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Predicting Physical Interactions between

Protein Complexes*s

Trevor Clancy1§, Einar Andreas Radlandf||, Stale Nygard**, and Eivind Hovig}{tt

Protein complexes enact most biochemical functions in
the cell. Dynamic interactions between protein complexes
are frequent in many cellular processes. As they are often
of a transient nature, they may be difficult to detect using
current genome-wide screens. Here, we describe a
method to computationally predict physical interactions
between protein complexes, applied to both humans and
yeast. We integrated manually curated protein complexes
and physical protein interaction networks, and we de-
signed a statistical method to identify pairs of protein
complexes where the number of protein interactions be-
tween a complex pair is due to an actual physical inter-
action between the complexes. An evaluation against
manually curated physical complex-complex interactions
in yeast revealed that 50% of these interactions could be
predicted in this manner. A community network analysis
of the highest scoring pairs revealed a biologically sensi-
ble organization of physical complex-complex interac-
tions in the cell. Such analyses of proteomes may serve as
a guide to the discovery of novel functional cellular
relationships. Molecular & Cellular Proteomics 12:
10.1074/mcp.0112.019828, 1723-1734, 2013.

Protein complexes are central to nearly all biochemical
processes in the cell (1). In physiologically relevant states,
their protein members assemble with varying degrees of sta-
bility, over time and under different cellular conditions, to
carry out specific cellular functions (1). Although it is a dy-
namic and tightly regulated process, there is much evidence
to support the notion that protein complex assembly results in
discrete signaling macromolecules (2). According to the mod-
ular organization of molecular networks of the cell (3), protein
complexes cooperate in functional networks through dynamic
physical interactions with other macromolecules, including
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other protein complexes (4-6). These physical interactions
between pairs of protein complexes may form the backbone
of cellular processes (7), such as the recruitment of com-
plexes by other complexes to sites of genome reorganization
or in signaling networks. In this study, we attempted to predict
these physical interactions between all pairs of known protein
complexes, using the manually curated protein complex da-
tabases in CORUM and CYC2008 for humans and yeast,
respectively.

The physical protein interactions that may occur between
pairs of complexes have been reported to be more transient,
compared with the combination of both permanent and tran-
sient interactions that occur within complexes (8). Indeed, the
very stability of protein interactions within a protein complex
lies between the two extremes of either transient or perma-
nent states (9). Consequently, the experimental identification
in a genome-wide manner of the physical interactions be-
tween pairs of complexes is very difficult. This challenge has
recently been addressed (7, 10) by experiments where the
weak interactions were preserved during affinity purifications,
followed by inference of the less stable interactions of pro-
teins with the core proteins within the complex. Guided by a
computational method to predict the list of protein members
in the complexes (10), this allowed a screen of putative inter-
complex relationships from human cell lines (7). This adds to
the many landmark developments in recent years to charac-
terize protein complexes in a genome-wide manner (7, 11-
13). However, in these experiments it is not always easy to
infer accurately what constitutes the protein members of a
protein complex. Because of various experimental limitations
(14) and the dynamic nature of complex assembly in the cell
(15), the protein members of the complexes must be pre-
dicted from thousands of purification measurements (10-12,
16). As a result, there are surprisingly large differences in the
protein complexes inferred in these studies, depending on the
algorithm used (17, 18). Hence, the inference of protein com-
plexes from genome-wide screens (11, 12) is likely to contain
significant noise from false-positives resulting from method-
ological uncertainty (9). This noise would in turn cause ambi-
guity when attempting to predict, genome-wide, interactions
that may occur between protein complexes. One solution to
this problem, as applied in this study, is the use of compre-
hensive databases of the so-called “gold standard” community
definitions of protein complexes (19-22). In these resources,
critical reading of the scientific literature by trained experts leads
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to definitions of the lists of protein members that are experi-
mentally verified to form complexes. Each of these manually
curated protein complexes are assigned functional annotations
and a unique identifier. It is our assumption that this approach
will allow for a more accurate resolution of the physical interac-
tions between protein complexes.

Based on this reasoning, we utilized all protein complex
pairs from 1216 human protein complexes in CORUM (21)
and 471 in the yeast CYC2008 databases (22, 23), and we
attempted to predict physical interactions between them.

To this end, we integrated only binary physical protein
interactions that were experimentally verified and supported
by Medline references, from the iReflndex database (24, 25),
and we developed a statistical method that compared the
number of observed physical protein interactions between
pairs of protein complexes versus the number of protein in-
teractions expected to be present in pairs of randomized
protein complexes. The highest scoring predicted pairs
formed a network that was analyzed to identify communities
of physically interacting protein complexes. Such higher order
perspectives of cellular proteomes may aid discovery of novel
functional relationships and lead to an improved understand-
ing of cellular behavior.

