold enrichments of AERS signals.

Publicly available preclinical molecular screening assays such as those available in
PubChem can be mined to correlate a drug’s bioactivity with postmarketing ADEs. Pouliot
et al.30 created models to correlate a drug’s propensity to cause specific system organ class
(SOC) ADEs. They used data from over 487,000 drug activity screens from the National
Center for Biotechnology Information’s PubChem BioAssay database and SOC-specific
ADE information from the Canadian Adverse Drug Reaction database to create logistic
regression models for 9 SOCs. They validated these models by performing retroprediction
for eight individual drugs and report that 75% of the predicted adverse reactions in humans
could be substantiated by the literature or drug labeling information. Using these validated
models, they predicted yet unrecognized ADEs for 3 drugs that were recently approved or
not yet approved in the US. The authors note that making such predictions can generate
testable hypotheses for the identification of ADEs in the clinical setting and thus shorten the
duration for which new ADEs go unrecognized.

Biomedical literature
Shetty et al.35 describe an approach for collecting, filtering, and analyzing biomedical
literature as a complementary strategy for prioritizing ADE associations generated from
SRS. First, all articles mentioning drug-outcome pairs from a predefined set of drugs and
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events were retrieved from PubMed. Then, NLP was used to identify and exclude retrieved
articles mentioning irrelevant pairs (e.g., pairs that capture a treatment relationship). Last,
DPA was applied to the pairs mentioned in the remaining articles to highlight statistically
significant drug-event associations. The authors show that the method discovered true
associations with over 70% sensitivity and 40% positive predictive value, using a reference
set of true ADE associations obtained from the ‘Warnings’ section of drug labels. They also
demonstrate that using their approach 54% of the associations analyzed could have been
detected prior to FDA warning, where the Vioxx-MI association could have been identified
using literature published before the year 2002.

User generated content in health forums
In a recent study, Leaman et al.36 demonstrated that user posts on health related websites
contain extractable information relevant to PhV, and describe a prototype system to mine
this type information source. Raw data was automatically collected using a webcrawler from
the web site DailyStrength. NLP techniques were used to process the raw data and extract
clinical concepts related to ADEs. Special procedures were used to deal with colloquial
phrases, e.g., “zoned out” meaning somnolence, and user spelling errors. The system was
evaluated using an expert annotated set of 3,600 user generated posts corresponding to 6
drugs. The system achieved 78% precision and 70% recall in correctly labeling the user
generated data. Importantly, the authors found that the incidence of ADEs reported by users
is highly correlated with documented incidence rates listed by the FDA, noting that the most
frequent ADEs identified corresponded to well known ADEs. PatientsLikeMe recently
published67 a study based on their data, where the user community essentially self-assigned
themselves to assess lithum efficacy in patients with amyotrophic lateral sclerosis. While not
safety surveillance, it is a study that illustrates the promise of patient-initiated observational
studies.

Linking multiple knowledge sources
By linking information from multiple sources Cami et al.68 proposed a network-based model
to predict ADEs. The authors first constructed a network representation of drug-event
associations that were known as of 2005. Then, using network topological indices (e.g.,
node degree), supplemented with ontological features (e.g., distance between two events in
the MedDRA hierarchy) and molecular descriptors (e.g., drug’s molecular weight and
melting point) the authors trained a logistic regression model to predict the probability of an
unknown ADE association (edge in the network graph). The predictive performance of the
model was prospectively validated by predicting ADEs reported in the years 2006-2010. The
model achieved an Area Under the Receiver Operating Characteristic Curve of 0.87,
sensitivity of 42%, and specificity of 95%. The authors were also able to predict seven of
eight ADEs that emerged after 2005 including: the seizure drug zonisamide causing suicidal
thoughts, the antibiotic norfloxacin linked to ruptured tendons, and the controversial
diabetes drug rosiglitazone (Avandia) linked to heart attacks. The authors claim that unlike
related work the prospective characteristics of their model make it a realistic method for
predicting future ADEs.

