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The cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and a criticism of
the current tests that are used for the detection of paratuberculosis. In the present study, Mycobacterium avium subsp. paratu-
berculosis recombinant proteins were evaluated for antigenic specificity compared to a whole-cell sonicate preparation (MPS).
Measures of cell-mediated immunity to M. avium subsp. paratuberculosis antigens were compared in calves inoculated with live
M. avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), Mycobacterium kansasii, or Mycobacterium bovis.
Gamma interferon (IFN-�) responses to MPS were observed in all calves that were exposed to mycobacteria compared to control
calves at 4 months postinfection. Pooled recombinant M. avium subsp. paratuberculosis proteins also elicited nonspecific IFN-�
responses in inoculated calves, with the exception of calves infected with M. bovis. M. avium subsp. paratuberculosis proteins
failed to elicit antigen-specific responses for the majority of immune measures; however, the expression of CD25 and CD26 was
upregulated on CD4, CD8, gamma/delta (��) T, and B cells for the calves that were inoculated with either M. avium subsp. para-
tuberculosis or M. avium after antigen stimulation of the cells. Stimulation with MPS also resulted in the increased expression of
CD26 on CD45RO� CD25� T cells from calves inoculated with M. avium subsp. paratuberculosis and M. avium. Although re-
combinant proteins failed to elicit specific responses for the calves inoculated with M. avium subsp. paratuberculosis, the differ-
ences in immune responses to M. avium subsp. paratuberculosis antigens were dependent upon mycobacterial exposure. The
results demonstrated a close alignment in immune responses between calves inoculated with M. avium subsp. paratuberculosis
and those inoculated with M. avium that were somewhat disparate from the responses in calves infected with M. bovis, suggest-
ing that the biology of mycobacterial infection plays an important role in diagnosis.

Amajor struggle in the field diagnosis of paratuberculosis has
been the cross-reactivity of serologic diagnostic tests with

other mycobacteria. Of particular concern is the potential for
false-positive identification of Mycobacterium avium subsp. para-
tuberculosis infection in animals that are either infected or have
been exposed to M. avium subsp. avium (M. avium) or other en-
vironmental mycobacteria when using serum-based paratubercu-
losis diagnostic tests (1). Genomic studies have demonstrated a 98
to 99% homology between M. avium subsp. paratuberculosis and
M. avium, making it difficult to identify antigens that will distin-
guish between exposures or infections with the 2 subspecies in a
specific and sensitive manner (2, 3). The presence of M. avium in
a wide breadth of environmental sources, such as water, soil, bio-
films, and plants, as well as the contamination of feedstuffs and
bedding by birds, makes cross-reactivity with current diagnostics
for M. avium subsp. paratuberculosis a staunch reality (4, 5).

In recent years, the reemergence of M. bovis infection in U.S. dairy
herds has contributed to concerns about the cross-reactivity of M.
avium subsp. paratuberculosis diagnostics in animals that are infected
with or exposed to M. bovis. The development of new serodiagnostic
tests based upon M. bovis antigens has improved the ability to distin-
guish between animals that have been either vaccinated or infected
with M. avium subsp. paratuberculosis from those with bovine tuber-
culosis (6, 7, 8, 9, 10, 11). Mycobacterium kansasii infections occur
rarely in cattle, and cross-reactivity might be more of a concern with
a bovine tuberculosis diagnosis; however, reports suggest that M.
kansasii might share some epitopes with M. avium subsp. paratuber-
culosis, thereby confounding the diagnostic tests for paratuberculosis
(12, 13, 14, 15, 16).

Although numerous studies have evaluated M. avium subsp.
paratuberculosis recombinant proteins as potential diagnostic
tools, the ability of M. avium subsp. paratuberculosis proteins
to discriminate between different mycobacterial infections has
not been adequately addressed (17, 18). This dearth of infor-
mation is particularly evident for measures of cell-mediated
immunity in animals exposed to different mycobacteria, as
most studies report only serologic data based upon antigen-
specific antibody responses. The present study is the first of its
kind to compare immune responses to M. avium subsp. para-
tuberculosis antigens in calves infected with either live M.
avium subsp. paratuberculosis, M. avium, M. bovis, or M. kan-
sasii. Recombinant M. avium subsp. paratuberculosis proteins
were compared to a whole-cell sonicate preparation of M.
avium subsp. paratuberculosis (MPS) as antigens, focusing on
assays to measure cell-mediated immune function, since these
responses occur early in infection.
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MATERIALS AND METHODS
Animals. Dairy calves were infected via aerosol or intratonsillar routes as
described previously (12, 19, 20, 21). Briefly, castrated Holstein-Friesian
bull calves (4 to 6 months old) received either 108 CFU M. avium subsp.
paratuberculosis strain 167 (a clinical bovine isolate), 109 CFU M. avium
subsp. avium strain TMC 702 (a chicken isolate) (M. avium), or 108 CFU
M. kansasii strain 03-6931 (a bovine isolate) (M. kansasii) by direct intra-
tonsillar instillations of sedated calves (n � 5 per group), with inoculum
delivered in two equal doses 2 weeks apart, or a single-dose aerosol inoc-
ulation of 104 CFU M. bovis strain 95-1315 (M. bovis) (a Michigan deer
isolate, n � 7). The decision to use a larger dose of inoculum for the
nontuberculous Mycobacteria spp. than for M. bovis was based upon prior
studies (12, 17, 18) and the relatively low virulence of these species. A
group of 8 age-, breed-, and gender-matched calves were also included as
noninfected calves (controls).