One recent study utilized manually curated protein com-
plexes-complex interactions in yeast (23) as part of a machine
learning strategy to identify complex-complex interactions.
However, they added to the training data complex pairs en-
riched with protein interactions under the assumption that
these were likely to contain complex-complex interactions but
without a clear statistical argument to assess the reliability of
these. Our aim has been to provide a more rigorous statistical
approach applied to yeast and human, in which the main
confounding factors, protein degrees and protein similarities
within the complexes, have been taken into account.

We used only the manually curated yeast complex-complex
interactions from Ref. 23 as the reference set to evaluate our
method after verifying with the authors that the manual cura-
tion had not been guided by enrichment in the protein net-
work. Of these interactions, we predicted half at a 10% false
discovery rate. Thus, although improvements in data as well
as methods are still required for a more complete prediction of
complex-complex interactions, a fair portion of these interac-
tions can be reliably predicted now by using our method.

MATERIALS AND METHODS

Sources of the Physical Protein Interaction Networks—The binary
physical protein interactions for both humans and yeast were down-
loaded from the on-line iRefWeb site (25). There, protein interactions
are sourced from 10 integrated protein interaction databases. The
protein interactions, their annotations, and their identifiers are inte-
grated in this resource using the iReflndex method (24). Briefly, this
integration method maps protein identifications across the 10 data-
bases, enabling systematic backtracking to establish the nonredun-
dant identity of the interaction partners. A strict filtering process for
each protein interaction was applied whereby we selected only phys-
ical binary protein interactions from the iRefWeb that had all of the

following criteria: (a) experimentally verified; (b) within the same or-
ganism; (c) at least one supporting publication in Medline, and (d)
physically binding protein interactions. The final protein interaction
network used and the network used after exclusion of the intra-
complex protein interactions can be found in supplemental Tables 7
and 8, for humans and yeast, respectively. The high confidence
protein networks for humans were sourced from the databases
HIPPIE (26) and HitPredict (27).

Sources of Manually Curated Protein Complexes—The human
complexes were downloaded from the CORUM database (see sup-
plemental Tables 7 and 8, for humans and yeast, respectively) (21).
This is the largest repository of mammalian manually curated protein
complexes. Only protein complexes that have been isolated and char-
acterized by reliable experimental evidence are included. In CORUM, a
protein complex has to be isolated as one molecule and must not be
a construct derived from several experiments. In addition, artificial
constructs of subcomplexes are not taken into account. Because of
information from high throughput experiments containing a significant
fraction of false-positive results, this source of data is excluded in
their curation process. Medline references supporting a protein com-
plex are mainly from articles judged to have placed importance on the
characterization of protein complexes.

The manually curated yeast complexes were from a study that
characterized both predicted and curated complexes (23), from which
we only used their 87 manually curated complexes. These curated
complexes were merged with the comprehensive CYC2008 database
of curated yeast complexes (7). This is a catalogue is of 408 manually
curated yeast complexes derived from small scale studies. It is re-
ported to be a resource that represents a complete and up-to-date
description of the stable yeast interactome (22).

Statistical Method and the Random Protein Complex Model—The
complex-complex degree between a pair of complexes was defined
as the number of interactions between pairs of proteins pairs, one
from each complex, and was computed for all pairs of protein com-
plexes. We then computed the expected complex-complex degree,
A, under a random model where we permuted the protein member-
ship of the complexes but preserve the complex sizes (number of
protein members of a complex) and protein degrees (number of
physical protein interactions for the protein). Because large com-
plexes containing high degree proteins are more likely to correspond
to protein interactions by chance alone, leading to an over-prediction
for such complexes and under-prediction for small complexes or
complexes with low degree proteins, we considered controlling for
size and degree as important.

We binned the proteins based on their degree in the protein net-
work, and we permuted the proteins within each bin. To ensure
sufficient numbers of proteins within each bin to allow for sufficient
permutation of the proteins, some protein degrees were binned to-
gether as follows: degrees 0-39 were separate bins, from 40 to 59
bins were intervals of length 2 (i.e. 40-41 and 42-43), from 60 to 79
of length 5, from 80 to 119 of length 10, from 120 to 199 of length 20,
from 200 to 299 of length 50, and degree 300 and above were put into
bins of length 100.

The probability that two random proteins of degree D, and D,
interact is shown in Equation 1,

N(D;, D,) Eq. 1)
N(D;)N(D,) '
and if D, and D, are different, see Equation 2,
2N(D, D) .
iftDy=D,=D (Eq. 2

ND)N(D) — 1)
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where N(D) is the number of proteins of degree D (or in the D-bin when
the degree is 40 or above) in the network, and N(D,,D,) is the number
of edges between a degree D, and a degree D, (or their respective
bins). The expected number of random interactions was then com-
puted by summing this probability over all pairs of proteins for each
complex pair.