By integrating information from AERS and several HCD sources, Tatonetti et al.69

discovered a potentially new drug interaction between two widely used drugs - the
antidepressant paroxetine and the cholesterol-lowering medication pravastatin-that can lead
to unexpected increases in blood glucose levels. The motivating idea behind their data
mining approach is the observation that side effects are not independent of each other and
latent evidence for an (unreported) adverse event can be found by examining other
(reported) side effects. By scanning AERS for pairs of drugs having matching side effect
profiles when taken together but not when taking individually, the authors created a
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candidate set of drug-drug interactions. The list of candidates was then narrowed down to
the paroxetine-pravastatin interaction by conducting retrospective studies using electronic
health records from Stanford University Hospital, Vanderbilt University Hospital, and
Partners Healthcare. Last, the interaction was confirmed by a prospective study in an insulin
resistant mouse model.

6. Concluding remarks, future perspectives, and challenges
We have shown that a rich and diverse portfolio of data mining approaches aligned to
different strategies and objectives is now available for the analysis and detection of post-
approval ADEs. Each approach may offer unique prospects that collectively can advance the
science of drug safety surveillance.

New opportunities and interest have emerged to harness data that has not been traditionally
used in PhV, allowing for new active and proactive paradigms of surveillance. Although
methodological research is now shifting away from SRS, this will not diminish the
important role or value of spontaneous reports. That said, the use of spontaneous report
narratives to enhance SRS based discovery is yet to be explored. It is also evident that a new
trend is emerging by which data mining is used to link human safety information with
experimental platforms that have been traditionally used in the preclinical drug discovery
phase. The diversity of approaches highlights the value of systems that can span data and
expertise across multiple domains. Nonetheless, to fully realize this potential, new and
creative methods will be required to integrate these disparate sources in a more synergistic
manner.

It has been suggested that a revisit of randomized clinical trials data, by synthesis or pooling
of several related trials, should be employed to augment findings from other sources. The
main benefit to this approach is that it enjoys the scientific and statistical benefits of
randomization70. Although beyond the scope of this article, it is important emphasize the
role of pharmacogenomics research29, 71 and the utility of knowledge bases such as
PharmGKB72 that would further enhance our understanding of ADEs by correlating human
genetic variation with drug toxicity.

While much progress has been made in utilizing healthcare data, a substantial amount of
further empirical assessment is required using both real and simulated data sets. A key
OMOP finding is that the heterogeneity of data sources and methods strongly affects results.
Thus, consistent methods that can be applied to multiple data sources will be required. There
are also existing opportunities to improve data quality, coding standards, sharing, and
access. The relative value of information contained in the electronic health records
compared to administrative claims needs to be further explored. The continued development
of simulated data for which ground-truth is available is critically important to further the
understanding of method efficacy.

A central challenge in PhV research is the lack of established standards to evaluate DMAs.
One of the main contributors to this problem is the lack of a gold standard, as the set and
nature of all possible drugs safety issues is unknown. Although suggestions have been made,
there is an ongoing debate as to testing strategies and what should constitute reference
standards for DMA evaluation7, 73. With that said, there is currently little empirical evidence
to support or prefer the use of one method or data source over the other, and efforts such as
those made by OMOP and EU-ADR are of paramount importance so that method and data
source value can be assessed on solid scientific footing.

DMA activity is typically conducted at certain granularity levels of medical terminologies,
which are not optimally designed to support PhV. Often, similar medical concepts are
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fragmented across distinct terms, weakening the potential for statistical discovery.
Therefore, methods that make better use and integrate knowledge from lexical resources74

may prove beneficial. Relatedly, Bayesian approaches allowing for information borrowing75

across similar terms and drugs, should be further developed and evaluated. Additionally,
improved NLP methods to process unstructured textual data, whether from clinical
narratives, literature, or health forums, will continue to play an important role25.

