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Abstract: Geometrical analysis of the photoreceptor mosaic can reveal 
subclinical ocular pathologies. In this paper, we describe a fully automatic 
algorithm to identify and segment photoreceptors in adaptive optics 
ophthalmoscope images of the photoreceptor mosaic. This method is an 
extension of our previously described closed contour segmentation 
framework based on graph theory and dynamic programming (GTDP). We 
validated the performance of the proposed algorithm by comparing it to the 
state-of-the-art technique on a large data set consisting of over 200,000 
cones and posted the results online. We found that the GTDP method 
achieved a higher detection rate, decreasing the cone miss rate by over a 
factor of five. 
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1. Introduction 

Diagnosis, prognosis, and treatment of many ocular and neurodegenerative diseases require 
visualization of microscopic structures in the eye. Integration of adaptive optics (AO) into 
ocular imaging systems has made the visualization of living human photoreceptors possible 
[1–14]. More specifically, the AO scanning light ophthalmoscope (AOSLO) [2] has been a 
key instrument for analyzing the photoreceptor mosaic and revealing subclinical ocular 
pathologies missed by other modern ophthalmic imaging modalities [15]. Studies have been 
conducted on the photoreceptor mosaic to gather normative data on photoreceptor distribution 
[16,17], density [18–20], spacing [8,21,22], directionality [23], and temporal changes [24,25]. 
Characterization of irregular mosaics in the presence of various retinal diseases such as cone-
rod dystrophy has also been achieved [22,26–38]. 

To generate quantitative metrics of the photoreceptor mosaic, identification of individual 
photoreceptors is often a required step. Since manual identification is extremely time-
consuming, many groups have utilized some form of automation when studying the 
photoreceptor mosaic [9,12,14,17,18,27]. Cone identification algorithms have also been 
developed and validated for accuracy [39–43]; the Garrioch et al. 2012 algorithm [44], for 
example, is a modified version of the Li & Roorda 2007 algorithm [39] and was thoroughly 
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validated for repeatability on a large cone mosaic data set. Even so, manual correction was 
still necessary to identify missed photoreceptors [20,34]. 

In this work, we propose the use of graph theory and dynamic programming (GTDP), a 
framework we previously developed to segment layered [45–47] and closed contour structures 
[48], to both identify and segment cone photoreceptors in AO ophthalmoscopy images 
(Section 2.3). We then validate our algorithm’s performance for cone identification (Section 
3.2) and evaluate its reproducibility in cone density and spacing estimation (Section 3.3). 
Finally, the proposed algorithm is extended to segment an image containing both rod and cone 
photoreceptors (Section 3.4). 

2. Methods 

The methods for image acquisition, photoreceptor segmentation, and result validation are 
discussed in the following sections. Section 2.1 explains the image capture and pre-processing 
steps, while Section 2.2 describes the gold standard (target) for cone identification. Section 
2.3 describes our method for cone segmentation, and Section 2.4 outlines the method for 
validation. Lastly, Section 2.5 introduces the preliminary rod-cone segmentation algorithm. 

2.1 Image data set 

We validated our algorithm on 840 images (150 × 150 pixels) from the Garrioch et al. study 
[44], where the methods for image acquisition and pre-processing are described in detail. To 
summarize, the right eye of 21 subjects (25.9 ± 6.5 years in age, 1 subject with deuteranopia) 
was imaged using a previously described AOSLO system [13,17] with a 775 nm super 
luminescent diode and a 0.96 × 0.96° field of view. Four locations 0.65° from the center of 
fixation (bottom left, bottom right, top left, and top right) were imaged, capturing 150 frames 
at each site. This process was repeated 10 times for each subject. Axial length measurements 
were also acquired with an IOL Master (Carl Zeiss Meditec, Dublin, CA) to determine the 
lateral resolution of the captured images. 

