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Human commensal bacteria do not normally cause any diseases. However, in certain pathological conditions, they exhibit a
number of curious behaviors. In HIV infection, these bacteria exhibit bidirectional relationships: whereas they cause opportu-
nistic infections based on immunological deterioration, they also augment HIV replication, in particular, viral replication from
latently infected cells, which is attributable to the effect of butyric acid produced by certain anaerobic bacteria by modifying the
state of chromatin. Here, we review recent evidence supporting the contributory role of such endogenous microbes in disrupting
HIV latency and its potential link to the clinical progression of AIDS.

We begin this minireview by discussing microbes and their
products in relation to human immunodeficiency virus

(HIV) latency. HIV attacks the immune system, the body’s de-
fense against infectious organisms or other illnesses, creating vul-
nerability to various infections. Thus, microbial coinfection con-
tributes to the course of disease progression of HIV infection and
the development of AIDS-related deaths (1–4).

A number of bacteria are normal residents in body cavities
surfaced by mucous membranes, including the oral cavity, gut,
and vagina. As they endogenously colonize such niches, they sel-
dom cause illness, except when the host’s immunity is impaired.
Recent evidence indicates that the mucosal surfaces of both the gut
and vaginal cavities are predominant sites of HIV replication (5–
7). These mucosal sites are densely populated with CD4� T cells,
the primary target of the virus (1, 6). While mucosal sites contain
as many CD4 T cells as other sites (for example, lymph nodes) or
fewer of them, they are enriched with activated CD4 T cells that
express HIV coreceptors such as CCR5 and �4�7 (8). Also, Th17
cells, a subset of CD4 T cells producing interleukin-17 (IL-17),
home to the gut and have been shown to be preferentially infected
with HIV (9, 10). The profound loss of these cells has been asso-
ciated with disease progression in both simian immunodeficiency
virus (SIV) and HIV infections (11–14). Estes et al. demonstrated
the presence of not only lipopolysaccharide but also Escherichia
coli in the colonic lamina propria and lymph nodes of chronically
infected rhesus macaques (15). In addition, Dillon et al. (16) pre-
sented evidence suggesting the preferential infection of IL-17-pro-
ducing intestinal CD T cells by HIV and the enhancement of HIV
productive infection in the presence of E. coli. Meanwhile, Ahmed
et al. reported that certain commensal bacteria that preferentially
stimulate Toll-like receptor 4 (TLR4) suppressed HIV-1 expres-
sion, whereas some with enhancing effects stimulated TLR2 (17).
These findings indicate that HIV-associated impairment of epi-
thelial barrier integrity and CD4 T cell depletion are most likely
involved in a systemic microbial translocation that may give rise to
an immune activation that could drive HIV either further or out of
latency.

As in the gut, commensal organisms thrive in the oral cavity.
Candida albicans, a polymorphic fungus that is a commensal mi-
crobe in the healthy individual, could express its pathogenic po-
tential as HIV infection progresses because of the decay of fungal