The deviance residual, R(x;A), of the actual complex-complex de-
gree, x, relative to a Poisson distribution with the expected number of
random interactions, A, was then computed as shown in Equation 3,

R(x; A) = sig n(x = M)+ \D(x; A),

where

D(x; )\):2-<X-|n§—x+)\) (Eq. 3)
Ideally, the residuals R(x;A) should behave approximately like a stand-
ard normal distribution. Of course, because y takes integer values,
this will be a very rough approximation for low values, but for the
larger values of y and large ratios of x/A it may still be expected to give
fair p values. One might argue that a binomial or hypergeometric
model could have been more appropriate than a Poisson assumption,
but as long as x is much less than the degree of each of the com-
plexes, there was likely to be very little difference, although if x is
close to the complex degrees (which are upper bounds on ) the
Poisson assumption may be somewhat conservative in this approach.

Overdispersion Correction for Shared Protein Interaction Partners
within Complexes—The Poisson assumption assumes that different
interactions occur independently. However, if multiple proteins within
a complex are known a priori to have the same interaction partners,
these interactions are not independent. We corrected for this source
of overdispersion by dividing the deviance D(x;A) by a factor ¢, as
shown in Equation 4,

d1 d2
b=1+++~ (Eq. 4)
where d; and d, represent the numbers of shared interaction partners
for pairs of proteins summed over all pairs of protein in each of the
two complexes, and D is the degree of the complex. The deviance
residual is corrected by dividing by /.

There are several motivations for adding the term d/D to the over-
dispersion for each of the complexes (although they do not constitute
full statistical models with conservation of protein degrees). For ex-
ample, assume that for a given complex, there are exactly m, proteins
in the protein interaction network (and not in the complex itself) that
interact with exactly k proteins within the complex. Randomizing the
proteins outside the complex, each of the interaction partners has
likelihood, p, of belonging to the other complex. Thus, for X the
random number of complex-complex interactions, the expected value
and variance becomes Equation 5,

E[X]= 2 pmik = pD

and

d
VarlX]= > p(1 — p)mk> =V, (1 + 5) (Eq. 5)

k=1

where D = 3, _,m,K is the degree of the complex, and V, = p(1 — p)D
is the variance, without taking shared interaction partners into ac-
count. In our actual analyses, we have used V, ~ E(X) as an approx-
imation, which is appropriate if p is small.

The justification for applying the correction factor was evident from
our observation that the variance of the deviance residuals, R(x;\),
was higher than expected and increased with increasing overdisper-
sion estimates. After correction for overdispersion, these problems
were less apparent.

Community Detection from Predicted Complex-Complex Net-
works—To detect network communities of physical complex-com-
plex interactions, we applied the algorithm outlined by Ahn et al. (28).
This was applied to a network where each complex-complex predic-
tion was reliable for either of the rules (<10% FDR," with either ICE
or BSO rules). In brief, the method uses the Jaccard coefficient for
assigning similarity between two complex-complex interactions, e;,
and e, which share a protein complex, node k, as shown in
Equation 6,

n+@®Onn+Ql

S(e/mejk) = |

n+@Oun+ () (Eq. 6)

where n + (j) refers to the first-order node neighborhood of node i.
After assigning pairwise similarities to all of the links in the complex-
complex network, the links are hierarchically clustered, using single
linkage. The resulting dendrogram was cut at a point that maximizes
the density of links within the clusters, normalizing against the max-
imum and minimum numbers of links possible in each cluster, known
as the partition density (fully described in Ahn et al. (28)). Hierarchical
clustering was carried out on the resulting 90 communities, using the
Jaccard coefficient as a measure of the numbers of nodes shared by
pairs of communities to find the meta-communities.

RESULTS

Framework to Predict Physical Complex-Complex Interac-
tions—A flow chart of the method to predict physical interac-
tions between protein complexes is illustrated in Fig. 1. In this
method, for each pair of manually curated protein complexes,
we counted the number of physical protein interactions be-
tween their proteins, which we refer to as the complex-com-
plex degree. We interpret high complex-complex degree as
an indication that there is an interaction between the com-
plexes. High complex-complex degree indicates that there
are several protein pairs that are able to form a bond between
the two complexes, and thus the complexes are more likely to
interact. An alternative motivation is that many of the physical
protein interactions may be detected because of physical
complex-complex interactions in which they partake. Al-
though these two motivations are somewhat complementary,
they imply different treatment of physically interacting protein
pairs that may form intra-complex interactions, i.e. interact
within a complex. There are usually multiple interactions
within each complex, and unless appropriately handled these
could induce spurious predictions of interactions between
complexes.

