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Abstract

Human movements contribute to the transmission of malaria on spatial scales that exceed the
limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to
human travel and locating high-risk sites of parasite importation could greatly improve malaria
control programs. Here we use spatially explicit mobile phone data and malaria prevalence
information from Kenya to identify the dynamics of human carriers that drive parasite importation
between regions. Our analysis identifies specific importation routes that contribute to malaria
epidemiology on regional spatial scales.

Local “hotspots” of malaria prevalence, resulting from complex interactions between the
malaria parasite Plasmodium falciparum and its human and mosquito hosts, provide specific
targets for the strategic deployment of malaria interventions (1-4). Movements of infected
humans can increase the dispersal of parasites beyond what would be possible for
mosquitoes alone (5,6). National malaria control programs must account for this human
travel-mediated spread of parasites because frequent introduction of imported parasites
could undermine local control or elimination strategies (5, 7-9). Mapping the routes of
parasite dispersal by human carriers will allow for additional targeted control by identifying
both the regions where imported infections originate and where they may contribute
significantly to transmission. International migrants can contribute to continental parasite
dispersal across Africa, and census surveys have provided insights into these routes of
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The geographical spread of malaria parasites was analyzed by combining the daily movements of 15 million Kenyans with malaria
prevalence estimates.
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importation (6). The vast majority of travelers that will impact malaria parasite dispersal are
those moving within a country between regions of variable malaria receptivity on a daily or
weekly basis, however.

Here, we use mobile phone data to analyze the travel patterns of nearly 15 million
individuals over the course of a year in Kenya, combining these data with a simple
transmission model of malaria based on highly spatially resolved malaria infection
prevalence data to map routes of parasite dispersal. Previous small-scale studies have used
mobile phones to estimate importation rates of malaria parasites by residents of Zanzibar
following journeys to mainland Tanzania, but these data lacked resolution on the infection
risk at their journey destinations, as well as information about infected visitors to the island
(8, 9). Here we identify networks of parasite movements within Kenya and pinpoint both
“source” and “sink” regions.

We estimated the daily locations of 14,816,521 Kenyan mobile phone subscribers between
June 2008 and June 2009, mapping every call or text made by each individual to one of
11,920 cell towers located within the boundaries of 692 settlements (Figures 1A and B) that
were defined by satellite imagery as previously described (11-13 and see Sl for methods).
Each individual was assigned to a primary settlement where they spent the majority of their
time over the course of the year, and the destination and duration of each journey made out
of the primary settlement was calculated (Figure S1). We used a malaria prevalence map
from 2009 (14) with a 1km? resolution to assign each settlement a malaria endemicity class
ranging from 1 (<0.1% prevalence of Plasmodium falciparum infection in 2-10 year olds,
PIPR,_10) to 7 (>=40% PPRo_1p), and these estimates were used to infer i) a resident’s
probability of being infected and ii) the daily (nightly) probability that visitors to the
settlement will become infected. Data on the seasonality of infection risk was not available,
so these estimates likely represent an upper bound (see Sl). Settlements were grouped into
risk regions via a clustering algorithm to define geographically contiguous groups with the
same malaria endemicity (Figure 1C, see SlI).

The travel network (Figures 2A and S2A) is dominated by the Kenyan capital Nairobi,
which forms a hub for human movements to and from all regions of the country. Although
the highest volume of travel occurs between Nairobi and the central regions of the country,
substantial movement also occurs between the central region and Lake Victoria (for values
see Tables S1, S2).