containment on the oral epithelium associated with the loss of
Th17 cells (18). We have also explored the effects of certain anaer-
obes that are part of the oral or gut flora in reactivating latent HIV,
as most of them produce butyric acid, the oldest known histone
deacetylase (HDAC) inhibitor (HDACi), under anaerobic condi-
tions. Initially, we demonstrated that the culture supernatant of
Porphyromonas gingivalis, a periodontogenic bacterium, could in-
duce the expression of quiescent HIV from latently infected T and
macrophage cell lines accompanied by the induction of a hyper-
acetylation of histones H3 and H4 (19). We found that among the
various virulence factors produced by this Gram-negative anaer-
obe, a high concentration of butyric acid in the culture superna-
tant and the augmenting effect of HIV replication were abolished
upon its removal. To confirm these observations, we attempted to
comprehensively examine the human resident butyric acid-pro-
ducing bacteria from various tissues (20). We found that bacterial
culture supernatants of P. gingivalis, Fusobacterium nucleatum,
Clostridium cochlearium, and Anaerococcus tetradius increased
histone acetylation and efficiently induced HIV gene expression
from the latent state. Interestingly, these organisms (except P. gin-
givalis) produced the largest amounts of butyric acid in culture
supernatants collected from among representative anaerobic or-
ganisms found in the oral, oral and gut, gut, and vaginal cavities,
respectively (20). Furthermore, chromatin immunoprecipitation
analysis revealed loss of HDAC1–AP-4 (transcriptional repressor
complex of the HIV-1 provirus) occupancy at the long terminal
repeat (LTR), whereas RNA polymerase II recruitment was in-
creased. These effects were correlated with the presence of elevated
levels of butyric acid and were not observed in culture superna-
tants from non-butyrate-producing bacteria. In addition,
González et al. (21) reported that extracts of P. gingivalis and F.
nucleatum enhanced HIV reactivation in monocytes/macro-
phages via TLR2 and TLR9 activation. The same group of inves-
tigators recently demonstrated that HIV reactivation in mono-
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cytes/macrophages by the oral commensal Streptococcus gordonii
is Tat dependent and that it appears to involve NF-�B activation
(22). Moreover, TLR5 stimulation could sufficiently induce reac-
tivation of latent HIV in CD4� T lymphoid cells. It was also re-
ported earlier that P. gingivalis could upregulate CCR5 expression
in oral keratinocytes, thus facilitating the transfer of infectious
HIV-1 to permissive cells such as macrophages (23). Taken to-
gether, these findings support the hypothesis that periodontal and
other commensal pathogens, such as butyrate-producing anaer-
obes, play contributory roles in the clinical progression of AIDS.

The vaginal microflora consists of different bacterial species
and some anaerobic bacteria, such as A. tetradius, Anaerococcus
vaginalis, Peptoniphilus asaccharolyticus, and Anaerococcus lacto-
lyticus, have been reported to induce HIV replication. Prior stud-
ies have shown the correlation of HIV infection with an abnormal
vaginal flora morphology and bacterial vaginosis (BV), with the
latter considered a risk factor for further acquisition of the virus
(24–27). Interestingly, these bacteria produce significant amounts
of butyric acid under anaerobic conditions. In vivo, as well as in
vitro, studies have demonstrated that BV-associated conditions
(e.g., Candida vaginitis and herpes simplex virus infection) could
also influence HIV replication and genital tract shedding (24, 28,
29). Interestingly, Spiegel et al. (30) noted the increased levels of
butyrate, succinate, acetate, and propionate and decreased lactic
acid levels in nonspecific vaginitis. Butyric acid production was
caused by Peptococcus (Anaerococcus) bacterial species. It is noted
that butyric acid, but not other short-chain fatty acids, is respon-
sible for these effects. Moreover, others have shown that genital
mycoplasmas stimulate tumor necrosis factor alpha (TNF-�) pro-
duction by a murine macrophage cell line. Jiang et al. (31) recently
reported the association of HIV infection with impaired regula-
tion of innate defenses (e.g., human beta defensins) at mucosal
sites and increased bacterial colonization of the female genital
tract.

HIV LATENCY AS A CRITICAL OBSTACLE TO THE
ERADICATION OF HIV INFECTION

Although antiretroviral (ARV) therapy (ART) has been efficient in
reducing the morbidity and mortality rates of people living with
HIV/AIDS, eradication of the virus has not yet been achieved. The
major roadblock in the treatment of HIV is the persistence of
latent HIV-1 reservoirs that are constant sources of rebound virus
upon cessation of ART or treatment failure and the emergence of
drug-resistant viral clones.

Maintenance of HIV latency is a multifactorial event involving
several factors, including (i) the chromatin environment at the site
of integration, (ii) transcriptional interference, (iii) a lack of host
transcription factors needed for viral gene expression, (iv) the
presence of host transcriptional repressors, and (v) epigenetic si-
lencing of viral transcription (32–36). The elucidation of molecu-
lar mechanisms by which HIV type 1 (HIV-1) persists within in-
fected cells provides a basis for a new therapeutic approach aimed
toward combining HIV gene expression therapy and an ARV reg-
imen. In general, it involves the use of agents that will bring latent
HIV out of hiding in cells with the hope that ARV or the adaptive
immune response will block new infection events (32, 37–39).
Disruption of chromatin organization at the HIV-1 LTR pro-
moter sets a threshold for transcription factor activation and
eventually reversal of the state of chromatin that is responsible for
the repression of HIV proviral DNA within the host genome. In-

terestingly, proof-of-concept studies using various combinations
of HDAC or histone methyltransferase (HMT) inhibitors showed
that purging of latent proviruses from latently infected cells is
practically attainable (40, 41).