Following image acquisition, pre-processing steps were taken in the Garrioch et al. study 
to generate a single registered image from each 150 image sequence. To do this, first any 
sinusoidal distortions from the resonant scanner were removed from individual frames. The 
frames from each sequence were then registered to a reference frame [49], and the top 40 
frames with the highest normalized cross correlation to the reference were averaged together. 
This procedure was performed for all 21 subjects at each of the 4 locations and repeated 10 
times over, resulting in a total of 840 images in the image data set. Finally, to ensure that each 
set of 10 repeated images captured the same patch of retina, the images were aligned using 
strip registration. 

Since the image data set was used strictly for algorithm validation, we obtained a separate 
set of images to tune the algorithm. These training images were captured using the same 
imaging protocol, and patients from the test and validation data sets did not overlap. 

2.2 Gold standard for cone identification 

We defined the gold standard as the semi-automatically identified cone locations reported in 
the Garrioch et al. study, since the cone locations on all 840 images had been carefully 
reviewed and corrected by an expert grader. As described in the study, the initial cone 
coordinates were first automatically generated using the Garrioch et al. 2012 algorithm, a 
modified version of the Li & Roorda 2007 cone identification algorithm [39]. Any missed 
cones were then added manually. Automatically segmented cones were not removed or 
adjusted, as the Garrioch et al. 2012 algorithm exhibited a tendency towards false negatives 
rather than false positives. 
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2.3 GTDP cone segmentation algorithm 

We developed a customized implementation of our generalized GTDP framework for closed 
contour structures [48] to segment cone photoreceptors in AOSLO images. In brief, we used 
maxima operators to obtain pilot estimates of prominent cones. We then used the quasi-polar 
transform [48] to map the closed contour cone estimates from the Cartesian domain into 
layers in the quasi-polar domain. The layered structures were then segmented utilizing our 
classic GTDP method [45]. By applying the inverse quasi-polar transform, the segmentation 
lines were carried back into the Cartesian space. Finally, we performed additional iterations to 
find any missed cones. These steps are described in details in the following. 

We first brightened dim photoreceptors by applying Eq. (1) to the 150 × 150 pixel image 
orig
cI  (subscript c denotes the Cartesian domain), where ( , , )normalize y zX  indicates a linear 

normalization of the elements in matrix X to range from y to z. 

 )1,0)),9.0,1.0,((( orig
c

all
c normalizelognormalize II =  (1) 

The range 0.1 to 0.9 was chosen to increase the contrast between the dimmest and brightest 
pixels, as well as to avoid the log(0) and log(1) computations. The superscript all means all 
pixels were present in the image. 

We then determined pilot estimates of the cones by finding local maxima using the 
( ,4)all

cimregionalmax I  function in MATLAB, The MathWorks, Natick, MA. This resulted in 

the binary image ,all
cB  where values of 1 corresponded to pilot estimates of cones. Individual 

cones were then analyzed by order of decreasing intensity, where all
cI  and all

cB  were cropped 

about the centroid of the cone’s pilot estimate to generate the 21 × 21 pixel images cI  and 

;cB  cropping the images enabled a faster computation time, and the ten pixel buffer on all 

sides of the centroid ensured that the target cone was not cropped out of .cI  Pilot estimates 

for other cones contained within cB  were removed, and the remaining cone estimate in cB  

was refined using thresholding. The new pilot estimate consisted of connected pixels in cI  

ranging from max0 95. T  to maxT  in intensity, where maxT  was the maximum intensity in cI  that 

coincided with 1,c =B  and max950 T.  was determined empirically to avoid thresholding 

adjacent cones. 
To segment each cone, we first used our previously described quasi-polar transform [48] 

to transform cI  to qI  (q denotes the quasi-polar domain). To do this, we first transformed cI  

and cB  (Figs. 1(a) and 1(b)) into the polar domain to create pI  and pB  (Figs. 1(c) and 1(d)). 

