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Identifying the building blocks of mammalian tissues is a
precondition for understanding their function. In particu-
lar, global and quantitative analysis of the proteome of
mammalian tissues would point to tissue-specific mech-
anisms and place the function of each protein in a whole-
organism perspective. We performed proteomic analy-
ses of 28 mouse tissues using high-resolution mass
spectrometry and used a mix of mouse tissues labeled
via stable isotope labeling with amino acids in cell cul-
ture as a “spike-in” internal standard for accurate pro-
tein quantification across these tissues. We identified a
total of 7,349 proteins and quantified 6,974 of them.
Bioinformatic data analysis showed that physiologically
related tissues clustered together and that highly ex-
pressed proteins represented the characteristic tissue
functions. Tissue specialization was reflected promi-
nently in the proteomic profiles and is apparent already
in their hundred most abundant proteins. The proportion
of strictly tissue-specific proteins appeared to be small.
However, even proteins with household functions, such
as those in ribosomes and spliceosomes, can have dra-
matic expression differences among tissues. We de-
scribe a computational framework with which to corre-
late proteome profiles with physiological functions of
the tissue. Our data will be useful to the broad scientific
community as an initial atlas of protein expression of a
mammalian species. Molecular & Cellular Proteomics
12: 10.1074/mcp.M112.024919, 1709–1722, 2013.

The proteins expressed by a tissue are the principal active
units that determine its function. Mapping tissue proteomes

can therefore identify the molecular regulators and effectors
of their physiological activity. A broad and quantitative pro-
teome of a mammalian species has, however, not been de-
termined yet. Instead, global analyses of mouse tissues have
previously been performed mainly on the mRNA level using
microarray or deep sequencing technologies (1, 2). Although
these methods can provide a near-comprehensive view of the
biological system at the transcriptional level, mRNA levels do
not necessarily predict protein expression levels and therefore
miss an important determinant of biological function. Recent
studies comparing mRNA to protein levels showed a correla-
tion of 0.4 to 0.6 (see, for example, Refs. 3 and 4), and it
appears that the main process additionally determining pro-
tein levels is the regulation of translation rates (5). These
observations highlight the importance of determining the pro-
teome in addition to the transcriptome.

Mass spectrometry (MS)-based1 proteomics is the primary
technology that enables a system-wide view of proteomes
and their changes (6–8). In “shotgun” proteomics, proteins
are digested to peptides, and the peptides are analyzed via
liquid chromatography coupled to mass spectrometry (LC-
MS/MS). The development of mass spectrometers with high
resolution, high mass accuracy, and high sequencing speed
now allows routine identification of large proportions of the
mammalian proteome with high confidence (9). Previously,
Kislinger et al. performed a proteomic analysis of six mouse
tissues and identified �2,000 proteins per tissue using low-
resolution MS (10). A recent deep phospho-proteomic study
in mouse also analyzed the proteome of nine mouse tissues
(11). These studies were only semi-quantitative, as they were
based on spectral counting and restricted to a small number
of tissues. Here we set out to correlate protein expression and
tissue physiology with higher quantification accuracy on a
much larger scale. Although we did not achieve complete
proteome coverage, the accuracy and wide range of the study
further enable a determination of tissue-specific functions.

MS became truly quantitative with the development of sta-
ble-isotope-based methods in which the ratios of “light” and
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“heavy” versions of the same peptides are accurately deter-
mined (12). Stable isotope labeling with amino acids in cell
culture (SILAC) is generally considered as the most accurate
technology for relative protein quantification. It relies on met-
abolic labeling, in which heavy amino acids, typically lysine
and arginine, are incorporated into proteins during their syn-
thesis (13). In the past, SILAC was limited to cells in culture,
but it has now been expanded to whole organisms and human
tissues (14–17). We have generated SILAC-labeled mice that
were grown for more than two generations on a diet contain-
ing heavy lysine (Lys6-13C6) as their sole source of this amino
acid, leading to complete labeling of their proteome (18, 19).
SILAC mice provide a source of heavy tissues that can serve
as a reference for relative quantification and which represent
the full complexity of the tissue in vivo.

In this study we took advantage of the SILAC mouse tech-
nology to quantify 28 mouse tissues relative to a mix of these
heavy tissues. We provide a deep proteomic map of the
proteins and functions across these tissues and highlight key
regulators of tissue specificity.

EXPERIMENTAL PROCEDURES

Sample Preparation—C57BL/6 mice were sacrificed via cervical
dislocation, and 28 tissues and organs were dissected and snap-
frozen in liquid nitrogen. For protein isolation, tissues were homoge-
nized at 4 °C in denaturing buffer containing 1% N-octylglucoside, 6
M urea, and 2 M thiourea in 10 mM Tris buffer (pH 8.0). Homogenates
were centrifuged at 45,000g, and the supernatant was precipitated
overnight in five volumes of ice-cold acetone. Precipitated proteins
were resuspended in denaturing buffer without N-octylglucoside, and
Bradford assay was performed to determine the protein concentra-
tion. Samples from three animals belonging to each group (unlabeled
and SILAC-labeled) were pooled to minimize individual variability.
Equal amounts of protein extracts from all SILAC-labeled tissues
were combined to create the heavy spike-in protein standard for all
samples.