Last but not least, it is important to recognize that at its core, data mining is a tool to
formulate or refine new hypothesis and thus will not eliminate the important role of medical
review that will always be required for final adjudication of causality.

Acknowledgments
This work was supported in part by grants 1R01LM010016, 3R01LM010016-01S1, 3R01LM010016-02S1, and
5T15-LM007079-19(HS) from the National Library of Medicine, U54-HG004028 from the National Center for
Biomedical Ontology, and 2U54LM008748 from the i2b2 National Center for Biomedical Computing. We thank
Nicholas Tatonetti from Stanford University and Roee Sa’adon from First Life Research for their valuable
comments, and extend our gratitude to Oracle’s Health Sciences Division for supplying us with data and figures.

Reference List
(1). World Health Organization. The Importance of Pharmacovigilance - Safety Monitoring of

Medicinal Products. World Health Organization; Geneva: 2002.

(2). Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients:
a meta-analysis of prospective studies. JAMA. Apr 15; 1998 279(15):1200–5. [PubMed:
9555760]

(3). Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in hospitalized
patients. Excess length of stay, extra costs, and attributable mortality. JAMA. Jan 22; 1997
277(4):301–6. [PubMed: 9002492]

(4). Ahmad SR. Adverse drug event monitoring at the Food and Drug Administration - Your report can
make a difference. Journal of General Internal Medicine. Jan; 2003 18(1):57–60. [PubMed:
12534765]

(5). Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting.
Pharmacoepidemiol Drug Saf. Jun; 2009 18(6):427–36. [PubMed: 19358225]

(6). Hauben M, Madigan D, Gerrits CM, Walsh L, van Puijenbroek EP. The role of data mining in
pharmacovigilance. Expert Opin Drug Saf. Sep; 2005 4(5):929–48. [PubMed: 16111454]

(7). Hauben M, Bate A. Decision support methods for the detection of adverse events in post-
marketing data. Drug Discov Today. Apr; 2009 14(7-8):343–57. [PubMed: 19187799]

(8). Almenoff JS, Pattishall EN, Gibbs TG, DuMouchel W, Evans SJ, Yuen N. Novel statistical tools
for monitoring the safety of marketed drugs. Clin Pharmacol Ther. Aug; 2007 82(2):157–66.
[PubMed: 17538548]

(9). Platt R, Wilson M, Chan KA, Benner JS, Marchibroda J, McClellan M. The New Sentinel
Network - Improving the Evidence of Medical-Product Safety. New England Journal of
Medicine. Aug 13; 2009 361(7):645–7. [PubMed: 19635947]

(10). Schneeweiss S. A basic study design for expedited safety signal evaluation based on electronic
healthcare data. Pharmacoepidemiology and Drug Safety. Aug; 2010 19(8):858–68. [PubMed:
20681003]

(11). Wysowski DK, Swartz L. Adverse drug event surveillance and drug withdrawals in the United
States, 1969-2002 - The importance of reporting suspected reactions. Archives of Internal
Medicine. Jun 27; 2005 165(12):1363–9. [PubMed: 15983284]

(12). Stephenson W, Hauben M. Data mining for signals in spontaneous reporting databases: proceed
with caution. Pharmacoepidemiol Drug Saf. 2007; 16(4):359–65. [PubMed: 17019675]

(13). Graham DJ, Campen D, Hui R, et al. Risk of acute myocardial infarction and sudden cardiac
death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-

Harpaz et al. Page 15

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inflammatory drugs: nested case-control study. Lancet. 2005; 365(9458):475–81. [PubMed:
15705456]

(14). Avorn J, Schneeweiss S. Managing Drug-Risk Information - What to Do with All Those New
Numbers. New England Journal of Medicine. Aug 13; 2009 361(7):647–9. [PubMed: 19635948]

(15). Stang PE, Ryan PB, Racoosin JA, et al. Advancing the Science for Active Surveillance:
Rationale and Design for the Observational Medical Outcomes Partnership. Annals of Internal
Medicine. Nov 2; 2010 153(9):600–W206. [PubMed: 21041580]