Next, we column-wise shifted pI  until the pilot estimate in pB  was flat, resulting in the 

quasi-polar images qI  and qB  (Figs. 1(e) and 1(f)). After obtaining ,qI  we removed regions 

containing other pilot estimates and already-segmented cones from the search space, and used 
GTDP to find the shortest path across qI  with the following weight scheme: 

 

min

( ( ) , 1, 2)

( ( ) , 0, 0.1)

( , 0, 0.05) ,

LD LD
ab a b

DL DL
a b

ab

w normalize g g

normalize g g

normalize d w

= − + +

− + +
+

 (2) 

where abw  is the edge weight connecting nodes a and b, LD
ng  and DL

ng  are the vertical light-

to-dark and dark-to-light gradients [45] of the image at node n, respectively, abd  is the 

Euclidian distance from node a to b, and .00001.0min =w  The vertical light-dark gradient 
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comprised the majority of the weight, since it was the primary indicator for the boundary of 
the central cone. A smaller weight was given to the dark-light gradient to segment boundaries 
of dimmer cones adjacent to brighter cones (Fig. 1(c), left). Finally, a vertical distance penalty 
was added to discourage the segmented line from including adjacent cones. Specific values 
for weight ranges were determined empirically. 

We then transformed the shortest path from the quasi-polar domain (Fig. 1(g)) back into 
the Cartesian domain to obtain the final segmentation of the cone (Fig. 1(h)), keeping it only 
if the mean radius was greater than one pixel. This entire process was then repeated for all 
subsequent cone estimates. 

 

Fig. 1. Cone photoreceptor segmentation using the quasi-polar transform. (a) Cartesian image 
containing the cone to segment. (b) Pilot estimate of the cone in (a). (c,d) Polar transformation 
of (a) and (b), respectively. The black regions in (c) are invalid points that lie outside the image 
in the Cartesian domain. (e,f) Images (c) and (d) column-wise shifted until the pilot estimate in 
(d) was flat. (g) Segmentation of (e) using GTDP (magenta). (h) Transformation of the 
segmentation in (g) back into the Cartesian domain (magenta). 

At this stage of the algorithm, the cones identified and segmented by the GTDP method 
(Fig. 2(b), black) may be similar to those detected by previous methods, since local maxima 
were used to initialize the cone locations. To further identify any missed cones, we obtained 
pilot estimates of the cones using a second method: image deblurring using maximum 
likelihood blind deconvolution [50–52] (deconvblind function in MATLAB) with a Gaussian 
point spread function of half the mean radius of already segmented cones, followed by 
locating all regional maxima with a pixel connectivity of eight. Any pilot estimates lying 
outside already-segmented cone locations (Figs. 2(a) and 2(b), white) were segmented using 
the same quasi-polar GTDP technique, with the modification to the weighting matrix as 
shown in Eq. (3). In this weighting scheme, the vertical dark-light gradient was assigned a 
higher weight since cones detected during this section iteration were typically dimmer and 
adjacent to brighter cones. The vertical distance penalty was also removed since adjacent 
cones were already segmented and thus removed from the search region. 

 
min

( ( ) , 1, 2)

( ( ) , 1,1.5)

LD LD
ab a b

DL DL
a b

w normalize g g

normalize g g w

= − + +

− + +
 (3) 
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Fig. 2. Identification of cones missed by local maxima. (a) AOSLO image in log scale with 
missed cones shown inside the white boxes. (b) Cone photoreceptors segmented using local 
maxima initialization in black, and pilot estimates of missed cones found using deconvolution 
and local maxima are shown in white asterisks. 

2.4 Statistical validation 

We validated our GTDP algorithm by comparing its performance to the Garrioch et al. 2012 
algorithm and to the gold standard generated by the Garrioch et al. paper [44]. To perfectly 
replicate the Garrioch et al. study, all images were cropped to a 55 µm × 55 µm region about 
the image center to remove any boundary effects. 

To evaluate the performance in cone identification, we compared both fully automatic 
methods (GTDP and Garrioch et al. 2012) to the gold standard using two metrics: # of true 
positives, those detected by both the fully automatic and gold standard techniques, and # of 
false positives, those detected by the fully automatic method but not by the gold standard. A 
cone was considered to be a true positive if it was within a 1.75 µm Euclidian distance from a 
gold standard cone. This value was chosen since the mean cone spacing reported in the 
Garrioch et al. study was approximately 3.50 µm; half this value was therefore a reasonable 
estimate for the cone radius. If an automatically identified cone did not have any gold 
standard cones within the 1.75 µm distance, then it was tagged as a false positive. 
Furthermore, more than one automatically identified cone could not be matched to a single 
gold standard cone, thus yielding the following relationships: 

 
,

and

negative falsepositive trueidentified  cones  standard  gold

positive falsepositive trueidentified  cones  automatic

NNN

NNN

+=

+=
 (4) 

where negative falseN  was the number of cones detected by the gold standard but not by the fully 

automatic method. The proportion of true and false positives were then estimated with 95% 
confidence intervals (CI) across all patients and all quadrants using a generalized estimating 
equation (GEE) model with log link [53]. 