Protein Digestion and Peptide Separation—The SILAC spike-in
standard was mixed with each of the unlabeled tissues in equal
amounts (50 �g each) and digested in solution with endoprotease
Lys-C. Peptides were fractionated via isoelectric focusing on an
OffGel Fractionator (Agilent, Waldbronn, Germany) in a 12-well format
as described elsewhere (20). Peptides from each of the 12 fractions
were purified using C18 StageTips (21).

Liquid Chromatography–Mass Spectrometric Analysis—LC-
MS/MS measurements were performed on an Easy-nano-LC (Thermo
Fisher Scientific) coupled to an LTQ Orbitrap XL mass spectrometer
(Thermo Fisher Scientific). Peptides were separated on a reverse-
phase column (15 cm, 75 �m inner diameter and 3 �m Reprosil resin)
using a 100-min gradient of water–acetonitrile. All MS measurements
were performed in the positive ion mode. Precursor ions were meas-
ured in the Orbitrap analyzer at 60,000 resolution (at 400 m/z) and a
target value of 106 ions. The five most intense ions from each MS scan
(with a target value of 5,000 ions) were isolated, fragmented, and
measured in the linear ion trap. Replicate analysis (Fig. 2) was per-
formed in single runs on an EASY-nLC1000 (22) coupled to a Q-
Exactive mass spectrometer (Thermo Fisher Scientific) (23). Peptides
were separated on a reverse-phase column (30 cm, 75 �m inner
diameter and 1.8 �m Reprosil resin) using a 200-min gradient of
water–acetonitrile. All MS measurements were performed in the pos-
itive ion mode. Precursor ions were measured in the Orbitrap analyzer

at 70,000 resolution (at 200 m/z) and a target value of 106 ions. The 10
most intense ions from each MS scan were isolated, fragmented, and
measured in the Orbitrap with a resolution of 17,500.

Data Analysis in MaxQuant—Raw mass spectrometric files were
analyzed in the MaxQuant environment (24), version 1.3.0.5. MS/MS
spectra were searched using the Andromeda search engine (25)
against the decoy UniProt-mouse database (59,345 entries) supple-
mented with 262 frequently observed contaminants such as human
keratins, bovine serum proteins, and proteases and containing for-
ward and reverse sequences. Precursor mass and fragment mass
were searched with initial mass tolerances of 6 ppm and 0.5 Da,
respectively, in the LTQ-Orbitrap runs, and 6 ppm and 20 ppm in the
Q Exactive runs. The search included variable modifications of me-
thionine oxidation and N-terminal acetylation and a fixed modification
of carbamidomethyl cysteine. The maximum number of missed cleav-
ages was set at two, and the minimum peptide length was set at six
amino acids. The false discovery rate was set at 0.01 for peptide and
protein identifications. When identified peptides were all shared be-
tween two proteins, they were combined and reported as one protein
group. In order to determine SILAC ratios, a minimum of two ratio
counts between SILAC peptide pairs was required. We used the
summed peptide intensities of the individual unlabeled proteins as a
proxy for protein abundance, and then divided by the overall unla-
beled intensity of each sample to calculate its relative abundance. For
the analysis of protein intensities in the various tissues, only the light
intensities were considered (non-SILAC tissue). The ratio values were
used for relative comparison across the different tissues. Ratio values
were normalized assuming that the most likely scenario is the one that
minimizes overall changes in protein abundance between heavy and
light samples.

Bioinformatic Analysis—All bioinformatic analysis was performed
with Perseus software. Categorical annotation was supplied by
Gene Ontology biological process, molecular function, and cellular
component; the TRANSFAC database; the KEGG pathway data-
base; and the Pfam-protein family database. All annotation except
for TRANSFAC was extracted from the UniProt database.

For bioinformatic analysis, the data were filtered so as to have at
least 14 out of 28 samples with valid ratio values (at least two ratio
counts per individual value). Next, the data were imputed to fill
missing data points by creating a Gaussian distribution of random
numbers with a standard deviation of 30% relative to the standard
deviation of the measured values and one standard deviation down-
shift of the mean to simulate the distribution of low signal values.

Hierarchical clustering of proteins was performed in Perseus on
logarithmized intensities after z-score normalization of the data, using
Euclidean distances. Principal component analysis was done on loga-
rithmized values without z-scoring. The implementation in Perseus
utilizes singular value decomposition in order to find the principal
components. The “annotation matrix algorithm” filters protein anno-
tation terms by testing the difference among means for any protein
annotation from the overall ratio distribution for all cells of the expres-
sion matrix. The statistical test is a two-dimensional non-parametric
Mann–Whitney test, with a Benjamini–Hochberg multiple hypothesis
testing correction that was controlled by using a false discovery rate
threshold of 0.05. All categories that survived the test for at least one
of the samples were converted to one row of the annotation matrix.
The values for each row are the differences between groups of the
Mann–Whitney test mentioned above.