(16). McClellan M. Drug Safety Reform at the FDA - Pendulum Swing or Systematic Improvement. N
Engl J Med. 2007; 356:1700–2. [PubMed: 17435081]

(17). [accessed Feb 2012] Food and Drug Administration Amendments Act (FDAAA) of 2007. http://
www.fda.gov/

(18). [accessed Feb 2012] The Sentinel Initiative: a national strategy for monitoring medical product
safety. http://www.fda.gov/downloads/Safety/FDAsSentinelInitiative/UCM124701.pdf

(19). [accessed Feb 2012] Observational Medical Outcomes Partnership (OMOP). http://
omop.fnih.org/

(20). Coloma PM, Schuemie MJ, Trifiro G, et al. Combining electronic healthcare databases in Europe
to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug
Saf. Jan; 2011 20(1):1–11. [PubMed: 21182150]

(21). Simpson, SE. Ph.D. dissertation. Columbia University; 2011. Self-controlled methods for
postmarketing drug safety surveillance in large-scale longitudinal data.

(22). LePendu P, Iyer SV, Fairon C, Shah NH. Annotation Analysis for Testing Drug Safety Signals
using Unstructured Clinical Notes. Journal of Biomedical Semantics. 2012 (in press).

(23). Brownstein JS, Sordo M, Kohane IS, Mandl KD. The tell-tale heart: population-based
surveillance reveals an association of rofecoxib and celecoxib with myocardial infarction. PLoS
One. 2007; 2(9):e840. [PubMed: 17786211]

(24). Brown JS, Kulldorff M, Chan KA, et al. Early detection of adverse drug events within
population-based health networks: application of sequential testing methods. Pharmacoepidemiol
Drug Saf. Dec; 2007 16(12):1275–84. [PubMed: 17955500]

(25). Chapman WW, Nadkarni PM, Hirschman L, D’Avolio LW, Savova GK, Uzuner O. Overcoming
barriers to NLP for clinical text: the role of shared tasks and the need for additional creative
solutions. J Am Med Inform Assoc. Sep; 2011 18(5):540–3. [PubMed: 21846785]

(26). Brookhart MA, Stürmer T, Robert JG, Rassen J, Schneeweiss S. Confounding Control in
Healthcare Database Research: Challenges and Potential Approaches. Med Care. 2010; 48(6
Sippl):114–S120.

(27). Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic
research on therapeutics. J Clin Epidemiol. 2005; 58(4):323–37. [PubMed: 15862718]

(28). Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and
drug targets. Nucleic Acids Res. Jan; 2008 36(Database issue):D901–D906. [PubMed:
18048412]

(29). Chiang AP, Butte AJ. Data-driven methods to discover molecular determinants of serious adverse
drug events. Clin Pharmacol Ther. Mar; 2009 85(3):259–68. [PubMed: 19177064]

(30). Pouliot Y, Chiang AP, Butte AJ. Predicting adverse drug reactions using publicly available
PubChem BioAssay data. Clin Pharmacol Ther. Jul; 2011 90(1):90–9. [PubMed: 21613989]

(31). Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Organic &
Biomolecular Chemistry. 2004; 2(22):3204–18. [PubMed: 15534697]

(32). Matthews EJ, Ursem CJ, Kruhlak NL, et al. Identification of structure-activity relationships for
adverse effects of pharmaceuticals in humans: Part B. Use of (Q)SAR systems for early detection
of drug-induced hepatobiliary and urinary tract toxicities. Regulatory Toxicology and
Pharmacology. Jun; 2009 54(1):23–42. [PubMed: 19422098]

(33). Frid AA, Matthews EJ. Prediction of drug-related cardiac adverse effects in humans--B: use of
QSAR programs for early detection of drug-induced cardiac toxicities. Regul Toxicol Pharmacol.
Apr; 2010 56(3):276–89. [PubMed: 19941924]