The reproducibility of each method was assessed by the comparing cone density (number 
of cones per mm2) and cone spacing (mean distance from each cone to its nearest neighbor) 
measurements output by each method at each quadrant. The variability in cone density and 
spacing measurements (characterized by the variance total )V  stemmed from two sources: 1) 

variability in measurements taken on the same subject, resulting from the method used 
(within-subject variability; variance ),withinV  and 2) variability in true values between subjects, 

resulting from biological variation between subjects (between-subjects variability; variance 
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between ).V  Thus, .betweenwithintotal VVV +=  The reproducibility was characterized using two 

components: 1) within-subject coefficient of variation (CV), and 2) intra-class (intra-subject) 
correlation coefficient (ICC). The within-subject CV was defined as the ratio of the square 
root of withinV  to the overall mean measurement, where a lower CV indicates a better the 

method. ICC was defined as the ratio of betweenV  to total ,V  thus a ratio closer to 1 indicates a 

better method. 

2.5 Preliminary GTDP rod-cone segmentation algorithm 

To illustrate the potential of this algorithm to segment images containing both rods and cones, 
we modified the cone segmentation algorithm described in Section 2.3 to segment a rod and 
cone photoreceptor image (originally 250 × 250 pixels, scaled to 578 × 578 pixels at 0.186 
µm/pixel) captured using the new generation of AOSLO systems [17,54]. In this modified 
version of the algorithm, photoreceptors were segmented with weights determined by Eq. (5), 
where ni  is the intensity of the image at node n, and nr  is the distance of node n from the top 

of the image .qI  These additional weights were included to target the location of minimum 

intensity rather than maximum gradient, and to penalize peripheral photoreceptors from being 
segmented. 

 

min

( ( ) , 1, 2)

( , 0.1, 0.2)

( , 0, 0.05)

( , 2, 2.1)

LD LD
ab a b

a b

a b

ab

w normalize g g

normalize i i

normalize r r

normalize d w

= − + +
+ +
+ +

+

 (5) 

Segmentations with radii less than 3.72 µm were considered to isolate rods, and the rest 
were re-segmented with the weighting scheme in Eq. (6) to isolate cones. The nr  distance 

penalty was removed since cones have larger radii than rods, and the LD
ng  weights were 

removed to delineate the prominent hypo-reflective region surrounding cones on AOSLO 
rather than the high gradient boundary. 

 
min

( , 0.2,1)

( , 0, 0.1)
ab a b

ab

w normalize i i

normalize d w

= + +
+

 (6) 

3. Results 

Section 3.1 discusses the segmentation results of our method, while Sections 3.2 and 3.3 show 
quantitative results comparing the performance of our method against the state-of-the-art for 
cone identification and cone density and spacing reproducibility, respectively. Finally, Section 
3.4 shows a preliminary segmentation result for an image containing both rod and cone 
photoreceptors. 

3.1 Cone segmentation result 

Figure 3(b) (top) is a representative segmentation result generated by our GTDP algorithm to 
segment cone photoreceptors in AOSLO images, and Fig. 3(c) (top) shows the centroid of 
each segmented cell. While the GTDP algorithm delineated the perceived cone boundaries, 
we used the result in Fig. 3(c) to validate our algorithm against other cone identification 
techniques. Figure 3 (bottom) shows the segmentation result for an image of lower quality. 