Fisher’s exact test was performed with a false discovery rate value
of 0.02.

Tissue Processing—Tissue samples were fixed in formalin for 24 h
at room temperature, followed by standard histoprocessing proce-
dures. After fixation, tissues were dehydrated and paraffin impreg-
nated using a vacuum infiltrating processor (Ventana Medical Sys-
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tems, Tuscon, AZ). The processed tissues were embedded in paraffin,
and 4-�m sections were cut and placed on glass slides (SuperFrost
Plus, Menzel Gläser, Braunschweig, Germany) (26).

Immunohistochemistry—Tissue slides were deparaffinized in xy-
lene, hydrated in graded series of alcohol, and blocked for endoge-
nous peroxidase (0.3% H2O2 in 95% alcohol for 5 min). Heat-induced
epitope retrieval was performed in citrate buffer (pH 6) (Thermo Fisher
Scientific) for 4 min at 125 °C using a pressure boiler (decloaking
chamber, Biocare Medical, Walnut Creek, CA). Automated immuno-
histochemical analysis (IHC) was performed using an Autostainer
480S instrument (Thermo Fisher Scientific). Primary antibodies and
the associated horseradish peroxidase polymer visualization sys-
tem (Thermo Fisher Scientific) were incubated for 30 min each at
room temperature. Slides were developed in diaminobenzidine
(Thermo Fisher Scientific) as chromogen. Counterstaining was per-
formed in an Autostainer XL (Leica Biosystems, Wetzlar, Germany)
using Mayers hematoxylin (Histolab, Gothenburg, Sweden), and the
slides were coverslipped in an automated glass coverslipper (CV5030,
Leica Biosystems) using PERTEX (Histolab). Slides were digitalized at
20� magnification using a ScanScope XT (Aperio Technologies, Vista,
CA).

RESULTS

Proteomic Analysis of Mouse Tissues—To measure a quan-
titative map of the mouse proteome, we prepared protein
extracts from 27 distinct adult tissues and from embryonic
tissue of C57BL/6 mice (Fig. 1A). For accurate quantification,
we took advantage of the SILAC mouse (18) and used it as a
spike-in standard (Figs. 1B and 1C). We combined equal
protein amounts of each of these 28 tissues from a SILAC
mouse and mixed this standard with an equal amount of each
of the light tissues. We digested each tissue proteome with
endoprotease LysC and separated the peptides into 12 frac-
tions according to their isoelectric point (see “Experimental
Procedures”). Each of the fractions was analyzed via LC-
MS/MS on a linear ion trap-Orbitrap mass spectrometer for a
total of 336 runs. Analysis of the data with MaxQuant software
(24) and the Andromeda search engine (25) identified 7,349
proteins at a false discovery rate of 1% and quantified 6,974
of them (supplemental Table S1). These data represent a
catalogue of expressed mouse proteins and their profiles
across the mouse tissues. Importantly, these proteomes re-
flect the proteins expressed in the indicated organ, and not
necessarily in individual cell types in the tissue. Nevertheless,
they highlight tissue-specific proteins that have high ratios
toward the standard in one or only a few related tissues and
can determine proteins with constant expression levels in the
tissues. For example, Myelin A1 is highly expressed in the five
brain tissues included in this study, but not in any other tissue
(Fig. 1D). Pancreatic � amylase protein is expressed mainly in
the pancreas, but lower levels are also seen in the ileum and
duodenum. Presumably, this protein was secreted from the
pancreas to the lumen of the digestive tract rather than being
expressed locally. Arginase-1, an enzyme of the urea cycle, is
almost exclusively expressed in the liver. In contrast, protea-
somal subunits are co-regulated and expressed at similar
levels in all tissues (Fig. 1E).

Our analysis consisted of one replicate of pooled pro-
teomes from three mice. To examine the variability between
mice, we performed non-pooled triplicate analyses of two
tissues, liver and lung, which were all quantified relative to the
super-SILAC standard. We identified a total of 4,906 proteins,
and more than 2,800 proteins in each tissue (supplemental
Table S1). We found very high correlation between the repli-
cates of the same tissue (0.84–0.95; Fig. 2). These results
show that our pooling approach in combination with super-
SILAC-based quantification reveals highly reproducible quan-
titative data about thousands of proteins.