The progression to AIDS is influenced by host inflammatory
responses and coinfection with other pathogens such as viruses,
fungi, parasites, and bacteria (3, 20, 42–45). In particular, oppor-
tunistic infection frequently sets in when an HIV-infected individ-
ual is immunocompromised. AIDS progression is usually accom-
panied by the action of proinflammatory cytokines associated
with inflammatory responses that are thought to be perpetuated
by the cycle of immune activation brought about by opportunistic
infections. AIDS-defining events are most likely consequences of
cyclical host-microbe interactions within HIV-1-infected individ-
uals. In Fig. 1, we depict one such condition caused by commensal
bacteria of gastrointestinal and vaginal tissues. Interestingly, the
gastrointestinal and vaginal mucosal tissues are major sites of HIV
replication and amplification (6, 7). Impaired mucosal integrity
and innate mechanisms of defense against gut microbes result
from HIV infection because of immune activation brought about
by, but not limited to, the leakage of microbial products from the
gut or skewing of homeostatic responses to inflammatory stimuli
(11, 46–48). A recent study of SIV-infected rhesus macaques and
African green monkeys revealed the importance of the micro-
biome’s composition during inflammation and AIDS progression
and indicated a significant contribution of the endogenous micro-
bial flora to the course of HIV infection (49).

In the context of HIV latency, it has been clearly shown that
microbial interactions can regulate the epigenetic status of HIV-1
proviral DNA within the genome of infected cells and its tran-
scriptional competence. We previously reported that human res-
ident butyric acid-producing bacteria from various tissues could
reactivate latent HIV-1 proviruses (19, 20). These observations
indicate that microbial products or changes in the composition of
the microbiota could influence the progression of the disease. This
review provides an overview of the interaction between some en-
dogenous bacterial flora occupying niches in the human body and
HIV persistence that may have serious implications for the patho-
genesis of HIV infection.

EPIGENETIC REGULATION OF HIV GENE EXPRESSION

The chromatin organization and epigenetic regulation of the
HIV-1 promoter are critical in establishing and maintaining HIV
latency. Immediately downstream of the transcription start site of
the HIV-1 LTR, a repressive nucleosome (nuc-1) exists in its hy-
poacetylated state during latency. Transcriptional reactivation can
be facilitated by enzyme complexes that covalently modify tails of
the core histones in nucleosomes, promoting changes in chroma-
tin structure and allowing the recruitment of positive transcrip-
tion factors to the LTR for full transcription (Fig. 1, box) (50–53).

HDACs and HMTs are two classes of enzymes closely linked
to the transcriptional activation and repression of HIV. (i)
HDACs. HDACs act to repress transcription by catalyzing the
hydrolytic removal of acetyl groups from histone lysine residues
(54). Moreover, HDACs can interact with nonhistone proteins
such as p53 and NF-�B and form multiprotein complexes whose
other components help HDAC carry out its functions (55, 56).
Currently, there are 18 known mammalian HDACs, which are
phylogenetically divided into four groups. Class I HDACs
(HDAC1, -2, -3, and -8) are related to yeast HDAC Rpd3 and are
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often present in multiprotein complexes harboring Nurd and
SIN3 corepressors. Class II HDACs are homologous to the yeast
HDAC HDA1 and are subdivided into classes IIa (HDAC4, -5, -7,
and -9) and IIb (HDAC6 and -10); Class III HDACs represent the
NAD-dependent sirtuins and are homologs of yeast Sir2. Class IV
includes HDAC11, a constitutively nuclear protein displaying
properties of both classes I and II (35).