The entire validation data set and the corresponding GTDP, Garrioch et al. 2012, and gold 
standard segmentation results are available at 
http://www.duke.edu/~sf59/Chiu_BOE_2013_dataset.htm. The fully automated algorithm was 
coded in MATLAB (The MathWorks, Natick, MA) and had an average computation time of 
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1.56 seconds per image (150 × 150 pixels, an average of 300 cones per uncropped image) 
using 8-thread parallel processing on a laptop computer with a 64-bit operating system, Core 
i7-820QM CPU at 1.73 GHz (Intel, Mountain View, CA), 7200 rpm hard drive, and 16 GB of 
RAM. This time included the overhead required for reading and writing operations. 

 

Fig. 3. Qualitative GTDP segmentation result. Top row: (a) Higher quality AOSLO image of 
cone photoreceptors in log scale, (b) fully automatic segmentation result of (a) using GTDP for 
closed contour structures, and (c) centroid of each fully automatically segmented cone from 
(b). Bottom row: Lower quality AOSLO image (a) and its segmentation (b) and centroid (c) 
result. 

3.2 Cone identification performance 

The performance in cone identification for each of the methods is shown in Table 1. This table 
shows that after taking into consideration all correlated data, our GTDP method correctly 
detected 99.0% of the cones, compared to the Garrioch et al. 2012 method which detected 
94.5% of the gold standard cones; this difference was found to be significant (Z = 15.0, 
p<0.0001). In addition, 1.5% of the cones found by the GTDP method were not in the gold 
standard. False positive cones could not be detected by the Garrioch et al. 2012 method since 
the gold standard was based off of the Garrioch et al. 2012 algorithm (see Section 2.2). Lastly, 
the mean distance error from the true positive GTDP cones to the gold standard cones was 
0.20 ± 0.26 µm. 

Table 1. Cone Identification Performance of Fully Automatic Methods Compared to the 
Gold Standard Across All 840 Images 

Method % True Positive (95% CI)* % False positive (95% CI) 
Garrioch et al. 2012 94.5 (93.7, 95.2) –
GTDP 99.0 (98.8, 99.2) 1.5 (1.2, 1.9) 

*Statistically significant 

Figure 4 is an illustrative example of the cone identification results, where the middle row 
shows the mean cone identification performance for both automatic algorithms, while the top 
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and bottom rows show the performance approximately one standard deviation above and 
below the mean. The middle column displays the Garrioch algorithm et al. 2012 results, with 
true positives in yellow and false negatives in green. The right column shows the GTDP 
results, with true positives in magenta, false negatives in green, and false positives in blue. 
The performance (% true positive by Garrioch et al. 2012; % true positive by GTDP; % false 
positive by GTDP) for the top, middle, and bottom rows of Fig. 4 were (100; 98.4; 0), (99.1; 
94.4; 2.1), and (97.5; 90.4; 3), respectively. 

Finally, Fig. 5 takes a closer look at the results from Fig. 4(b) (right). The black box 
highlights a “false positive” cone added by the GTDP algorithm per the gold standard, 
however inspection of the original image in Fig. 5(a) indicates that a cone is indeed present at 
that location. In contrast, the white boxes in Fig. 5 highlight “false negative” cones missed by 
the algorithm per the gold standard. By inspecting Fig. 5(a), however, these locations do not 
seem to exhibit hyper reflectivity. 

 

Fig. 4. Variable performance of the fully automatic cone identification algorithms. Left 
column: AOSLO image of the cone mosaic in log scale. Middle column: Garrioch et al. 2012 
algorithm results (yellow: true positives; green: false negatives). Right column: GTDP 
algorithm results (magenta: true positives; green: false negatives; blue: false positives). Middle 
row: Typical (mean) performance by both algorithms. Top and bottom rows: Performance one 
standard deviation above and below the mean for both algorithms, respectively. 
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Fig. 5. A closer look at the performance of the GTDP algorithm. (a) AOSLO image 
corresponding to Fig. 4(b) (left), and (b) automatic GTDP segmentation result (magenta: true 
positives; green: false negatives; blue: false positives). White boxes: locations where the 
algorithm “missed” a cone, even though there appears to be no cone present. Black box: 
location where the algorithm “erroneously added” a cone, although the original image seems to 
contain an added cone not identified by the gold standard. 