The BSO rule dictated that two proteins could not simulta-
neously interact within a complex and between complexes.
Thus, if two complexes contain a common protein, we as-
sumed that any protein interacting with this is more likely to
do so within the same complex and thus should not be used

" The abbreviations used are: FDR, false discovery rate; BSO,
binding site occupancy rule; ICE, intra-complex exclusion rule.
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C. Results
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Fic. 1. Flowchart. A, data sources. We downloaded validated networks of physical protein interactions from iReflndex and curated lists of
protein complexes from Corum (human) and CYC2008 (yeast). Data from humans and yeast were analyzed separately but using the same
techniques. B, analysis was performed for each pair of complexes. First, we computed the complex-complex degree for each pair of
complexes and then identified all interactions in the protein network between proteins in the two complexes. The complex-complex degree
refers to the number of such interactions. We applied two different rules to exclude proteins and interactions that could induce spurious
predictions. In the binding site occupancy rule (BSO), proteins found in both complexes (e.g. protein D in the example) were excluded, and only
protein interactions between the remaining interactions were counted (leaving four interactions in the example). The motivation was that an
interaction involving shared proteins, e.g. the C-D interaction in the example, is more likely to form within the complex than between the
complexes. The intra-complex exclusion rule (/CE), in addition to excluding shared proteins, also excluded interactions between proteins if
these coexist in some other complex (e.g. the B-F interaction in the example, leaving three interactions to be counted). The motivation for the
ICE rule is to enrich the interaction network with inter-complex interactions. Separate analyses were performed using the BSO and ICE rules.
Next, we carried out randomization of the protein complexes. To assess if a complex pair had a complex-complex degree higher than expected
by chance alone, we computed the expected complex-complex degree for randomized protein complexes. The randomization consisted of
replacing each protein in the two complexes with random proteins of the same (or similar) degrees. In addition to computing the expected
complex-complex degree, we estimated the standard deviation taking into account similarities between proteins within complexes, i.e. proteins
sharing many of the same interaction partners. p values were then computed based on an over-dispersed Poisson distribution, and false
discovery rates were computed from these. C, results of the method. For prediction in both human and yeast, and for both the BSO and the
ICE rules, we generated a list of predicted complex-complex interactions with FDR = <10%. In yeast, we compared our predictions to a list
of 67 curated complex-complex interactions.
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For both humans and yeast, analyses were performed once
with the BSO rule and once with the ICE rule. If two com-

as evidence of a physical interaction between the complexes.
Effectively, for any pair of complexes, this corresponds to

excluding any proteins they have in common prior to counting
the complex-complex degree.

The ICE rule was stricter in that, prior to all analyses, it
excluded from the physical protein interaction network all
interactions between proteins found within the same com-
plex. By removing interactions that are likely to be intra-
complex interactions, the remaining physical protein interac-
tion network should be enriched with interactions formed
between complexes.

plexes share a set of proteins, either rule prevents interactions
involving these common proteins from influencing the predic-
tions. However, in particular for human, we found a number of
cases where, from a moderate number of proteins, several
different complexes could form with varying sets of overlap-
ping proteins. When this is the case, many of the protein-
protein interactions excluded by the ICE rule remained when
applying only the BSO rule, and the two methods differed
significantly.
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Predicted Physical Complex-Complex Interactions—In vivo,
a physical complex-complex interaction may require no more
than a single physical protein interaction between the two
complexes. However, to reliably predict physical complex-
complex interactions, we had to distinguish them from the
thousands of arbitrary pairs of complexes, most of which do
not interact. We did this by identifying pairs of complexes with
complex-complex degrees higher than what would be ex-
pected from pairs of randomized protein complexes.

To determine the expected complex-complex degree, we
considered randomized complexes in which the proteins of
the physical protein interaction network had been permuted,
i.e. each protein was replaced by a randomly selected protein
of the same degree (number of interaction partners in the
physical protein interaction network) as the original one. For
high degree proteins, we needed to bin together multiple
degrees to get a sufficient number of proteins in each bin.
Proteins found in both complexes were excluded as both
exclusion rules prevent these from contributing to the com-
plex-complex degree. From the random model, we computed
the expected complex-complex degree for each pair of com-
plexes, and we compared the actual complex-complex de-
gree to the expected degree. As a measure of the difference,
we used the deviance residual relative to a Poisson distribu-
tion. (see “Materials and Methods ” for further details.)