Harpaz et al. Page 16

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fda.gov/
http://www.fda.gov/
http://www.fda.gov/downloads/Safety/FDAsSentinelInitiative/UCM124701.pdf
http://omop.fnih.org/
http://omop.fnih.org/


(34). Deftereos SN, Andronis C, Friedla EJ, Persidis A, Persidis A. Drug repurposing and adverse
event prediction using high-throughput literature analysis. Wiley Interdiscip Rev Syst Biol Med.
May; 2011 3(3):323–34. [PubMed: 21416632]

(35). Shetty KD, Dalal SR. Using information mining of the medical literature to improve drug safety.
J Am Med Inform Assoc. Sep; 2011 18(5):668–74. [PubMed: 21546507]

(36). Leaman, R.; Wojtulewicz, L.; Sullivan, R.; Skariah, A.; Yang, J.; Gonzalez, G. Towards Internet-
Age Pharmacovigilance: Extracting Adverse Drug Reactions from User Posts in Health-Related
Social Networks. Proceedings of the 2010 Workshop on Biomedical Natural Language
Processing; 2010. p. 117-25.

(37). Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to
efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s
spontaneous reports database. Drug Saf. 2002; 25(6):381–92. [PubMed: 12071774]

(38). Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug
reaction signal generation. Eur J Clin Pharmacol. Jun; 1998 54(4):315–21. [PubMed: 9696956]

(39). DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA
Spontaneous Reporting System. Am Stat. 1999; 53(3):177–90.

(40). Szarfman, A. [accessed Dec 2011] Safety Data Mining. FDA Advisory Committee Meeting
Briefing Document. 2006. http://www.fda.gov/ohrms/dockets/as/06/briefing/
2006-4266b1-02-06-FDA-appendic-f.pdf

(41). Deshpande G, Gogolak V, Weiss Smith S. Data Mining in Drug Safety: Review of Published
Threshold Criteria for Defining Signals of Disproportionate Reporting. Pharmaceutical Medicine.
2010; 24(1)

(42). Ramirez E, Carcas AJ, Borobia AM, et al. A pharmacovigilance program from laboratory signals
for the detection and reporting of serious adverse drug reactions in hospitalized patients. Clin
Pharmacol Ther. Jan; 2010 87(1):74–86. [PubMed: 19890254]

(43). Almenoff JS, DuMouchel W, Kindman LA, Yang X, Fram D. Disproportionality analysis using
empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing
setting. Pharmacoepidemiol Drug Saf. Sep; 2003 12(6):517–21. [PubMed: 14513665]

(44). Jewell, NP. Statistics for Epidemiology. 1 ed. Chapman and Hall; 2003.

(45). Genkin A, Lewis DD, Madigan D. Large-Scale Bayesian Logistic Regression for Text
Categorization. Technometrics. 2007; 49(3):291–304.

(46). Caster O, Noren GN, Madigan D, Bate A. Large-scale regression-based pattern discovery: The
example of screening the WHO global drug safety database. Statistical Analy Data Mining. 2010;
3(4):197–208.

(47). Solomon R, DuMouchel W. Contrast media and nephropathy: findings from systematic analysis
and Food and Drug Administration reports of adverse effects. Invest Radiol. Aug; 2006 41(8):
651–60. [PubMed: 16829749]

(48). Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large
databases; 1993. p. 207-216.SIGMOD

(49). Rouane, H.; Toussaint, Y.; Valtchev, P. AIME 2009. Springer; Berlin/Heidelberg: 2009. Mining
signals in spontaneous reports database using concept analysis.

(50). Harpaz R, Chase HS, Friedman C. Mining multi-item drug adverse effect associations in
spontaneous reporting systems. BMC Bioinformatics. 2010; 11(Suppl 9):S7. [PubMed:
21044365]

(51). McCormick TH, Rudin C, Madigan D. Bayesian Hierarchical Rule Modeling for Predicting
Medical Conditions. Annals of Applied Statistics. 2012 (in press).