All calves were housed in a biosafety level 3 (BL-3) facility according to
the institutional guidelines and the approved animal care and use proto-
cols. BL-3 procedures were followed for the M. bovis group of calves,
whereas BL-2 procedures were followed for all other groups. Mycobacte-
rial culture and the enumeration of challenge inoculum, postmortem pro-
cedures, and histopathology were as described previously (19, 21) and
standard techniques were used. For calves inoculated with M. bovis, gross
lesions typical of M. bovis infection were observed in the lungs and pul-
monary lymph nodes from all calves (see Table S1 in the supplemental
material). As described previously (12, 19, 20), gross lesions were not
detected in noninfected control or M. avium-, M. avium subsp. paratu-
berculosis-, or M. kansasii-inoculated calves; however, these groups of
calves each developed cell-mediated immune responses as measured by a
comparative cervical skin test (22). All procedures performed on the an-
imals were approved by the Institutional Animal Care and Use Committee
(National Animal Disease Center [NADC], Ames, IA).

Blood collection and culture conditions. Whole blood was collected
into heparinized Vacutainer tubes prior to the inoculation of calves (day
0), and monthly thereafter. Antigens used in the gamma interferon
(IFN-�) assay were medium only (nonstimulated [NS]), concanavalin A
(ConA) (10 �g/ml; Sigma), pokeweed mitogen (PWM) (10 �g/ml;
Sigma), and whole-cell sonicates of M. avium subsp. paratuberculosis
(MPS) (clinical cow 167, 10 �g/ml; NADC), M. avium (MavS) (10 �g/ml;
NADC), M. kansasii (MkS) (10 �g/ml; NADC), and M. bovis (MboS) (10
�g/ml; NADC). In addition, 7 M. avium subsp. paratuberculosis proteins
(MAP0900, MAP1087, MAP1203, MAP1204, MAP1272c, MAP2077c,
and MAP4327c [Table 1]) were arrayed in 3 cocktails containing 3 of the
7 proteins as follows: cocktail 1, MAP1087, MAP1272c, and MAP2077c;
cocktail 2, MAP0900, MAP1203, and MAP1272c; cocktail 3, MAP1204,
MAP1272c, and MAP4327. The selection of the M. avium subsp. paratu-
berculosis proteins used in the present study was based upon their immu-
nogenic potential as defined by prior testing that was performed for IFN-�

and antibody responses in cattle. Pools were randomly arrayed with 3
proteins each, except for the presence of MAP1272c in each array. The
protein MAP1272c was present in each of the 3 pools because of its level of
antigenicity and its potential as a specific M. avium subsp. paratuberculosis
antigen, as described recently (23). Pools of proteins, rather than individ-
ual proteins, were used as antigen preparations, as immune responses to
individual antigens might be too selective, resulting in false-negative re-
sults in some animals.

The 7 annotated coding sequences of the proteins were selected from a
battery of �600 recombinant proteins amplified from M. avium subsp.
paratuberculosis strain K-10 genomic DNA. The methods for the expres-
sion and purification of M. avium subsp. paratuberculosis recombinant
proteins are described in detail (3). Briefly, maltose binding protein-M.
avium subsp. paratuberculosis fusion proteins were obtained by overex-
pression in Escherichia coli by the induction with 0.3 mM isopropyl-�-D-
thiogalactopyranoside (IPTG). Proteins were purified via affinity chro-
matography using an amylose resin (New England BioLabs, Ipswich, MA)
and then pooled and dialyzed in 1 liter of phosphate-buffered saline (PBS)
(140 mM NaCl, 10 mM NaHPO4, 2.7 mM KCl, and 2 mM KH2PO4 [pH
7.2]) at 4°C for 4 h with 3 total exchanges. Confirmation of the expression
was done by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) gels stained with GelCode blue (Thermo Scientific).

Mitogens and antigens were added to 1 ml of heparinized whole blood
and incubated at 39°C in 5% CO2 under a humidified atmosphere for 18
h. The assay protocol was modified by increasing the incubation temper-
ature to 39°C, which is the body temperature of a cow, as is performed on
all cellular assays within our laboratory (J. R. Stabel, unpublished data).
The addition of each protein cocktail to whole blood yielded a final con-
centration of 3 �g/ml, with each protein being equally represented. The
final concentration of each mitogen and whole-cell sonicate preparation
in whole blood was 10 �g/ml. Following incubation, the plates were cen-
trifuged at 1,300 � g for 5 min, and plasma was collected and stored at
�20°C until analyzed.