Apart from acting on histones, HDACs can mediate HIV si-
lencing through its physical recruitment to the HIV-1 LTR. In
fact, we previously reported the negative regulation of HIV tran-
scription by AP-4 through the recruitment of HDAC1 to the pro-
moter, as well as by masking the binding of TATA-binding protein
to the TATA box (57). Other HIV-1 LTR-bound transcription
factors found to directly recruit HDAC1 and then accomplish
gene silencing include the YY-1/LBP-1 complex, the NF-�B (p50)
homodimer, the Sp1/Myc complex, and C promoter binding fac-
tor 1 (58–61). HDAC3 has also been reported to be present at the
HIV promoter and cause transcriptional repression (62–64). Pre-
viously, we showed that the HIV-1-reactivating potential of our
novel HDACi NCH-51 was abolished when the Sp1 sites at the
LTR were mutated or when Sp1 expression was knocked down by
small interfering RNA (siRNA) or by treatment with the Sp1 in-
hibitor mithramycin A (65). These data indicate that Sp1 is re-
sponsible for the recruitment of HDAC1 to the LTR. It is possible
that posttranscriptional modification of Sp1 is involved. As Sp1 is
widely believed to be a transcriptional activator, it is to be further
elucidated in what biochemical or biological context Sp1 recruits
HDAC1 and is converted to a transcriptional repressor. Further
studies are needed to depict the molecular mechanism of this phe-
notypic transcription factor conversion.

(ii) HMTs. Generally, HMTs catalyze the lysine methylation of
histones, which can be linked to either transcriptional activation
or repression (66). Methylation of histone 3 at lysine 4 (H3K4),
H3K36, and H3K79 has been associated with gene activation,
whereas H3K9 and H3K27 methylation has been correlated with
gene repression (67). So far, latent HIV-1 proviruses have been
reported to carry histones that are either trimethylated or
dimethylated at Lys 9/27 or Lys 9, respectively (68–72). These
repressive marks do not affect DNA or histone interactions but
serve to recruit effector proteins that influence the transcriptional
state of chromatin.

SUV39H1 trimethylates histone H3 at Lys 9 and mediates re-
pression of the HIV-1 LTR in microglial cells by interacting with
HP1� (68). Chicken ovalbumin upstream promoter transcription
factor-interacting protein 2 (CTIP2) forms a multienzymatic
chromatin-modifying complex containing SUV39H1, HP1,
HDAC1, and HDAC2 to establish a repressive heterochromatin
environment that leads to HIV-1 silencing (69). Recently, it was
shown that recruitment of the histone demethylase LSD1 at the
HIV-1 promoter was associated with both epigenetic marks
H3K4me3 and H3K9me3 and acted synergistically with CTIP2 to
repress HIV transcription and viral replication (73). Meanwhile,
we previously found the involvement of G9a in the maintenance
of proviral latency by promoting repressive dimethylation at
H3K9 in cell lines where HIV-1 proviral DNA is latently present
(71). Either knockdown of G9a with siRNA or G9a inhibition with
the compound BIX01294 could successfully induce activation of
transcription from latent HIV provirus. Furthermore, Friedman
et al. reported the contribution of EZH2, the enzyme that cata-
lyzed the trimethylation of H3K27, in silencing HIV proviruses

FIG 1 Causal association of microbial interaction with HIV-1 latency and AIDS progression. HIV-1 infection weakens the immune system, making the body
susceptible to opportunistic pathogens. CD4� T cell depletion leads to impaired mucosal epithelial barrier integrity, allowing microbial translocation. The influx
of circulating microbial products is associated with a systemic hyperimmune activation (e.g., through the TLR–NF-�B pathway) that may aggravate HIV-1
disease and enhance its progression. Recently, the bacterial metabolite butyric acid, which is produced under anaerobic conditions, has been shown to reactivate
latent HIV-1 by promoting dissociation of the HDAC1–AP-4 repressor complex and hyperacetylation of histones, indicating its potential involvement in the
progression of AIDS (see text for details). HATs, histone acetyltransferases; Me, methyl; Ac, acetyl; LPS, lipopolysaccharide.
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(74). EZH2 is part of multimeric protein complex PRC2, which
serves as a recruiting platform for DNA methyltransferase 1
(DNMT1), the SWI/SNF component bromodomain-containing
protein Brd7, and HDACs (75, 76). These additional components
are known to be associated with the maintenance of proviral la-
tency. For example, DNMT1 mediates the methylation of the
HIV-1 LTR and reinforces HIV-1 latency (75, 77, 78). Although
considered weak stimulators of the HIV-1 LTR, DNA methylation
inhibitors such as 5-aza-2=-deoxycytidine could reactivate latent
HIV-1 provirus and had synergistic reactivation effects with
NF-�B activators prostratin and TNF-� (77, 78).