To corroborate mass spectrometric results with an inde-
pendent method, we performed IHC of mouse liver, kidney,
spleen, small intestine, brain cortex, and skeletal muscle.
Because IHC is not a quantitative method, we selected pro-
teins that showed the highest tissue specificity with over
30-fold higher expression in the liver, brain, intestine, or kid-
ney relative to the other tissues. We selected antibodies from
the Protein Atlas antibody resource (27), which has antibodies
against more than 12,000 proteins. From a list of 69 tissue-
specific proteins determined via proteomics, we found anti-
bodies to 38 proteins and selected 18 antibodies (targeting
nine proteins) for which the epitope region had high sequence
similarity between mouse and human. We further added an-
tibodies to two proteasome subunits that, according to the
mass spectrometric data, are similarly expressed in the vari-
ous tissues. Antibodies against 7 out of the 11 proteins re-
acted positively with the mouse proteins and were compared
with the MS results. In agreement with the MS data (Fig. 1),
the two proteasome subunits PSMA1 and -2 were highly
expressed in all the tissues examined (Fig. 3; supplemental
Fig. S1). IHC verified the liver specificity of Arginase 1 and of
glycogen synthase 2 and the intestine specificity of Cant1
(Fig. 3). According to the MS data, Amacr is highly expressed
in the kidney and the liver; in the IHC data, it stained mainly in
the kidney, and only very low signal was seen in the liver.
Possibly the high intensity in the MS resulted from the higher
homogeneity of expression in the liver, as compared with
stronger, but more scattered, expression in the kidney. PAK1
had the highest expression in the neuronal tissues and a
medium expression in the intestine according to the MS data.
The IHC staining identified high expression levels in the brain
cortex and in the small intestine but was negative in the
muscle and in the spleen. The discrepancy related to the
expression in the intestine is probably related to the qualita-
tive nature of IHC, which could not detect the more subtle
differences in protein expression. Thus, except for small dif-
ferences, the comparison of the proteomic data to IHC stain-
ing confirmed the MS results using completely independent
methodology. Furthermore, our examples highlight how IHC
addresses the internal morphology in the tissue, for instance,
when the various cell types in the tissue have different ex-
pression levels.
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FIG. 1. Proteomic analysis of mouse tissues. A, 28 tissues were isolated from C57BL/6 mice. B, the same tissues were isolated from SILAC
mice and combined to create a SILAC mix that served as a spike-in standard. This SILAC reference was mixed with each of the “light” tissues
prior to combined protein digestion with Lys-C. Peptides were separated into 12 fractions with an OffGel fractionator and analyzed via
LC-MS/MS on the LTQ-Orbitrap. C, peptides from each tissue were quantified relative to the SILAC standard, as illustrated by peptides in the
muscle and in the cerebellum that are accurately quantified relative to the same heavy standard. D, the data can serve as a catalogue of
expressed mouse proteins across the tissues, as shown by the tissue distribution of three proteins with highly specific expression. E, three
proteasomal subunits are similarly expressed in all tissues.
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The MS analysis identified 3,000 to 5,000 proteins in indi-
vidual tissues (supplemental Fig. S2A). There was high over-
lap of the identified proteins between the various tissues, with
1,972 proteins identified in all of them and only 650 proteins
that were detected in only one (supplemental Figs. S2B and
S2C). The large differences in the numbers of identified pro-
teins are partially because of the finite dynamic range of the
MS analysis. A few highly abundant proteins in particular
tissues can interfere with the identification of some of the
lower abundance proteins, thereby reducing the overall num-
ber of identifications. To illustrate this, we plotted the contri-
bution of the 100 most abundant proteins to the total protein
mass of each tissue, according to the estimated individual
protein intensities (the light intensities of the non-labeled tis-
sues) (Fig. 4A). For the three muscle samples—skeletal mus-
cle, diaphragm, and heart muscle—these 100 proteins
contributed 85%, 74%, and 68% of the protein mass, respec-
tively. In contrast, the 100 most abundant proteins constituted
only 35% to 40% of the kidney cortex and the intestine parts.
Plotting the accumulation of protein mass shows that in skel-
etal muscle the most abundant protein, parvalbumin alpha,
already contributes 10% of the total protein mass, and only 10
proteins account for more than half of it (Fig. 4B). In contrast,
reaching this percentage requires hundreds of proteins in
other tissues. These very high-abundance proteins in the
muscle presumably contribute to the relatively low number of
identified proteins.

“Top-100 Proteome” Discriminates between Tissues—Ex-
amination of the 100 most abundant proteins in each tissue,
their “top-100 proteome,” revealed a high degree of special-
ization. Combining the top-100 proteomes yielded a list of 640
proteins (supplemental Table S2). This group of proteins in-
cluded metabolic enzymes, cytoskeletal proteins, ribosomal
proteins, and histones. The protein list also included albumin
and globins, which presumably originate from residual blood
in several highly vascularized tissues. However, these few
proteins do not affect the overall proteome profiles. Despite
the very high abundance of the top-100 proteins, none of
them retained constant expression levels across tissues. In-
stead, all exhibited fold changes of at least 2.5 between the
highest and lowest expressing tissues, and moreover, the
SILAC ratios of 53% of them changed by more than 100-fold.
Principal component analysis of the expression values of
these highly abundant proteins readily discriminated between
the tissues (Fig. 4C). In this analysis, the brain tissues clearly
segregated from the others; muscle tissues were also dis-
crete, whereas the intestine regions were associated with

FIG. 2. Reproducibility of proteomic data. Comparison of tripli-
cate analysis of lung and liver tissues shows high correlation between
replicates. A, heat map of the Pearson correlations of ratios relative to
super-SILAC. B, C, scatter plots comparing replicate lung (B) and liver
(C) samples. Color code represents density as indicated in the bar at
the bottom.
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each other. This principal component analysis pattern was
highly similar to that based on the complete dataset (Fig. 4D),
showing that the most highly abundant proteins can be de-
terminants of unique tissue characteristics. These abundant
proteins have the highest ratios toward the other tissues and
are drivers of the segregation between tissues. One implica-
tion from these findings is that many of the tissue-specific
functions require high expression levels of the specialized
proteins.