Prior to termination of the study at 5 months postinoculation, blood
was collected from the jugular vein in 2� acid-citrate-dextrose (ACD)
(1:10). Peripheral blood mononuclear cells (PBMCs) were isolated from
the buffy coat fractions of blood. PBMCs were resuspended in complete
medium (RPMI 1640 [Gibco, Grand Island, NY] with 10% fetal calf se-
rum [Atlanta Biologicals, Atlanta, GA], 100 U of penicillin G sodium
[Gibco] per ml, 100 �g of streptomycin sulfate [Gibco] per ml, 0.25 �g of
amphotericin B [Gibco] per ml, and 2 mM L-glutamine [Gibco]). Cells
were cultured at 2.0 � 106/ml in replicate 48-well flat-bottomed plates
(Corning Incorporated, Corning, NY) at 39°C in 5% CO2 under a humid-
ified atmosphere. Cell viability was determined to be �95% by the use of
propidium iodide exclusion. Duplicate wells were set up for each animal
for each in vitro treatment. In vitro treatments consisted of nonstimulated
(medium only), concanavalin A (ConA) (10 �g/ml; Sigma Chemical Co.,

TABLE 1 Mycobacterium avium subsp. paratuberculosis recombinant proteins used in this study

GenBank gene no.

M. avium subsp. paratuberculosis protein characteristics Identity (%)a to:

Protein name Size (kDa) Predicted function M. aviumb M. kansasiic M. bovisd

2720779 MAP0900 29.6 Hypothetical protein 93 62 59
2719512 MAP1087 15.4 ABC transporter permease 45 16 15
2719085 MAP1203 49.6 Hypothetical protein 95 77 79
2720812 MAP1204 25.4 Invasion protein (NlpC/P60 family) 100 81 78
2720835 MAP1272c 33.4 Invasion protein (NlpC/P60 family) 87 65 54
2719950 MAP2077c 11.1 STAS domain-containing protein 97 61 21
2718170 MAP4327c 18.5 Putative membrane protein No IDe 35 36
a Identity determined based on the global pairwise alignment tool EMBOSS Needle (available from EMBL-EBI).
b Alignment to corresponding M. avium subsp. avium ATCC 25291 sequences.
c Alignment to corresponding M. kansasii ATCC 12478 sequences.
d Alignment to corresponding M. bovis AF2122/97 sequences.
e No identity.
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St. Louis, MO), and a whole-cell sonicate of M. avium subsp. paratuber-
culosis (10 �g/ml). After 24 h, one set of plates were removed and centri-
fuged at 400 � g for 5 min. Supernatants were removed without disturb-
ing the cells in culture and were stored at �20°C prior to cytokine
measurement. The replicate set of plates was incubated for 6 days and cells
were harvested for flow cytometric analyses.

Cytokine analyses. Bovine IFN-� was measured in plasma using the
Bovigam test kit (Prionics, La Vista, NE) as described by the manufac-
turer. Bovine IFN-� levels measured in plasma (whole-blood assay) were
expressed as absorbance units of each stimulated blood sample minus the
absorbance measured for the corresponding nonstimulated sample
within each animal (e.g., Abs450nmMPS � Abs450nmNS). The remaining
cytokines, interleukin-10 (IL-10), IL-4, and IL-12, were measured on cell
supernatants. Bovine IL-10 was quantified by coating MaxiSorp microti-
ter plates (Nunc, Rochester, NY) with mouse anti-bovine IL-10 in coating
buffer (15 mM sodium carbonate, 34 mM sodium bicarbonate [pH 9.6];
100 �l per well at 2 �g/ml) (MCA2110; Serotec, Raleigh, NC) overnight at
room temperature (RT). Plates were washed 5 times with PBS containing
1% Tween 80 (washing buffer). The samples and serial 2-fold dilutions of
bovine IL-10 standard (0.3125 to 20 ng/ml) (generous gift from Jayne
Hope, Compton, United Kingdom) were added to the duplicate wells and
incubated at RT for 1 h. Plates were then washed 5 times with washing
buffer before incubating with the detection antibody, mouse anti-bovine
IL-10-biotin (MCA2111B; Serotec). Plates were washed 5 times with
washing buffer, 100 �l of avidin-horseradish peroxidase (HRP) conjugate
(diluted 1:800) (Pharmingen, San Diego, CA) was added to each well, and
the plates were incubated for 45 min at RT. After another wash cycle,
plates were incubated with substrate solution (40 mM ABTS [2,2=-azino-
bis(3-ethylbenzthiazolinesulfonic acid)]) in citrate buffer (United States
Biological, Swampscott, MA). Color development was quantified after 30
min by measuring absorbance at 405 nm with a Wallac Victor 1420 mul-
tilabel counter enzyme-linked immunosorbent assay (ELISA) plate reader
(PerkinElmer, Gaithersburg, MD). Bovine IL-12 was measured following
a protocol similar to that with IL-10, using a mouse anti-bovine IL-12
antibody (MCA1782EL; Serotec) as the capture antibody and a mouse
anti-bovine IL-12-biotin antibody (MCA2173B; Serotec) as the detection
antibody. Serial 2-fold dilutions of bovine IL-12 standard (1.56 to 100
ng/ml; Kingfisher Biotech) were used for the quantification of IL-12 in the
samples. IL-4 was determined using mouse anti-bovine IL-4 (CC313; Se-
rotec) and mouse anti-bovine IL-4-biotin (CC314; Serotec) for capture
and detection, respectively, along with serial dilutions of bovine IL-4 stan-
dard (31.25 to 2,000 pg/ml, PBP006; Serotec) for quantification. As for
IL-10, measurements of IL-12 and IL-4 in cell supernatants were per-
formed at 405 nm on the ELISA plate reader.