(52). Fan K, Sun X, Tao Y, et al. High-Performance Signal Detection for Adverse Drug Events using
MapReduce Paradigm. AMIA Annu Symp Proc. 2010; 2010:902–6. [PubMed: 21347109]

(53). Harpaz R, Perez H, Chase HS, Rabadan R, Hripcsak G, Friedman C. Biclustering of adverse drug
events in the FDA’s spontaneous reporting system. Clin Pharmacol Ther. Feb; 2011 89(2):243–
50. [PubMed: 21191383]

(54). Ball R, Botsis T. Can network analysis improve pattern recognition among adverse events
following immunization reported to VAERS? Clin Pharmacol Ther. Aug; 2011 90(2):271–8.
[PubMed: 21677640]

Harpaz et al. Page 17

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fda.gov/ohrms/dockets/as/06/briefing/2006-4266b1-02-06-FDA-appendic-f.pdf
http://www.fda.gov/ohrms/dockets/as/06/briefing/2006-4266b1-02-06-FDA-appendic-f.pdf


(55). Stang PE, Ryan PB, Dusetzina SB, et al. Health Outcomes of Interest in Observational Data:
Issues in Identifying Definitions in the Literature. Health Outcomes Research in Medicine. Feb;
2012 3(1):e37–e44.

(56). Zorych I, Madigan D, Ryan P, Bate A. Disproportionality methods for pharmacovigilance in
longitudinal observational databases. Stat Methods Med Res. Aug 30.2011

(57). Schuemie MJ. Methods for drug safety signal detection in longitudinal observational databases:
LGPS and LEOPARD. Pharmacoepidemiol Drug Saf. Mar; 2011 20(3):292–9. [PubMed:
20945505]

(58). Noren GN, Hopstadius J, Bate A, Edwards IR. Safety surveillance of longitudinal databases:
methodological considerations. Pharmacoepidemiol Drug Saf. Jul; 2011 20(7):714–7. [PubMed:
21638520]

(59). D’Agostino RB Jr. D’Agostino RB Sr. Estimating treatment effects using observational data.
JAMA. Jan 17; 2007 297(3):314–6. [PubMed: 17227985]

(60). Patrick AR, Schneeweiss S, Brookhart MA, et al. The implications of propensity score variable
selection strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiol
Drug Saf. Jun; 2011 20(6):551–9. [PubMed: 21394812]

(61). Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional
propensity score adjustment in studies of treatment effects using health care claims data.
Epidemiology. 2009; 20(4):512–22. [PubMed: 19487948]

(62). Bloom MS, Schisterman EF, Hediger ML. The use and misuse of matching in case-control
studies: the example of polycystic ovary syndrome. Fertil Steril. Sep; 2007 88(3):707–10.
[PubMed: 17433314]

(63). Madigan, D.; Ryan, P.; Simpson, SE.; Zorych, I. Bayesian methods in pharmacovigilance (with
discussion). In: Bernardo, JM.; Bayarri, MJ.; Berger, JO.; Dawid, AP.; Heckerman, D.; Smith,
AFM.; West, M., editors. Bayesian Statistics 9. Oxford University Press; 2010. p. 421-438.

(64). Madigan D, Ryan P. What can we really learn from observational studies?: the need for empirical
assessment of methodology for active drug safety surveillance and comparative effectiveness
research. Epidemiology. Sep; 2011 22(5):629–31. [PubMed: 21811110]

(65). Gagne JJ, Fireman B, Ryan PB, et al. Design considerations in an active medical product safety
monitoring system. Pharmacoepidemiol Drug Saf. Jan; 2012 21(Suppl 1):32–40. [PubMed:
22262591]

(66). Vilar S, Harpaz R, Chase HS, Costanzi S, Rabadan R, Friedman C. Facilitating adverse drug
event detection in pharmacovigilance databases using molecular structure similarity: application
to rhabdomyolysis. J Am Med Inform Assoc. Dec; 2011 18(Suppl 1):i73–i80. [PubMed:
21946238]

(67). Wicks P, Vaughan TE, Massagli MP, Heywood J. Accelerated clinical discovery using self-
reported patient data collected online and a patient-matching algorithm. Nat Biotech. May; 2011
29(5):411–4.