Co-regulation of Molecular Complexes—We and others
have previously reported that there is tight regulation of pro-
tein levels for members of stable protein complexes (28–31).
In agreement with these observations, our data indicate that
the components of large molecular complexes are regulated
in a concerted manner across the mouse tissues. For the core
proteasome, all subunits had very similar ratios toward the
internal SILAC standard in all tissues (Fig. 5A). The spliceo-
some subunits were also co-regulated, but with a higher
spread of the ratios of the components, partially because of
the large number and diversity of components annotated as
“spliceosomal” in databases (Fig. 5B). The mean levels of
spliceosomal proteins markedly changed between the various
samples, with the embryonic tissue expressing the highest
levels; similarly high levels in the thymus, spleen, uterus, and

ovary; and the lowest levels in the muscle tissues. Ribosome
levels varied dramatically between the tissues, with �50-fold
more ribosomes in the pancreas than in the cerebellum (Fig.
5C). It has been known for decades that the pancreas has
high levels of ribosomes (32, 33), and this is readily explained
by the high translation rates that are necessary in order to
support the secretory activity of this organ. Thus our data
provide an indication of the translational load of each tissue.
Last, the respiratory chain complexes showed similar patterns
of co-regulation of their components (Fig. 5D). The brown fat
tissue had the highest levels of these complexes, followed by
heart muscle and diaphragm. These results are explained by
the high energetic demands of these tissues—the brown fat
for its thermogenic activity, and the muscle for contractile
activity.

Unsupervised Clustering of Tissue Proteomes—The quan-
titative nature of our data enabled us to investigate associa-
tions between proteins and tissues. Hierarchical clustering of
the proteomic data recapitulated the similarities between re-
lated tissues (Fig. 6A). For example, the five brain regions
tightly clustered together, as did the three muscle tissues, the
various intestine regions, and kidney cortex and medulla.
Interestingly, quantitative proteomics also linked anatomically
distinct tissues that have related functions. For example, the

FIG. 3. Images showing protein ex-
pression profiles based on five anti-
bodies, IHC, and bright field micros-
copy. Protein expression is shown in
brown, and counterstaining in blue. All
antibodies were obtained from the Hu-
man Protein Atlas project. A, the anti-
body HPA008188 staining PSMA2
shows general, moderate to strong cy-
toplasmic staining in all tissues. B, the
antibody HPA024006 staining ARG1
shows cytoplasmic and nuclear staining
of hepatocytes in liver. The remaining
tissues were negative. C, the antibody
HPA039482 staining GYS2 shows mod-
erate to strong cytoplasmic staining of
hepatocytes in liver and myocytes in
skeletal muscle. A weaker luminal stain-
ing was observed in small intestine, and
the remaining tissues were negative.
D, the antibody HPA019639 staining
CANT1 shows a general cytoplasmic
staining of all tissues, with the strongest
staining being of small intestine. E, the
antibody HPA003565 staining PAK1
shows moderate to strong cytoplasmic
staining of neuropil, glandular cells in
small intestine, and a subset of the
lymphoid cells in spleen.
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pancreas and salivary gland co-clustered. These exocrine
glands share the physiological requirement of high protein
translation rates for protein secretion. Indeed, both of these
tissues expressed high levels of proteins involved in the trans-
lation machinery, including ribosomes, as well as proteins
from the endoplasmic reticulum and Golgi apparatus. The
analysis placed embryonic tissue, which is known to have
multiple unique functions and proteins, farthest from all other
tissues.

The correlation between the tissue-specific proteins (those
predominantly expressed in that tissue) and the physiological
functions was statistically analyzed for enrichment of gene
ontologies, pathways, and protein families. Fisher’s exact test

of the protein cluster of the five brain regions highlighted
“synapse,” “neuron projection,” and “neurotransmitter trans-
port” as the most significant categories (Fig. 6B). In the eye
cluster, “structural constituent of eye lens,” “visual percep-
tion,” and “beta/gamma crystalline” had the highest signifi-
cance. The most prominent liver cluster was enriched for
“oxidoreductase activity,” “cytochrome p450,” “organic acid
metabolic process,” and peroxisomes, also conforming to key
liver functions in metabolism and detoxification (Fig. 6B).
These results demonstrate that our proteomic approach
clearly captured the essential physiological activities of each
tissue and the proteins responsible for them in an unbiased
manner. Thus the distinct clusters of proteins that were highly