Ideally, we should be able to analyze the deviance residuals
as if they were the standard normally distributed, i.e. expected
value 0 and variance 1. The majority of protein complex pairs
had no physical protein interactions between them, and there-
fore should abide by this assumption. However, we observed
that many complexes contained proteins that were similar in
the sense that they had many of the same interaction partners
in the physical protein interaction network. One reason for this
is co-occurrence of homologous proteins in the same protein
complex (see supplemental Fig. S1, A and B, for effects of
merging paralogous proteins with 50% identity) (29). How-
ever, we found this similarity to be far more widespread than
could be explained by homology, and so we needed to adjust
for this in a more general manner. Although co-occurrence of
similar proteins does not affect the expected complex-com-
plex degree, it does cause overdispersion, i.e. an increase in
the variance of the distribution. We corrected the deviance
residual scores by dividing the scores by an overdispersion
correction factor estimated for each complex pair from the
number of shared physical interaction partners between pro-
teins in each of the two complexes (see under “Materials and
Methods”). The deviance residual scores adjusted for over-
dispersion are illustrated for human physical complex-com-
plex interactions in Fig. 2A for the BSO rule (the plots for both
humans and yeast, applied using both rules, are illustrated in
supplemental Fig. S1, A-G). From the deviance residuals cor-
rected for overdispersion, we computed p values, and from
these the FDR. With a threshold of 10% FDR, we predicted
375 and 428 physical complex-complex interactions for the

ICE rule in humans and yeast, respectively. For the BSO rule,
there were 1216 and 188 predictions for humans and yeast,
respectively. Summary statistics of the source data and pre-
dictions are presented in supplemental Table 1. The predicted
physical complex-complex interactions for both rules and
organisms at 10% FDR can be seen in supplemental Table 2.

Complex-complex pairs with high deviance residuals, indi-
cating higher complex-complex degrees than expected by
chance, were found evenly across high and low degree com-
plexes and were not particularly prone to coincide with high
degree complexes or complexes with high degree proteins
(Fig. 2A, supplemental Fig. S2, A-C for complex pairs cate-
gorized by total complex degree, and supplemental Fig. S2,
D-G for average protein degree within complexes). However,
as expected, for pairs of low degree complexes, protein in-
teractions were rare, and the power to detect interactions
between such complexes was low.

To further assess the validity of our analyses, we performed
identical analyses on complexes where the proteins were
actually randomized. This confirmed the assumption that ran-
dom complex-complex degrees were approximately Poisson
distributed and that the use of deviance residuals was appro-
priate, although slightly conservative, but it indicated that the
correction for overdispersion made statistical tests very con-
servative (supplemental Figs. S3 and S4). However, as co-
occurrence of similar proteins is far more common in actual
complexes than in randomized complexes, the correction for
overdispersion cannot be ignored.

The difference between the ICE rule and the BSO rule was
largely due to two effects. In both organisms, the ICE rule
removed a large number of interactions from the physical
protein interaction network on the grounds that they may be
intra-complex interactions, and we therefore lacked evidence
that they interact between complexes. This reduced the pro-
tein degrees, i.e. number of interaction partners in the protein
interaction network. The expected complex-complex degree
for random complexes is based on the protein degrees, and
lower protein degrees result in lowering the expected com-
plex-complex degree for randomized complexes, making
complex-complex interactions mediated by nonintra-complex
interactions more easily detected. In yeast, the reduction in
the expected complex-complex degree when applying the
ICE rule was the dominant effect, resulting in higher sensitivity
and more predicted complex-complex interactions under the
ICE rule than under the BSO rule.

Conversely, in humans we saw several large clusters of
partially overlapping complexes, and not merely complexes
sharing a common set of core proteins, but groups of com-
plexes where different pairs of complexes share different sets
of genes. Under the BSO rule, a substantial portion of the
predicted physical complex-complex interactions in humans
were from such clusters, where the protein interactions that
induced the predictions were intra-complex interactions from
within other complexes in the same cluster. Although the
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A Expected complex-complex degree versus deviance residuals (human)
Deviance residuals per complex-complex pair
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Fic. 2. A, plot of deviance residuals (y axes) against the expected complex-complex degree (x axes) for all complex-complex pairs in humans

with the BSO rule applied. Each data point represents a complex-complex pair, with overlapping points spread out to better illustrate the
number of cases. The complex-complex predictions having an FDR of <10% are indicated above the gray line. Each data point is classified
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complexes within such clusters appeared to be related, we
have reservations against using these intra-complex interac-
tions to infer physical interactions between the complexes.
Because the ICE rule excluded all intra-complex interac-
tions, it eliminated this problem, possibly making the ICE
rule more reliable. The ICE rule, however, also appeared
less powerful in humans (see supplemental Table 1), and it
possibly missed many biologically relevant physical com-
plex-complex interactions.