(68). Cami A, Arnold A, Manzi S, Reis B. Predicting adverse drug events using pharmacological
network models. Sci Transl Med. Dec 21.2011 3(114):114ra127.

(69). Tatonetti NP, Denny JC, Murphy SN, et al. Detecting drug interactions from adverse-event
reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin
Pharmacol Ther. Jul; 2011 90(1):133–42. [PubMed: 21613990]

(70). Gibbons RD, Amatya AK, Brown CH, et al. Post-approval drug safety surveillance. Annu Rev
Public Health. Apr 21.2010 31:419–37. [PubMed: 20070192]

(71). Becquemont L. Pharmacogenomics of adverse drug reactions: practical applications and
perspectives. Pharmacogenomics. Jun; 2009 10(6):961–9. [PubMed: 19530963]

(72). [accessed Feb 2012] The Pharmacogenomics Knowledge Base (PharmGKB). http://
www.pharmgkb.org/

(73). Hochberg AM, Hauben M, Pearson RK, et al. An evaluation of three signal-detection algorithms
using a highly inclusive reference event database. Drug Saf. 2009; 32(6):509–25. [PubMed:
19459718]

(74). Musen MA, Noy NF, Shah NH, et al. The National Center for Biomedical Ontology. J Am Med
Inform Assoc. Nov 10.2011

Harpaz et al. Page 18

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.pharmgkb.org/
http://www.pharmgkb.org/


(75). Berry SM, Berry DA. Accounting for multiplicities in assessing drug safety: a three-level
hierarchical mixture model. Biometrics. Jun; 2004 60(2):418–26. [PubMed: 15180667]

Harpaz et al. Page 19

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
PhV DMA research evolution described by volume of publications per year indexed in
PubMed. 2011 volume is effectively larger due to delayed indexing.
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Figure 2.
Bar-plot of drugs statistically associated with rhabdomyolysis in AERS as an example of
DPA output. Bar colors and length reflect statistical association strength based on the
EBGM score. Each bar also includes the 90% confidence interval (EB05-EB95) and report
count (N) for the corresponding drug. The plot and underlying DPA were performed using
Oracle’s Empirica Signal 7.3 based on AERS data up to and including the year 2011 Q2.
Only the top 20 associations consisting of drugs reported as “suspected” with N ≥ 100 were
selected for display. Expectedly, the majority of drugs come from the class of statins known
to cause rhabdomyolysis as a rare ADE.
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Figure 3.
Patient timelines used to visualize and analyze healthcare data in drug safety. Each patient is
represented by a horizontal line capturing time, and symbols on the line represent clinical
events, e.g., diagnoses, test results, treatments, and drug eras. The figure shows timelines of
patients experiencing various events such as headache (red triangle) within eligible periods
of acetaminophen administration. The patients are sorted according to the first occurrence of
an event (red triangle).
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Table 1 (a)

Contingency table used in SRS based DPA. Reports are classified according to the presence/absence of
specific drug-adverse event (AE) combinations. Each cell contains report counts.

with target AE without target AE Total

with target drug a b n=a+b

without target drug c d c+d

Total m=a+c b+d t=a+b+c+d
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Table 1 (b)

Mathematical definitions of measures of association.

Measure of association Mathematical Definition

Relative Reporting Ratio (RRR) (t·a)/(m·n)

Proportional Reporting Ratio (PRR) [a·(t-n)]/(c·n)

Reporting Odds Ratio (ROR) (a·d)/(c·b)

Information Component (IC) log2(RRR)
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