FIG. 4. Protein abundance in the mouse tissues—the “top-100 proteome.” A, relative abundance of the 100 most abundant proteins in
each tissue. Abundance calculation was based on protein intensity relative to the overall intensity of the “light” tissue. B, accumulation of
protein mass in kidney cortex, midbrain, and muscle. These tissues represent the extremes and middle values from A. Proteins are
rank-ordered according to their intensity. This shows that in muscle, only 10 proteins are responsible for over 50% of tissue mass. C, principal
component analysis of the mouse tissues based on the top-100 proteome enables discrimination of the brain and muscle tissues and
association of the intestine regions. D, principal component analysis based on the complete dataset shows the same tissue discrimination as
the top-100 proteome.
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expressed in one tissue or several related tissues can serve as
a resource for the identification of novel tissue-specific func-
tions of known proteins, and for proposing functions of un-
known ones.

Global Analysis of Tissue-specific Annotations—After we
analyzed the expression profiles of all quantified proteins

across the tissues, we investigated the distribution of protein
annotations themselves, such as protein functions, pro-
cesses, and pathways. Specifically, we examined gene ontol-
ogies, KEGG pathways, TRANSFAC-transcription factor
targets, and Pfam-protein families. Such an overview can
potentially uncover the tissue specificity of each annotation

FIG. 5. Co-regulation of molecular complexes in the mouse tissues. The graphs indicate the ratios of the subunits of the proteasome (A),
spliceosome (B), ribosome (C), and respiratory chain complex (D) relative to the internal standard in each of the tissues. The subunits of the
complexes are co-regulated with a few outliers in each complex, but the overall level of the complex varies between them.
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category and can further reveal the co-regulation of several
such annotations. We developed a bioinformatics tool that
examines the enrichment of categories in each of the tissues
and then creates an annotation matrix of categories versus
tissues (see “Experimental Procedures”; supplemental Table
S3). Unsupervised two-way hierarchical clustering of this an-
notation and tissue matrix resulted in a similar grouping of the
tissues (supplemental Fig. S3). This again connected func-
tionally related tissues, such as the brain tissues, muscles,
and intestines; however, this time it was based on the quan-
titative distribution of the annotations, rather than individual
proteins. In contrast to clustering based on proteins, here the
liver was the most distant tissue, and the embryonic tissue
was clustered near the lung, thymus, and spleen. The liver has
a unique physiological function in metabolism and detoxifica-
tion. The annotation matrix uncovered the liver-specific ex-
pression of proteins involved in amino acid biosynthesis and

co-clustered them with targets of the liver-specific transcrip-
tion factor HNF1 as annotated in the TRANSFAC database. In
addition, the annotation matrix identified metabolic pathways
that are shared between the liver and unrelated tissues. As an
example, the liver and kidney tissues (medulla and cortex) did
not co-cluster, but there was a group of annotations that were
shared between them. These included vitamin biosynthesis,
nucleotide biosynthesis, detoxification processes, and per-
oxisomes, all of which are necessary for proper function of
these organs. Likewise, the liver shared fatty acid metabolism
with the adipose tissues kidney and muscle tissues. In a
similar manner, the lung and the kidney tissues, which are
dominated by epithelial cells, shared cell–cell junction pro-
teins, which were co-clustered with the protein family of
FERM-domain-containing proteins.

The annotation-based approach enabled examination of
the correlations between the annotations themselves, poten-

FIG. 6. Unsupervised clustering of mouse tissue proteomes. A, hierarchical clustering of proteins and tissues shows that embryonic
tissue is separated from the other tissues and functionally related tissues are co-clustered. B, profile plots show the normalized ratios
(z-scored ratios toward the super-SILAC standard) of the brain protein cluster, the eye cluster, and the liver cluster (purple, green, and
orange bars in A, respectively). Lines (indicating individual proteins) are colored according to the density of proteins with those ratios.
Fisher’s exact test (false discovery rate � 0.02) for enrichment analysis of protein annotations in each cluster highlights the tissue-specific
annotations.
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tially adding another dimension to our understanding of the
biological system and its regulation. We were particularly
interested in links between transcription factors and biological
processes that were changing in a tissue-specific manner. We
used the TRANSFAC database of transcription factor targets
and looked for co-clustering with other annotations in a tis-
sue-specific manner (Fig. 7A). This identified targets of the
steroidogenic factor SF1 in a cluster of the adrenal gland that

were co-clustered with the biological processes of hormone
biosynthesis and catecholamine biosynthesis, validating our
approach. The muscle tissues and the eye were regulated by a
large number of transcription factors, including MyoD, MEF2A,
TEF1, and TEF5. These transcription factors were co-clustered
with myofibril assembly, troponin, and sarcoplasmic reticulum.
Regulation of the eye was additionally associated with Pax6
targets and was co-clustered with “apoptosis involved in mor-

FIG. 7. Association of transcription factors and biological processes. We created an annotation matrix to globally look at the tissue
distribution of annotations (supplemental Fig. S2). A, co-clustering of transcription factor targets from the TRANFAC database with protein
families (Pfam) and gene ontology annotations: BP (biological processes), MF (molecular functions), and CC (cellular compartments).
Tissue-specific associations are shown for the adrenal gland, muscle tissues, eye, and liver. B, association of transcription factor targets based
on ChIP-Seq analysis highlights the tissue specificity of E2F, Zfx, and Myc with AAA proteins and ribosome biosynthesis.
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phogenesis” and with the “alpha-crystallin” category. Similarly,
the targets of the liver-specific transcription factor HNF1 clus-
tered with “histidine catabolic process,” “carbon nitrogen lyase
activity,” and “ammonia lyase activity.”