POTENTIAL THERAPEUTIC INTERVENTIONS AIMED TO
DECREASE HIV RESERVOIRS OR ERADICATE HIV

The disruption of HIV latency has been proposed as part of a
strategy to eradicate HIV infection. This is carried out by produc-
ing an environment permissive for transcription by altering the
degree of acetylation and methylation of histones and nonhistone
molecules. HDACi compounds such as trichostatin A, trapoxin,
valproic acid, sodium butyrate, or vorinostat (VOR; also known as
suberoylanilide hydroxamic acid [SAHA]) have the ability to dis-
rupt latent HIV infection in both cell culture models and ex vivo
assays using cells from HIV-1-infected patients or latently infected
cell lines (36, 79–85). Archin et al. (83) demonstrated that a single
dose of VOR increased biomarkers of cellular acetylation and si-
multaneously increased HIV RNA expression in resting CD4�

cells from HIV-1-infected patients. Also, we have previously dem-
onstrated that a novel HDACi compound, NCH-51, that has bet-
ter pharmacological properties than SAHA could activate latent
HIV-1 gene expression with minimal cytotoxicity through Sp1
sites (65). Meanwhile, methylation inhibitors like adenosine pe-
riodate could be employed to globally inhibit protein methyl-
transferase activity and induce virus production (86). The EZH2-
specific HKMT inhibitor 3-deazaneplanocin A (74) and the
SUV39H1 inhibitor chaetocin could reactivate latent proviruses
and could act cooperatively with HDACi compounds to activate
HIV transcription, indicating that combination therapy reverses
epigenetic silencing more efficiently (41, 74). Moreover, Bouchat
et al. (40), for the first time, demonstrated the recovery of HIV
from ex vivo cultures of resting CD4� T cells isolated from HIV-
1-infected individuals undergoing highly active ART by chaetocin
or the G9a inhibitor BIX01294. Likewise, they observed that the
reactivation activity of one HMT inhibitor was intensified when it
was combined with either SAHA or prostratin. Although these
findings strongly indicate the feasibility of this therapeutic ap-
proach, it has not been clearly observed that the use of such com-
pounds led to a substantial reduction in the frequency of replica-
tion-competent cells among the resting CD4� T cells examined
(83, 87, 88).

CONCLUDING REMARKS

The commensal microbiota populating all mucosal surfaces of the
body exerts its beneficial effect by offering nutritional and physi-
ological advantages in exchange for a nutrient-rich habitat within
the host. There appears to exist an interesting interplay between
the host and these microbes. Just as these microorganisms help
shape the mucosal immune responses, the host also shapes the
microbial community by modulating both the innate and adap-
tive immune responses (89).

HIV infection is accompanied by functional immunodefi-

ciency and loss of mucosal barrier integrity, allowing microbial
translocation and driving disease progression (1, 90, 91). A num-
ber of HIV-related opportunistic infections have been docu-
mented while other potential microbial factors promoting AIDS
progression have slowly been unraveled in the past years. It is
evident that a delicate balance between commensal microbiota
and immune homeostasis is critical in the persistence and progres-
sion of HIV infection. The treatment of infections associated with
AIDS should conceptually slow down AIDS progression, suggest-
ing that the prevention and treatment of such non-HIV infections
might be subsidiary but significant targets for AIDS therapy (1,
92). Further identification of the components of the commensal
microbiota and elucidation of the underlying mechanisms
through which these microbes/microbial products potentiate or
interfere with HIV-1 pathogenesis could be very important in the
design of interventions against HIV/AIDS.
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