Flow cytometric analysis. Briefly, plates that were cultured for 6 days
were centrifuged at 1,500 rpm for 5 min and the supernatant was de-
canted. Cells were gently resuspended in 300 �l of PBS (0.15 M [pH 7.4]).
In 96-well round-bottom plates (Corning Incorporated, Corning, NY), 50
�l of the cell suspension was added to wells containing 50 �l of primary
monoclonal antibody to CD4, CD8, gamma/delta (��), CD25, CD26,
CD45RO, and CD335 T-cell markers, as well as markers for B cells and
monocytes-macrophages (Table 2). All wells received 10 �g/ml of 4=,6-
diamidino-2-phenylindole (DAPI) (Sigma) to differentiate live from dead
cells and to allow gating on viable cells. Cells were then incubated at 4°C
for 30 min. After incubation, plates were centrifuged at 330 � g for 2 min
at 4°C and the supernatant was decanted. One hundred microliters of
secondary antibody cocktail consisting of fluorescein-conjugated anti-
mouse IgM (SouthernBiotech, Birmingham, AL), R-phycoerythrin-con-
jugated goat F(ab)2 anti-mouse IgG2a (SouthernBiotech, Birmingham,
AL), and peridinin chlorophyll protein complex-conjugated rat anti-
mouse IgG1 (Becton, Dickinson, San Jose, CA) diluted 1:312, 1:625, and
1:42, respectively, in PBS with 1% fetal calf serum and 0.04% sodium azide
was added to designated wells and the plate was centrifuged again at 330 �
g for 2 min at 4°C. The cells were then suspended in 200 �l of BD FACS
Lyse (BD Biosciences, San Jose, CA) for immediate flow cytometric anal-

ysis. Samples were evaluated using 30,000 events per sample using a
FACScan flow cytometer (CellQuest Software; Becton, Dickinson). Anal-
ysis was conducted by gating on mononuclear cells based on forward and
side scatter characteristics (FlowJo; Tree Star, Inc., San Carlos, CA).

Statistical analyses. Cytokine secretion and the percentages of each
cell population were analyzed by using the PROC Mixed analysis of SAS
(PROC MIXED in SAS PC Windows version 9.1.3 software). Values were
reported as least square mean 	 the standard error of the mean unless
noted otherwise. When significant effects (P 
 0.05) owing to infection or
in vitro treatment were detected, a means comparison was conducted
using the Tukey-Kramer post hoc test.

RESULTS

Whole-blood IFN-� responses to mitogens or whole-cell sonicate
preparations in calves inoculated with M. avium subsp. paratuber-
culosis, M. avium, M. kansasii, and M. bovis are presented in Fig. 1.
The mitogens ConA and PWM, which were utilized to generate
nonspecific IFN-� responses, demonstrated similar reactivities for
all infected calves, with the exception of calves inoculated with M.
bovis, who demonstrated more robust (P 
 0.05) responses to
both mitogens (Fig. 1A). Antigen-specific responses to whole-cell
sonicates aligned themselves somewhat with the respective calf
infection, as significant (P 
 0.05) responses to MavS were ob-
served only in calves inoculated with M. avium. In addition, re-
sponses to MkS and MboS (P 
 0.05) also aligned themselves to
the respective infection in calves, but calves infected with M. bovis
also responded (P 
 0.05) very robustly to MkS. In contrast,
IFN-� responses to MPS were significantly (P 
 0.05) greater for
all infected calves, regardless of the inoculum used, than those
with control calves, demonstrating no specificity in response (Fig.
1B). Pooled M. avium subsp. paratuberculosis proteins also did not
demonstrate specificity as stimulators of IFN-� responses in M.
avium subsp. paratuberculosis-infected calves (Fig. 1B) and were
ineffective as specific antigens for the majority of assays measured
in this study (data not shown). However, IFN-� responses to the
M. avium subsp. paratuberculosis protein pools were consistently
(P 
 0.05) lower for calves inoculated with M. bovis than for those
inoculated with M. avium subsp. paratuberculosis, indicating that
further refinement of M. avium subsp. paratuberculosis protein
pools might lead to their potential utility as tools to discriminate