The analysis based on the TRANSFAC database high-
lighted well-annotated transcription factors and linked them
to their known tissue-specific functions via the quantitative
proteomics data. Next we expanded this analysis to transcrip-
tion factors that were not yet known to be associated with
specific tissues. We used the transcription factor binding site
annotation in Ensembl, which includes ChIP-seq data of 15
factors (CTCF, c-Myc, E2F1, Esrrb, Klf4, Nanog, Oct4, Stat3,
Smad1, Sox2, Suz12, Tcfcp2l1, Zfx, n-Myc, and p300) (34).
We linked these genomic loci to genes encoding proteins in
our dataset using increasing window lengths around each
transcription start site. After performing annotation matrix
analysis as described above, we selected the smallest statis-
tically significant window to define the protein annotation
category (typically 500 bp). The resulting annotation matrix
revealed new links between known transcription factors, bio-
logical processes, and tissue specificity. The ChIP-Seq ex-
periments of the 15 factors were performed in several cell
types, including mouse embryonic stem cells. Reflecting this,
our data identified significant enrichment of four of them in the
embryonic tissue. E2F1 and Zfx clustered with the AAA pro-
tein family of ATPases (Fig. 7B). Inspecting this protein family
in our data, we found multiple proteins involved in DNA rep-
lication that were highly expressed in the embryonic tissue
relative to the others. These included the replication factor C
complex proteins, Trp13, Nvl, and Atad2. A nearby cluster,
with high expression levels in the embryonic tissue as well as
in the salivary gland and the pancreas, was enriched for
n-Myc and c-Myc. These transcription factors were co-clus-
tered with ribosome synthesis categories. Recent work has
shown the importance of Myc in this process, in particular
with regard to its role in oncogenesis (35). Our analysis ex-
pands this relationship to non-disease tissue and suggests a
key role for Myc-regulated ribosome biogenesis in embryonic
tissue and in other tissues that require high protein translation
rates.

Next we moved from a global view of the tissues to a
focused comparison of white and brown adipose tissues in
order to identify their functional similarities and differences
from a proteomic basis. Both tissues specialize in fat storage,
and their differentiation is transcriptionally controlled by
PPAR� and C/EBP (36), but only the brown adipose tissue has
high fatty acid catabolism that enables its thermogenic prop-
erties (36). Plotting the annotation terms of two tissues against
each other distinguishes among processes that are high in
both, low in both, or specific to one tissue or the other (Fig.
8A). The TRANSFAC annotations of the major known regula-
tors of lipid storage, PPAR� and C/EBP� and -�, were high in
both tissues (Fig. 8B). In the “low-low” region of the plot we
found various annotations that were clearly not associated

with adipose function—for instance, actin binding, targets of
Pax6, the regulator of eye development mentioned above,
and PTF1, a pancreatic transcription factor. Our data did not
show a distinct population of annotations that were specific
for white fat, but there was a large population of brown-fat-
specific annotations. These were related to the respiratory
chain, reflecting the main functional difference between the
tissues. Thus proteomic analysis can capture the main func-
tional differences between tissues and can therefore be used
as a valuable source of information on tissue specificities.

Finally, we examined the correlation of the proteomic data
to publically available mRNA expression data. Comparing our
proteome data to a widely used microarray expression profile
(1), we found low Spearman correlation coefficients of 0.2 to
0.3. However, correlation to recent RNA-sequencing-based
expression profiles (37) was much higher at about 0.5 to 0.6
(supplemental Fig. S4), which is similar to values for cell lines
obtained using high-resolution MS (4, 5). As the correlation of
the RNA-seq data to the microarray data was also 0.5, the low
correlation of microarray to our proteomics data likely reflects
technical limitations of early microarray studies. As expected,
much lower correlations were found between RNA-seq and
the proteome of different and unrelated tissues (0.1–0.3). The
good but not complete agreement between the RNA-seq and
the proteomics data independently validates both studies
because of the complete independence of the mRNA and
protein analyses, while highlighting the utility of separate pro-
teome measurements.