Evaluation of the Physical Complex-Complex Interaction
Predictions—We evaluated the method on a set of 87 manu-
ally curated yeast complexes, used in machine learning by
Wang et al. (23). These interactions were sent to us by request
from the authors, along with a confirmation that they were not
selected for having an enriched number of protein interactions
between them. There were 59 such interactions between 81
complexes used in that study (23). These 81 complexes were
a subset of 87 initial complexes forming the 67 curated inter-
actions, after the authors applied filtering to merge them into
their interaction network (written communication from the au-
thors). There was an additional 66 interactions added to the
training data by Wang et al. (23), selected based on enrich-
ment of protein interactions between their members. This
enrichment is a property similar to our computation of the
complex-complex degree. To avoid circular reasoning, these
enriched interactions were therefore not used in our evalua-
tion. The 87 manually curated protein complexes that form
these 67 reference interactions were combined with the 408
manually curated yeast complexes from CYC2008 (22). When
applying the method using the ICE rule on this set, we pre-
dicted 33 of the 67 reference interactions at a 10% FDR
threshold, and with the BSO rule we predicted 26 (22 of the
reference physical complex-complex interactions were com-
mon to both rules, see supplemental Table 3 and Fig. 2B).

These 67 expertly curated interactions were the only gold
standard resources available in yeast, and there are no exist-
ing catalogues of curated physical complex-complex interac-
tions in humans that could be used for similar evaluation
purposes. However, for protein complex pairs to interact, they
must be simultaneously expressed in the same cellular spe-
cific conditions. We therefore assessed the validity of the
predicted physical complex-complex interactions from a hu-
man tissue-specific perspective. We applied the method on
tissue-specific expression patterns from 79 human tissues
(30) and their inferred tissue-specific protein-protein interac-
tion networks (31) in the context of the human curated protein
complexes in CORUM. For ~26% of the 1216 human com-
plexes, we could not identify any tissue in which at least 80%
of its member proteins were expressed. Of the initial 375

predicted complex-complex interactions (ICE rule, FDR
<10%), this left 228 in which each complex had at least one
identified tissue. Of these, 201 (88%) were co-expressed in
the same tissue. On average, the predicted interactions were
found co-expressed in 2.5 tissues, with none co-expressed in
more than 80% of the tissues. Co-expression is a requirement
for physical interactions to occur between protein complexes
and may be seen as validation of the predictions. However,
this should be considered with caution because interacting
proteins need to be co-expressed, and the co-expression of
complexes may in part be the results of selecting pairs of
complexes containing several co-expressed proteins.

The predictions described here were generated using pro-
tein interactions subject to strict filtering (see “Materials and
Methods”). To evaluate the reliability of these sources, we
assessed the performance of the method against two different
databases of high confidence protein interactions (26, 27). As
these high confidence protein networks were smaller, the
power of the method decreased as could be expected, re-
sulting in fewer predictions (see supplemental Table 4). How-
ever, in a comparison of the results using these high confi-
dence interactions against random subsets of protein
interactions of similar size, it appeared that there was no
substantial difference in the performance (see supplemental
Table 4).

Biologically Relevant Human Physical Complex-Complex
Interactions—Inspection of the predictions from the more
stringent ICE rule in the human physical complex-complex
network identified biologically relevant relationships. For ex-
ample, the highest scores revealed archetypal cooperation
between mediator complexes interacting with RNA polymer-
ase, linking co-activators to the general transcriptional ma-
chinery (supplemental Table 2). In particular, the highest scor-
ing interaction in humans points to a direct relationship
between a BRCA1-bound RNA-polymerase Il complex (32)
and a mediator complex (33), possibly allowing for the sub-
sequent transcriptional activation of the RNA polymerase II.

To examine the biological relevance from a more global
perspective, we tested whether the overlapping Functional
Catalogue (FunCat) annotations (34), manually assigned to
each CORUM (21) complex, were more frequently higher
among predicted pairs. We scored the complex pairs for
overlapping FunCat annotations using the Jaccard Index (in-
tersection divided by union). The resulting density plot is
illustrated in Fig. 3A. The proportion of complex pairs having
a Jaccard index of >0.5 was 33% for the ICE rule and 37 % for
the BSO rule, compared with 5% for all human complex pairs.
This global perspective suggests that the predicted complex-

and color-coded according to the total complex degree (sum of the protein network degrees over all members of the complex). It is apparent
that an intrinsic high protein network degree of a complex does not systematically bias the predictions. B shows the distribution of the expected
random complex-complex degree against the deviance residuals in yeast (BSO rule). The data points in this plot are color-coded according
to their actual complex-complex degree. The yeast manually curated interactions from (23), are visible as larger circles.
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A Overlapping functional classifications between complex pairs (human)

o —

All complex—complex pairs
—— Predicted pairs (ICE rule)
—— Predicted pairs (BSO rule)