TABLE 2 Primary antibodiesa

Antigen MAbb clone Isotype

Working MAb
concnc

(�g/ml) Specificity

CD4 GC50A1 IgM 14 T-helper cells
CD8 BAQ111A IgM 14 T-cytotoxic/suppressor

cells

CD25 CACT116A IgG1 15 IL-2 receptors
CACT108A IgG2a 15 IL-2 receptors
LCTB2A IgG3 15 IL-2 receptors

CD26 CACT114A IgG2b 15 Activation marker
CD45RO GC42A1 IgG1 10 Memory/activation

marker
N12 CACT61A IgM 14 �� cell receptors
B cell BAQ155 IgG1 7 Total B cells
a VMRD Inc. (Pullman, WA).
b MAb, monoclonal antibody.
c Diluted in PBS with 1% fetal calf serum and 0.04% sodium azide.
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between M. avium subsp. paratuberculosis and M. bovis infections
in the field (Fig. 1B).

To identify additional immunologic biomarkers for infection
that might distinguish between M. avium subsp. paratuberculosis
and other mycobacteria, further determination of the IL-4, IL-10,
and IL-12 levels in supernatants from cultured PBMCs was per-
formed. Although not a major focus of the current study, it was
interesting to note that ConA stimulation resulted in measurable
differences in the host responses to mycobacterial infection, in-
cluding lower (P 
 0.05) IL-12 in culture supernatants in calves
exposed to M. avium and M. bovis than in the other treatment
groups (Fig. 2A) and higher (P 
 0.05) levels of IL-4 secretion for
calves exposed to M. bovis (Fig. 2B). Although infected calves did
not yield significant responses to MPS, calves inoculated with M.
avium subsp. paratuberculosis tended (P 
 0.10) to have higher
antigen-specific IL-4 responses. Stimulation of cells with MPS re-
sulted in increased (P 
 0.05) IL-10 secretion and decreased (P 

0.05) IL-12 secretion in M. bovis-infected calves than in other
infected calves (Fig. 2C).

An increase (P 
 0.05) in the percentage of CD4 T cells was
observed for calves inoculated with M. avium subsp. paratubercu-
losis after the stimulation of PBMCs with MPS, and a concomitant
decrease (P 
 0.05) was noted for calves exposed to M. bovis
(Fig. 3A). The expression of CD25 on CD4� T cells was signif-
icantly (P 
 0.05) upregulated on cells from M. avium subsp.
paratuberculosis-, M. avium-, and M. bovis-infected calves, with

the highest expression in M. bovis-infected calves (Fig. 3B). A
downregulation in the percentage of CD4� CD26� T cells was
paralleled (P 
 0.05) in these calf groups. The expression of
both CD25 and CD26 on CD4� T cells was only significant (P 

0.05) for the M. avium subsp. paratuberculosis- and M. avium-in-
fected calves.

The percentage of total CD8� T cells was marginally increased
(P 
 0.10) in calves exposed to M. avium subsp. paratuberculosis
and those exposed to M. avium but was significantly (P 
 0.05)
lower in the calves exposed to M. bovis after stimulation of the cells
with MPS (Fig. 3B), and reductions (P 
 0.05) in the subpopula-
tions of CD8� CD25� and CD8� CD26� T cells were also noted in
the calves exposed to M. bovis. Interestingly, a highly significant
(P 
 0.05) upregulation of CD26 expression on CD8 T cells was
observed for the M. avium subsp. paratuberculosis- and M. avium-
infected calves in this study. A similar pattern of expression for
these markers was noted for �� T cells, but the upregulation of
expression noted for the M. avium subsp. paratuberculosis- and M.
avium-infected calves was concomitant with a significant (P 

0.05) decrease for the M. bovis-infected calves (Fig. 4A). Results
for MPS-stimulated �� T cells also followed this pattern of expres-
sion as defined by the infection group, with M. avium subsp. para-
tuberculosis, M. avium, and M. kansasii infections invoking in-
creased (P 
 0.05) numbers of �� T cells and M. bovis infection
effecting a decrease in this population of T cells.

Neither the total B cell number nor the B cell-CD25 cell ratio

FIG 1 Secretion of gamma interferon (IFN-�; Abs450nm) in a whole-blood assay by control noninfected calves (control) or calves infected with live Mycobac-
terium avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), M. kansasii, or M. bovis. (A) Whole blood was incubated for 18 h with concanavalin
A (ConA), pokeweed mitogen (PWM), or whole-cell sonicates of M. avium subsp. avium (MavS), M. kansasii (MkS), or M. bovis (MboS). (B) Whole blood was
incubated with a whole-cell sonicate of M. avium subsp. paratuberculosis (MPS) or pools of recombinant M. avium subsp. paratuberculosis proteins (MAP1,
MAP2, MAP3). Data are expressed as means 	 standard errors of the means (SEM). Significant (P 
 0.05) differences between the infection groups and within
each in vitro treatment are represented by different letters.
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was markedly affected by infection status of the calves, but signif-
icantly (P 
 0.05) increased numbers of CD26� B-cell subpopu-
lations were observed for the calves exposed to M. avium subsp.
paratuberculosis and those exposed to M. avium after the stimula-
tion of total PBMCs with MPS (Fig. 4B).