DISCUSSION

We performed a deep and quantitative proteome analysis of
27 adult mouse tissues, as well as embryonic tissue, using the
SILAC mouse as a common reference. We identified a total of
7,349 proteins and 3,000 to 5,000 proteins in each tissue.
These numbers of identifications per sample are similar to
those obtained in previous studies that included multiple tis-
sues (10, 11). However, our data represent by far the largest
accurately quantified multi-tissue proteome. One of the main
challenges in tissue analysis is the high abundance of extra-
cellular matrix proteins that limit the dynamic range of the
analysis. Furthermore, we found that tissues often have large
quantities of non-protein contaminants (such as glycogen in
the liver) that might interfere with appropriate peptide sepa-
ration. As a result, tissue analyses result in a lower number of
protein identifications. Therefore, our initial mouse proteome
expression study also highlights the need for even more tech-
nological advances in shotgun proteomics.

Nevertheless, the broad scale of the analysis combined
with SILAC-based quantification captured key protein deter-
minants of tissue identity. Replicate analysis and comparison
of the MS data to IHC and mRNA data further strengthens it
with regard to the overall accuracy and reproducibility. At the
same time, the correlation of 0.5 to 0.6 that we found between
the mRNA and the protein levels emphasizes the need to
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FIG. 8. Protein annotation in brown
and white fat tissues. A, schematic
graph showing the different zones of the
annotation scatter plot. The indicated ar-
eas distinguish the annotations that are
relevant to both tissues (high-high), the
ones that are low in both tissues (low-
low), and the ones that are specific to
only one of the tissues. B, comparison of
annotations between brown and white
adipose tissues indicates the prominent
role of the transcription factors PPAR�
and C/EBP in both tissues, and of met-
abolic activity specifically in the brown
fat tissue.
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study proteins and not solely the transcript levels. For thou-
sands of proteins, we have provided expression profiles
across the 28 tissues examined that can be used by the
scientific community to allocate specific proteins of interest to
tissues. The complete dataset has been deposited in the
MaxQB database, which provides a user-friendly interface for
detecting the levels of proteins of interest between tissues
and the relative expression within each tissue (38). Such
knowledge can assist in the prediction and interpretation of
tissue-specific phenotypes of knock-out mice or suggest
which non-diseased tissues might be affected by treatment
aimed at specific proteins.

Interestingly, we found that tissue specificity is evident
already in the most abundant proteins. This rather surprising
result implies that the characteristic tissue functions are often
the most dominant ones at the proteome level, highlighting
the degree of specialization of differentiated tissues. These
large differences in the high-abundance proteins do not imply
a large number of strictly tissue-specific proteins. This is in
agreement with a previous study on cell lines (3) and a previ-
ous tissue-based transcriptome study (2), which also found a
very small proportion of genes expressed exclusively by one
cell or tissue. Unlike the tissue proteome results reported
here, the previous cell line data indicated high concordance at
both qualitative and quantitative levels of gene expression.
This discrepancy can be attributed to the nature of cancer cell
lines, which are non-differentiated, highly proliferative, and
adapted to cell culture conditions. Thus, the marked differ-
ences between the studies emphasize the large extent of
proteome remodeling upon tissue differentiation, something
we had also observed before by comparing the proteome of a
cancer cell line to a primary cell (39).

In this work we have developed a framework for connecting
protein expression patterns to protein annotations, which
then points to the functions of the tissue. We combined the
unbiased proteomic approach with unsupervised bioinfor-
matic analysis, recapitulating numerous known tissue func-
tions and regulators of tissue differentiation in remarkable
detail. In addition, our data provide a source of multiple novel
tissue-specific proteins and, conversely, associate proteins
with unknown functions with protein annotations. For exam-
ple, we uncovered the proteomic imprint of known and novel
transcriptional regulators of tissue specificity. Most of these
transcription factors were involved in muscle and embryonic
tissues. In the muscle, this reflects the uniqueness of the
function of this tissue, including its fibrillary structure and
contractile activity. Embryonic tissue was strongly associated
with targets of E2F, Zfx, and Myc, which are involved in cell
cycle progression and protein translation. Co-clustering of Zfx
and E2F suggests a novel functional association of these two
transcription factors related to cell cycle progression and
embryonic development. Beyond these mechanisms of tran-
scriptional regulation, our proteomic data highlighted the dif-
ferential involvement of other modes of regulation of protein

expression in the different tissues. Elevated levels of ribo-
somes in the pancreas and salivary gland underscore the high
significance of protein translation in these tissues. Similarly,
the strong expression of spliceosomes in the embryonic tis-
sue points to their importance in the regulation of embryonic
development. In contrast, the relatively constant proteasome
amounts might suggest that proteasomal degradation is in-
fluenced not so much by the amount of the complex compo-
nents, but rather by specific regulation via processes such as
protein ubiquitination. Alternatively, and in agreement with
previous analyses (5), these constant levels point to the re-
duced significance of protein degradation mechanisms in the
regulation of protein levels relative to protein translation. Last,
constant proteasome levels might imply that these are very
tightly controlled and that deregulation of these levels would
be detrimental to cells and tissues.

In conclusion, our initial quantitative proteomic map of a
mammal provides a useful resource for the community and
connects protein expression, protein function, and tissue or-
ganization in a novel manner.
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