=z
(23
5 -
o
~ 4
o 4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Jaccard index
B Example predicted physical complex-complex interaction (human)

endosome trafficking machinery

Complex 1

Complex 2

Fic. 3. Biological relevance of the human physical complex-complex interactions. A, global illustration of biological relevance. The figure
shows the density plot of the overlapping FunCat annotations among all complex pairs (dashed line), ICE rule predictions (red line), and the
BSO rule predictions (green line). Here, we used the FunCat (34) annotations assigned manually to each individual complex from the CORUM
database (21). The overlapping annotations for the complex pairs were scored using the Jaccard index, whereby the parent classification for
each FunCat term is counted only once for each complex. B, specific example of a high scoring prediction of a physical complex-complex
interaction. Complex 1 is a clathrin-mediated endosome complex (37), important for the internalization of receptors during cell signaling. The
prediction is suggestive of a regulatory interaction with Complex 2, which is responsible for regulating the switching off of endosome trafficking

during mitosis (36).

complex pairs are more functionally related compared with
the entire set of complex pairs in humans.

To investigate the biological relevance of a specific exam-
ple, we selected an interaction predicted between two com-
plexes of fairly common sizes and degrees and were not
directly related, i.e. no protein member in common. The re-
sulting example is one suggestive of the endosome regulatory
machinery interacting with a trafficking complex during cell
division (see Fig. 3B). Mitosis is a period of cell division where
endocytosis is switched off (35) and the RLIP76-RalBP1 com-
plex (Complex 2 in Fig. 3B) is related to an absence of endo-
cytosis during mitosis (36). It has been proposed that the
RLIP76-RalBP1 complex serves as a scaffold that brings to-

gether networks of endosome trafficking proteins to regulate
endocytosis during the transition to mitosis during the cell
cycle (36). The predicted complex interaction partner of the
RLIP76-RalBP1 complex, Eps15-Stonin2 (Complex 1 in Fig.
3B), coordinates the internalization by clathrin-mediated en-
docytosis of receptors during signaling (37). Thus suggesting
that this predicted physical complex-complex interaction
might have a regulatory role on endosome mediated signaling
during the cell cycle, and therefore a candidate for experi-
mental validation.

Higher Order Organization of Physical Complex-Complex
Interactions—To examine the cellular organization of the pre-
dictions from a global network perspective, we defined a
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Higher order organization of physical complex-complex interactions (human)
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physical complex-complex interaction network in humans,
where the interactions are significant with either rule (<10%
FDR). Either rule was chosen because although the ICE rule is
more reliable due to strict exclusion of protein interactions
occurring at least once within any protein complex, in reality,
however, many protein interactions occur within and between
complexes in different dynamic contexts. The resulting net-
work consisted of 1365 predicted interactions between 540
complexes (see Fig. 4A). We then applied an edge-based
community detection algorithm (28) to identify functional
groups of physical complex-complex interactions that corre-
spond to various cellular processes (see “Materials and Meth-
ods”). This community network analysis revealed a sensible
biological organization of the cellular proteome into relevant
physically interacting protein complex communities. There
were in total 96 distinct communities identified (Fig. 4B),
where there were clear functional relationships between the
complexes within each community, and many distinct com-
munities could be detected. Examples of such were commu-
nities of physically interacting transcription factor complexes,
cell-cell adhesion complexes, cell signaling, and genome or-
ganization machinery, etc. (see supplemental Table 5).

This community detection of physical complex-complex
interactions allowed for a further so-called “multiscale” explo-
ration of cellular organization by studying the similarity be-
tween the communities. The pairwise similarity between each
community (number of shared complexes per community)
was scored using the Jaccard Coefficient and was subse-
quently hierarchically clustered (see “Materials and Meth-
ods”). Such clustering between the 96 different communities
produced 15 meta-communities (for the ICE rule alone it was
38 and 9, respectively). The functional class of these meta-
communities was tested using the nonredundant list of pro-
teins from each meta-community in a gene ontology (GO)
analysis (gene set enrichment tests). GO functional classifica-
tion of the complex-complex communities is illustrated in the
dendrogram in Fig. 4B, and a subnetwork of three meta-
communities is illustrated in Fig. 4C (complete lists, including
that of the ICE rule alone, in supplemental Table 5). These
groupings demonstrate an organized structure of the pro-
teome across multiple scales, where the communities of
physically interacting protein complexes correspond to a
functional organization of the cell.

DISCUSSION

Capturing a higher order perspective of the complex mo-
lecular networks in a cell has been demonstrated previously to
offer valuable new insights (38). It has also been suggested
that cells could be interpreted as higher order networks of

protein molecular machines, transforming and passing infor-
mation to each other (5). In turn, it has been proposed that
these discrete, yet dynamic, protein complexes form the
backbone of cell regulation (2). One genome-wide study es-
timated there to be ~3000 protein complexes in humans and
~800 in yeast (11) involved in all processes of cellular life.
Here, we took 1216 and 471 manually curated protein com-
plexes in humans (21) and yeast (22, 23), respectively, and we
attempted to predict the physical interactions between these
molecular entities.