3.3 Reproducibility results 

Table 2 shows the mean, ICC, and within-subject CV values for the cone density and spacing 
metrics as measured by the Garrioch, GTDP, and gold standard methods separated by image 
quadrant. The average GTDP cone density ICC of 0.989 indicates that on average, 98.9% of 
the total variability in the measurements was due to the variability between subjects, while 
only 1.1% was due to the GTDP algorithm. The average GTDP within-subject CV of 0.0146 
indicates that the error in reproducing the same measurement for the same subject was within 
1.46% of the mean. 

Table 2. Reproducibility Comparison of Cone Density and Spacing Measurements 

 Cone Density Cone Spacing 

Fixation Location 
Mean 

(cones/mm2)
ICC Within-subject 

CV
Mean 
(µm)

ICC Within-subject 
CV 

Garrioch       
Bottom left 67,207 0.979 0.0217 3.50 0.989 0.0074 
Bottom right 66,812 0.972 0.0253 3.50 0.983 0.0087 
Top left 70,928 0.950 0.0272 3.37 0.975 0.0090 
Top right 69,192 0.970 0.0273 3.39 0.984 0.0093 
Average 68,534 0.968 0.0254 3.44 0.983 0.0086 

GTDP       
Bottom left 70,796 0.993 0.0121 3.42 0.978 0.0110 
Bottom right 70,783 0.989 0.0149 3.40 0.964 0.0131 
Top left 75,485 0.988 0.0133 3.28 0.960 0.0124 
Top right 74,216 0.985 0.0181 3.29 0.957 0.0154 
Average 72,820 0.989 0.0146 3.35 0.965 0.0130 

Gold standard       
Bottom left 70,577 0.995 0.0101 3.45 0.981 0.0097 
Bottom right 70,204 0.994 0.0111 3.44 0.975 0.0106 
Top left 75,416 0.994 0.0103 3.31 0.968 0.0113 
Top right 73,914 0.995 0.0109 3.32 0.985 0.0090 
Average 72,528 0.994 0.0106 3.38 0.977 0.0101 

#186866 - $15.00 USDReceived 12 Mar 2013; revised 13 May 2013; accepted 17 May 2013; published 22 May 2013
(C) 2013 OSA 1 June 2013 | Vol. 4,  No. 6 | DOI:10.1364/BOE.4.000924 | BIOMEDICAL OPTICS EXPRESS  934



3.4 Preliminary rod and cone segmentation result 

Figure 6(a) shows an example rod and cone photoreceptor image [17,54] accompanied by the 
GTDP segmentation result in Fig. 6(b) and its associated centroids in Fig. 6(c). Figure 6(d) 
shows a histogram of the number of photoreceptors at various sizes based on the segmentation 
from Fig. 6(b), and Fig. 6(e) demonstrates a simple classification of rod and cone 
photoreceptors using a size threshold of 27.7 µm2. 

 

Fig. 6. Fully automatic identification of rods and cone photoreceptors. (a) AOSLO image of 
rods and cone photoreceptors in log scale (image taken from [54]). (b,c) Fully automatic 
segmentation (b) and identification (c) of rods and cones using GTDP for closed contour 
structures. (d) Histogram of the segmentations from (b). (e) Threshold of 27.7 µm2 used to 
classify the photoreceptors from (d) into rods (magenta) and cones (green). 

4. Discussion and conclusion 

We developed a fully automatic algorithm using graph theory and dynamic programming to 
segment cone photoreceptors in AOSLO images of the retina and validated its performance. 
We were able to achieve a higher cone detection rate, more accurate cone density and spacing 
measurements, and comparable reproducibility compared to the Garrioch et al. 2012 
algorithm. Furthermore, the segmentation-based approach enabled identification and 
classification of rods and cones within a single image. This is highly encouraging for large-
scale ophthalmic studies requiring an efficient and accurate analysis of the photoreceptor 
mosaic. 