There are two sources of importation of parasites. First, individuals visiting endemic areas
may become infected during their stay, depending on the malaria endemicity of the
destination, carrying parasites back to their primary settlement (see Sl for methods). We
term these individuals “returning residents” and they are equivalent to “passive acquirers” of
infections (1). Parasite networks resulting from travel by returning residents are shown in
Figure 2B (see Figure S2B and Tables S3, S4). Second, infected individuals can carry
parasites with them when they visit other settlements, potentially contributing to onward
infections if the destination is receptive to transmission (see Sl for methods). Figure 2C
illustrates the network of parasite movement by “visitors”, and these individuals are
equivalent to “active transmitters” in previous frameworks (1, Figure S2C and Tables S5,
S6). For this analysis, we assume that receptivity to transmission is reflected by the
prevalence of infection, although this simplification does not account for current control
measures, which we discuss further below. The structures of these networks were
remarkably stable over the course of the year (see Figures S3-S5), so although seasonal
changes in transmission might cause our estimates of parasite movement to be generally
high, the routes and relative volumes will remain unaffected.
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Parasite movement networks represent only a subset of the human mobility network
underlying them, due to the spatial heterogeneity in malaria risk across the country. The
human travel network is denser than the parasite networks, as expected, with more edges
and a higher mean degree per settlement, as well as greater connectivity (see Table S7).
Returning residents contribute to some movements of parasites between regions within the
Lake Victoria and coastal areas (Figure 2B), but Nairobi imports the largest fraction of
infections in this way, with infected residents returning after journeys to the coast, Lake
Victoria, and low endemicity regions in central Kenya. Visitors contribute to transmission
anywhere that is receptive to transmission (see Sl and Figure 2C), but may have less impact
in the capital, for example, where vectors are scarce. Hence, the visitor network is
dominated by importation around Lake Victoria and shows relatively low importation rates
between the lake and the coast, the two main foci of transmission. Visitors carrying parasites
within regions are therefore likely to be a much more important consideration for control
programs than inter-regional visitors, suggesting that the Lake Victoria and coastal regions
may be considered as weakly connected but relatively independent entities for the purposes
of malaria elimination.

To examine directional and net movements of people and parasites between settlements, we
analyzed asymmetries between “source” and “sink” settlements. Here, we rank each
settlement based on their contribution as net emitters (sources) and net receivers (sinks) of
people and parasites (human travel in Figure 3A, parasite movement in Figure 3B, see SI for
Methods). The difference between each settlement’s source and sink rank distinguishes
those that are primarily as sources of people or parasites versus those that are primarily
sinks. Sources and sinks of human travel are almost entirely overlapping and reflect patterns
of population density and regular travel. In contrast, the parasite routes show directional
movement between source settlements in the Lake Victoria region and parasite sinks on the
periphery of this focus of transmission and in the Nairobi area (see Sl). The capital city and
its surroundings are thus a major destination for both humans and parasites, but most of the
parasite importation that can contribute to onward transmission occurs on the periphery of
the highly endemic Lake Victoria region. Therefore, even though malaria prevalence is low
in these regions, elimination efforts must encompass control of imported infections to be
successful.

The high spatial resolution of our mobility data allowed us to pinpoint particular settlements
that are expected to receive or transmit an unexpectedly high volume of parasites compared
to surrounding regions. Figures 4A and 4B show the result of an analysis of outlying
settlements identified by means of an anomaly detection algorithm (see Sl for methods).
Here, the size of the circle represents Rc; the basic reproductive number of the parasite
under control (15). This measure provides insights into how important outliers are likely to
be for transmission, since importation can only contribute to transmission if local conditions
and vector populations allow it. Combining local estimates of importation with information
about locally heterogeneous transmission, including vector behavior, ecology, and
population distributions on a fine scale, will play an important role in future regional
elimination efforts. Again, the settlements on the edge of Lake Victoria are major sources of
parasites, and the neighboring settlements further inland are most vulnerable to importation.
Returning residents played an important role in importing parasites to major parasite sinks,
with residents from the top 10% of outlying settlements taking on average 29 trips during
the year, compared to 20 trips by individuals from the remaining 90% of settlements
(medians 10.4 versus 7.6, respectively, Mann Whitney U test, p < 0.0001). These sinks also
received substantial numbers of visitors from higher malaria endemicity settlements (24% of
visitors) compared to settlements that were not considered sinks (12% of visitors). In
contrast, individuals from the top 10% of major parasite source settlements did not travel
more frequently, but 62% of journeys made were to settlements with lower malaria
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endemicity compared to 0.08% of journeys made from the remaining 90% of settlements (p
< 0.0001) (Tables S8-S9).