In the absence of having the three-dimensional structures
for all the protein complexes, it was unknown which binding
sites are available for interaction with proteins in other assem-
bled complexes. The ICE and BSO protein exclusion rules
were devised to consider the availability of binding sites be-
tween potential physical complex-complex interactions.
These exclusion rules had a strong impact on predictions,
despite excluding only a small percentage of the physical
protein interactions, as they primarily took effect under rather
specific conditions. The differences in the behavior of both
rules within and between humans and yeast can be attributed
to the observation of protein complex members overlapping
much less in the yeast protein complexes than in human. The
subsequent permutation and statistical analysis resulted in
predictions of physically interacting complex-complex net-
works that corresponded to a sensible functional organization
of the cell, as observed by the network community analysis

Evaluating the predictions in yeast, we found that approx-
imately half of the physical complex-complex interactions
could be predicted in this manner. However, the method is
limited to detecting protein complex pairs that have multiple
possible protein interactions between them. In addition, many
physically interacting complex pairs were possibly not de-
tected, which is likely due to the current incompleteness of
the manually curated protein complex and protein interaction
databases.

It was the goal of this study to predict physical interactions
between two protein complexes, in an attempt to identify
complex pairs that coordinate with each other to execute a
cellular process. These interactions are likely to be transient
and dependent on certain biochemical conditions at a specific
time and cellular location. However, some of the predictions
may not be transient physical interactions between two com-
plexes, perhaps pointing to the assembly of larger stable
complexes. The incomplete annotation in the curated data-
bases means the larger assembly would not yet be consid-
ered as a unique entity and therefore results in an incorrect
classification by the prediction method. These false-positives

complex-complex interactions (meta-communities). Each color represents a meta-community, and each line represents one of the 96
communities of physical complex-complex interactions. C, subnetwork of the human physical complex-complex interaction network where
three meta-communities are colored accordingly. Using Gene Ontology (process tree) analysis, the genes mapped in these meta-communities

depict examples of three distinct biological processes.
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can be identified and resolved in future iterations of the
method and improved by increased manual curation and
more accurate experimental detection of intact protein
complexes.

Another class of inter-complex relationships has been com-
prehensively mapped in so-called “complexome” studies,
which have constructed networks of protein complexes, con-
taining shared protein members (39-43). In those primarily
yeast studies, two experimentally detected or predicted com-
plexes are connected if they shared one or more protein
members. These studies have revealed key insights into the
pattern of protein complex organization in the cell. They can
be considered different from the approach taken in this study,
which focused on predicting physical interactions between
protein complexes by identifying the complex pairs that are
significantly enriched for physical protein interactions be-
tween them. With respect to this goal, one yeast study by
Wang et al. (23) used a machine learning approach to detect
signatures of complex-complex interactions. That particular
study used a combination of manually curated complex-com-
plex interactions and complex pairs enriched with reliable
protein interactions between their members to train their
model. However, these “enriched” complex pairs were used
to augment their training data and, unlike this study, were not
a result of statistical predictions under a complete random-
ized model (see under “Materials and Methods”). The cross-
validation reported in that study was carried out using a
merged reference set of enriched and curated complex-com-
plex interactions. This is not directly comparable with our
results, as the enriched interactions are selected based on our
computation of the complex-complex degree. To avoid circu-
lar reasoning in our evaluation, we used only the manually
curated complex pairs from the study by Wang et al. (23).
When our method was applied to their enriched and predicted
complex pairs, some major differences were clearly due to
factors that we correct for, in particular the protein degree of
the complexes (see supplemental Table 6). Another yeast
study used logistic regression trained on nine different exper-
imental and computational parameters of interacting and non-
interacting protein pairs to infer interactions between stable
protein interactions within complexes and transient interac-
tions between complexes (8). There also has been a study in
yeast to predict transient interactions between predicted pro-
tein complexes, based on similarity of protein members from
pulldown assays (44). To the best of our knowledge, there
were no previous attempts to predict physical complex-com-
plex interactions restricted to manually curated protein com-
plexes in human.

As more complete proteomes with characterized protein
complexes (7) and their three-dimensional structures are fast
approaching (45), the in silico mapping of the physically inter-
acting relationships between protein complexes will be of
greater importance. Genome-wide technologies are now
evolving to capture these physical complex-complex interac-

tions (45). The method described in this study could be used
as a complementary tool in proteomics experiments, guiding
the discovery of higher order interactions between protein
complexes. For example, the application of this method, in-
tegrated with clustering algorithms that attempt to identify
protein complexes from large protein networks (46), may
guide the identification of higher order relationships in pro-
teomics data (the SAS code is freely available by request from
the authors). The prediction of complex-complex interactions
will complement experimental advances and overall contrib-
ute to building complete molecular maps of the cell.
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