Antigen-specific upregulation of CD45RO� cells in total PBMCs
was noted for the calves in this study exposed to M. avium subsp.
paratuberculosis and those exposed to M. avium (Fig. 5). Further,
stimulation with the M. avium subsp. paratuberculosis protein
cocktails (MAP1, MAP2, and MAP3) specifically upregulated
(P 
 0.05) the expression of CD45RO for the M. avium subsp.
paratuberculosis-infected calves compared to the M. bovis-infected
calves (Fig. 5A). Further delineation of CD45RO� CD25� T cells
demonstrated an increased expression of CD26 on CD4 (P 

0.05), CD8 (P 
 0.01), and �� (P 
 0.01) T cells for the M. avium
subsp. paratuberculosis- and M. avium-infected calves (Fig. 5B).
Interestingly, CD26 expression decreased (P 
 0.01) for the M.
bovis-infected calves for all 3 subpopulations of T cells, especially
�� T cells.

DISCUSSION

The results of the present study demonstrate that measurable im-
mune responses to M. avium subsp. paratuberculosis antigens can
occur in cattle that are infected with other mycobacterial patho-
gens. The discovery of novel antigens or cocktails of antigens that
can discriminate M. avium subsp. paratuberculosis infection from
exposure to or infection with other mycobacteria is critical to the
control and management of this disease. Presently, commercial
serodiagnostic tests for paratuberculosis are reliant upon crude
cell lysates as the capture antigens in their immunoassays; this
leads to potential specificity issues since many proteins are con-
served across mycobacterial species.

Previously, it was shown by our laboratory that recombinant
M. avium subsp. paratuberculosis proteins could be used to detect
M. avium subsp. paratuberculosis-specific antibodies in the serum
of naturally infected cattle, with moderate-to-negligible reactivity
to serum from M. avium- and M. bovis-infected cattle (3). How-
ever, little work has been performed to evaluate the utility of re-

FIG 2 Secretion of interleukin-12 (IL-12) (A), IL-4 (B), and IL-10 (C) by PBMCs isolated from control noninfected calves (control) or calves infected with live
Mycobacterium avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), M. kansasii, or M. bovis. PBMCs were incubated for 24 h with concanavalin
A (ConA) or a whole-cell sonicate of M. avium subsp. paratuberculosis (MPS). Data are expressed as means 	 SEM. Significant differences (P 
 0.05) between
the infection groups and within each in vitro treatment are represented by different letters.
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combinant M. avium subsp. paratuberculosis proteins as antigens
in cell-mediated immune function assays. Recently, an evaluation
of 14 recombinant proteins selected from three major groups,
latency proteins, secreted proteins, and proteins of the early secre-
tory antigenic target 6 (ESAT-6), an important group of antigenic
proteins in M. bovis infections, was performed using the whole-
blood IFN-� assay platform in dairy cattle (17). All proteins tested
demonstrated greater specificity than did johnin purified protein
derivative (PPD) in the IFN-� assay, but efficacy for the diagnosis
of paratuberculosis was best for the latency protein group, with
higher immunogenicity and specificity observed in that group. An
additional comprehensive search for M. avium subsp. paratuber-
culosis proteins with diagnostic potential conducted by aligning
mass spectrophotometric analyses of M. avium subsp. paratuber-
culosis, M. avium, and M. bovis PPDs demonstrated that up to 73%
of proteins were shared between the 3 PPD preparations (24). Due
to the high degree of homology between the M. avium subsp.
paratuberculosis and M. avium PPDs, only one unique protein
(MAP1718c) was identified. MAP1718c did not demonstrate any
specificity in either the lymphocyte stimulation test or serum an-
tibody ELISA; however, MAP1138, a conserved protein present in
all 3 PPDs, was able to differentiate between noninfected and M.
avium subsp. paratuberculosis shedders in the serum antibody test.
A more recent study evaluated the diagnostic potential of 54 M.
avium subsp. paratuberculosis proteins in a macroarray, blotting
against serum samples from healthy animals, animals with para-
tuberculosis, and animals that were experimentally infected with

M. bovis (25). Based upon differential spot intensities between the
infection groups, 7 M. avium subsp. paratuberculosis proteins
(MAP0038, MAP0210c, MAP1272, MAP1692c, MAP0209,
MAP2020, and MAP2513) were selected for further study. Blot-
ting against a cocktail of the 7 M. avium subsp. paratuberculosis
proteins resulted in a sensitivity of detection of 72% (18/25) for
cows with paratuberculosis, compared to no reactivity with serum
from control cows (n � 26) and low reactivity with serum from M.
bovis cows (3/17). In contrast, ELISA reactivity using M. avium
strain 18 protoplasmic antigen (PPA-3) demonstrated a compa-
rable sensitivity of detection to the antigen cocktail, but it had
much lower specificity.