In Nairobi, the density of cell towers enabled further localization of these estimates and a
comparison with cross-sectional clinical surveys of malaria incidence carried out in 2010
(16). Frequent malaria epidemics occurred in the capital at the beginning of the 20t century,
but declined significantly following substantial control efforts, rapid population growth and
urbanization (16-19). The current potential for local transmission within the city is
controversial, with studies showing substantial infection prevalence and ongoing treatment
of presumed clinical cases despite the scarcity of suitable mosquito vectors (16-19). Figure
4C shows the ratio of monthly clinical cases to our predicted monthly imported cases from
mobile phone data at the location of each hospital survey (see Sl for methods, Table S10,
Figure S6). Areas in the highly urbanized center of the city, where transmission is unlikely,
show a very high ratio of estimated imported to clinical cases. In contrast, hospitals on the
periphery of the city have a higher ratio of clinical cases to estimates from the mobile phone
data. The patterns suggest some local transmission may be occurring in these residential and
less developed areas. Although caution must be exercised in the interpretation of
comparisons between clinical and mobile phone estimates, this approach provides a starting
point for the identification of transmission foci in urban settings and the local
implementation of surveillance programs.

There are limitations to this approach (10), since we can only measure mobility among
phone owners in areas where there are cell towers (20, see Sl for discussion), we cannot
capture cross-border migration, and our importation calculations are constrained by the
available, non-seasonal malaria prevalence estimates. Nevertheless, we believe this analysis
has made it possible to assess the degree of connectivity among different regions of Kenya —
the resulting estimates can be used to cost regional elimination strategies, identify “source”
regions where reducing transmission would provide benefit to surrounding areas, evaluate
patterns of importation and endemicity in low intensity areas such as Nairobi, and pinpoint
likely importation hotspots. On an extremely local scale, driven primarily by vector biology
and habitat and local variability in household structures etc., hotspots of transmission that
occur can be targeted by indoor residual spraying, vector habitat removal, insecticides, drug
administration and bed net use. Control program activities targeting the large volumes of
human traffic between regions that we have identified here will be completely different to
those that concentrate on local transmission hotspots, focusing on communicating risks to
travelers to alter their behaviors, restricting travel patterns, and/or conducting routine
surveillance in high-risk areas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel. Thedistribution of settlements, cell towers, and malariarisk in Kenya

A) Malaria prevalence in Kenya in 2009 (from PfPR,_;9<0.1% in yellow to PfPR_;p>40%
in red) and the locations of settlements used in the analysis (settlement centers are shown in
black, and mapped with a 10km extent around the perimeter of the settlement in grey). B)
Mobile phone towers (black or blue dots) are overlaid over the extended settlement
boundaries. Towers that fall within a settlement are shown in black and those excluded from
the analysis are shown in blue. C) Regions used for visual mapping of transmission routes.
Each settlement was allocated to one of twenty regions by a clustering algorithm (see
Methods in the SI) based on homogenous malaria risk and geography, as shown. Regions
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near Lake Victoria (LV), in Nairobi (Nairobi), the central areas (Cen), and along the coast
(C) are labeled accordingly.
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Figure 2. Travel networks of people and parasites between settlementsand regions

A) Average monthly travel between regions (nodes), with edges weighted by volume of
traffic. For clarity, the top 50% of routes are shown with arrows indicating the direction of
movement (humans or parasites) from a primary settlement to a visited settlement. B)
Average monthly parasite importation by returning residents, by region. C) Average
monthly parasite importation by visitors, where importation is not considered if the
destination has extremely low transmission (see Sl). The labeling of nodes is as described in
Figure 1. For each network, node layout is roughly based on geographic location.
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Figure 3. Sources and sinks of human and parasite disper sal

Kernel density maps showing ranked sources and sinks of human travel and total parasite
movement in Kenya. A) Settlements were designated as primarily sources or sinks based on
yearly estimates of human travel. The direction movement is shown highlighting principal
sources (in red) versus principal sinks (in blue). B) The directional parasite movements,
major parasite sources (in red) and sinks (in blue) are shown.
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A) Source outliers and B) sink outliers. Settlements are colored by their outlier rank (from

low values in blue to high values in red) and sized according to Rcan indicator of receptivity
(see Methods in Sl). C) The localized importation into Nairobi compared to clinical cases. A
topographic map of Nairobi was provided from National Geographic and ESRI highlighting

the national park, commercial, and residential areas of the city.
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