We obtained the data set from the Garrioch et al. study [44] to validate the performance of 
our algorithm on a large untrained data set. We compared the performance of our fully 
automatic cone segmentation algorithm to the state-of-the-art technique, and found that our 
GTDP method decreased the Garrioch et al. 2012 cone miss rate by a factor of 5.5 (Table 1, 
1.0% vs. 5.5% false positives). One point five percent of the cones not identified by the gold 
standard were also found using our technique. While this implies that our algorithm falsely 
identified these cones, Fig. 5 shows that in some cases, our GTDP method was able to identify 
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cones not found by the gold standard; such observations, while not the norm, are likely due to 
the resource intensive nature of semi-automatic cone identification. 

The mean results in Table 2 indicate that the cone density and spacing metrics extracted by 
the GTDP method were more accurate on average than the Garrioch et al. 2012 algorithm, 
despite the bias where the Garrioch et al. results were used as the starting point for generating 
the gold standard. While an unbiased comparison could have been conducted, this would have 
required a fully manual identification of nearly 256,000 cones. Table 2 also shows that the 
GTDP method generated more reproducible cone density measurements (mean 0.0146 CV) 
than the other automated method (mean 0.0254 CV). To be consistent with previous 
publications, we also compared reproducibility in cone spacing, which showed that the 
Garrioch et al. 2012 method produced more reproducible results (mean 0.0086 CV) compared 
to both the GTDP method (mean 0.0130 CV) and the gold standard. This is because both the 
GTDP method as well as the gold standard detected more cones; these were typically the 
harder and more irregularly spaced cones, and thus resulted in more variable cone spacing. As 
a result, cone spacing reproducibility might not be the most reliable quantitative measure of 
performance. Nevertheless, all three methods had a very good within-subject CV, showing 
that the within-subject standard error (error due to method) ranged by only 0.74% to 2.73% 
from the mean. Furthermore, all three methods had a very good ICC, showing that 95% to 
99.5% of the total variability in the measurements was due to variability between subjects, 
while only 0.5% to 5% was due to the method. This high ICC was a result of the pre-
processing image alignment performed in the Garrioch et al. study (Section 2.1) to ensure that 
the same patch of retina was imaged. 

A notable difference and novelty of the GTDP algorithm as compared to existing en face 
cone segmentation algorithms, is its use of segmentation to identify cones. While the most 
common technique for cone identification is to locate points of maximal intensity, such a 
method only locates cone centers. In contrast, our technique delineates cone boundaries, 
resulting in added information about the size and shape of the segmented object. This 
information may be helpful for applications such as studying how the multimodal structure of 
larger cones changes with time or wavelength. However, it is of importance to note that in the 
context of AO photoreceptor imaging, cone sizes may be near the resolution limit, especially 
towards the foveal center. Furthermore, estimation of photoreceptor size depends on the 
wavelength of the imaging modality (e.g. fundus camera, SLO, OCT) and even varies over 
time based on intensity fluctuations. As a result, extracting size and shape information about 
the cones, while helpful, may not be an accurate indication of its true morphologic state. 

Another advantage of using segmentation is that it enables a higher cone detection rate. By 
keeping track of the entire area of a cone rather than only its centroid, we can look for added 
cones in regions where cones have not yet been found (Fig. 2(b)). Our technique also provides 
an advantage for isolating rods and cones within a single image (Fig. 6(e)), as we can readily 
distinguish between the two types of photoreceptors based on their segmented area in normal 
retinae. Since accurate photoreceptor classification depends on correctly segmented 
photoreceptors, however, the rods improperly segmented as cones in Fig. 6(b) resulted in 
misclassification. A more accurate and robust rod-cone segmentation algorithm moving 
forward will be essential to improving this preliminary classification result. 

A limitation of this study is its rather optimistic validation on higher quality images of 
normal retina. The AO images taken from diseased retinae, however, are often low in quality 
and plagued with diverse pathological features. This paper is the first step in introducing a 
conceptually simple yet robust framework adaptable to incorporating the mathematical and 
algorithmic innovations necessary for segmenting the more challenging real-world, clinical 
AOSLO images. Future steps include validation of our rod and cone segmentation algorithm, 
as well as extension and application of our framework to segment more complicated images 
of photoreceptors in disease states. 
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