Proteins selected for use in the present study had been demon-
strated previously to induce antigen-specific IFN-� responses in
cattle (see Fig. S1 in the supplemental material) and, as such, were
considered suitable for evaluating them as specific mediators of
cell-mediated immunity. However, the results were disappoint-
ing, yielding responses that clearly showed a lack of specificity
across infection groups for most parameters that were measured.
Responses to the whole-cell sonicate preparations of M. avium
subsp. paratuberculosis (MPS) in the IFN-� assay were also ob-
served for all infection groups. This is not surprising considering
that any mycobacterial whole-cell lysate would contain proteins
that would be conserved across species and potentially contain
antigenic components that could elicit a response. However, the
robustness of the response noted in the calves infected with M.
bovis compared to calves infected with either M. avium subsp.

FIG 3 Percentages of CD4 (A) and CD8 (B) T cells from PBMCs isolated from control noninfected calves (control) or calves infected with live Mycobacterium
avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), M. kansasii, or M. bovis. Cells are expressed as CD4 or CD8 populations with coexpression of
CD25 and CD26 subpopulations, after stimulation with a whole-cell sonicate of M. avium subsp. paratuberculosis (MPS). Data are expressed as means 	 SEM.
Significant differences (P 
 0.05) between the groups are represented by different letters.
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paratuberculosis or M. avium was unforeseen. In fact, the calves
infected with M. bovis had greater IFN-� responses overall than
those in the other infected groups, with higher responses to both
ConA and PWM mitogens, and the most robust responses to their
corresponding antigen preparation (MboS) of any infection
group. Nonspecific responses in the IFN-� assay and the compar-
ative cervical skin test have been reported previously for calves
infected with M. avium subsp. paratuberculosis, M. avium, and M.
bovis (12). Responses to M. avium subsp. paratuberculosis, M.
avium, and M. bovis PPDs were noted in both tests for all infected
calves, confirming the lack of specificity of these reagents; how-
ever, the responses of the M. bovis-infected calves were always
more robust, especially to the M. bovis PPD. Interestingly, the M.
avium subsp. paratuberculosis protein cocktails used in the present
study did not elicit specific IFN-� responses in the calves infected
with M. avium subsp. paratuberculosis, but they did result in a
consistent decreased response for the calves infected with M. bovis.
This differential response might allow for discrimination between
the M. bovis-infected calves and those in other infection groups,
indicating a potential use in the field to distinguish M. bovis from
M. avium subsp. paratuberculosis infections.

Measurement of other secreted cytokines after stimulation of
the cells with M. avium subsp. paratuberculosis protein cocktails or
MPS did not demonstrate any specificity of response across infec-
tion groups. Infection of calves with M. bovis did result in the
increased secretion of IL-4 and decreased secretion of IL-12 after
stimulation of cells with ConA. This is interesting, since this find-
ing does not correspond with a strong Th1-mediated immunity
that is suggested by the IFN-� responses. Concomitant IL-4 and

IFN-� responses have been described previously for cattle infected
with M. bovis after the stimulation of cells with an M. bovis PPD;
however, IFN-� responses were sustained over 20 weeks of infec-
tion and IL-4 responses were more phasic and short-lived, peaking
at 8 weeks postinfection (26). It was suggested that the delay in
IL-4 secretion might be part of an anti-inflammatory response
invoked by the presence of high levels of IFN-�.

Previously, we observed that CD25 and CD26 expression was
upregulated on T and B cells within 1 month after experimental
infection of calves with M. avium subsp. paratuberculosis (27, 28).
Expression levels of both of these activation markers were also
increased on CD4, CD8, and �� T cells after stimulation of PBMCs
from M. bovis-infected cattle with either a recombinant early se-
cretory antigenic target 6 and culture filtrate protein 10 fusion
protein (rESAT-6:CFP-10) or M. bovis PPD (29). In the present
study, CD25 and CD26 expression on CD4, CD8, and �� T-cell
subpopulations was increased by mycobacterial infection after the
stimulation of cells with MPS. However, CD26 expression on CD8
and �� T cells was more discrete for M. avium subsp. paratuber-
culosis-infected and M. avium-infected calves, and when cell sub-
sets were further defined by CD25 expression, there was a defini-
tive association with T- and B-cell populations in the M. avium
subsp. paratuberculosis- and M. avium-infected calves that was not
observed for the M. kansasii- or M. bovis-infected calves. Although
the stratification between the infection groups suggests a possible
utility for these cell markers to discriminate between M. avium
subsp. paratuberculosis and M. bovis infections, understanding the
biological meaning of these two markers is more intriguing. Both
CD25 (IL-2 receptor) and CD26 are activation markers present

FIG 4 Percentages of �� (gd) T cells (A) and B cells (B) from PBMCs isolated from control noninfected calves (control) or calves infected with live Mycobac-
terium avium subsp. paratuberculosis, M. avium subsp. avium (M. avium), M. kansasii, or M. bovis. Cells are expressed as total �� T-cell or B-cell populations with
coexpression of CD25 and CD26, after stimulation with a whole-cell sonicate of M. avium subsp. paratuberculosis (MPS). Data are expressed as means 	 SEM.
Significant differences (P 
 0.05) between groups are represented by different letters.
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primarily on T cells but also on other cell populations (30). CD26
also serves as a maturation marker for T cells, and its expression is
highly correlated with Th1-mediated immunity and inflamma-
tion (29, 30). Further, CD26 is linked with CD45 on the surface of
T cells, resulting in the induction of T-cell signal transduction
pathways (28, 31). The expression of CD26 appears to be prefer-
entially upregulated on CD4� CD45RO� memory T cells (32). In
M. avium subsp. paratuberculosis infection, it has been shown pre-
viously that CD4� T cells with a memory phenotype (CD45RO�)
and expressing both CD25 and CD26 were the primary cell pop-
ulation that responded to antigen stimulation in calves within 6
months of oral inoculation with M. avium subsp. paratuberculosis
(33). After 18 months of infection, a shift to a CD8� CD45RO�

memory cell population expressing CD25 and CD26 occurred that
was suggestive of a change in cell phenotype as the infection pro-
gressed. Although the infection period in the current study was rela-
tively short (4 months), antigen recall responses as defined by in-
creases in the CD45RO� population, as well as coexpression of CD26
on CD45RO� CD25� CD8 and �� T subsets, were observed only for
the calves exposed to M. avium subsp. paratuberculosis or M. avium.
In contrast to previous reports, little effect of infection was noted on
the expression of CD26 on the CD4� memory phenotype.

The lack of or decreased CD26 expression on CD45RO� T cells

in the calves infected with M. bovis is not easy to explain, as there
should have been enough antigenic cross-reactivity to invoke
some level of response. However, a previous study reported a lack
of expression of CD26 on CD4� CD45RO� and CD8� CD45RO�

cell populations from M. bovis-infected cattle after stimulation of
cells with M. bovis antigens, suggesting that the effect is a factor of
infection rather than being due to the antigen preparation that was
used to stimulate the cells (29). One possible explanation for a lack
of CD26 expression might be related to the role that CD26 plays in
the migration of T cells during infection. Increased numbers of
CD26� T cells have been reported at sites of inflammation for a
number of disorders, including autoimmune disorders, such as
rheumatoid arthritis, Grave’s disease, and multiple sclerosis, as
well as infectious diseases, such as leishmaniasis (34, 35). It might
be plausible that infections, such as that with M. avium subsp.
paratuberculosis, that cause unrestrained inflammation in gut
tissues invoke a greater degree of CD26 expression so that cells
can migrate to those sites. In contrast, CD26 expression in
either M. bovis or M. tuberculosis infections might be less likely
because infections are sequestered within granulomatous le-
sions in the lungs, trapping sensitized lymphocytes (36). This
explanation might be consistent for the influences of infection
noted on �� T-cell populations in the present study as well,

FIG 5 Percentage of CD45RO cells from PBMCs isolated from control noninfected calves (control) or calves infected with live Mycobacterium avium subsp. paratu-
berculosis, M. avium subsp. avium (M. avium), M. kansasii, or M. bovis. Cells are expressed as the total CD45RO population (A), after stimulation with either concanavalin
A (ConA), a whole-cell sonicate of M. avium subsp. paratuberculosis (MPS), or pools of recombinant M. avium subsp. paratuberculosis proteins (MAP1, MAP2, MAP3).
Subpopulation (%) of CD45RO� CD25� CD26� within CD4, CD8, and �� T cells (B) after stimulation with a whole-cell sonicate of M. avium subsp. paratuberculosis
(MPS). Data are expressed as the mean 	 SEM. Significant differences (P 
 0.05) between groups are represented by different letters.

Immunity to Mycobacterial Infection in Calves

June 2013 Volume 20 Number 6 cvi.asm.org 855

http://cvi.asm.org


since �� T cells play a role in the migration of cells to areas of
inflammation (37, 38).

In summary, the whole-cell preparation of M. avium subsp.
paratuberculosis antigen elicited nonspecific responses for all mea-
sured cytokines, regardless of the infection group. Using cocktails
of M. avium subsp. paratuberculosis recombinant proteins to stim-
ulate the cells largely resulted in nonspecific responses, except for
the differences noted between other infection groups and M. bo-
vis-infected calves. Infection of calves with M. avium subsp. para-
tuberculosis or M. avium invoked antigen-specific increases in ��
T cells, but �� T cells declined in M. bovis infection. Novel infor-
mation included the differential expression of CD26 on
CD45RO� T-cell subpopulations in calves infected with M. avium
subsp. paratuberculosis and M. avium compared to M. bovis-in-
fected calves, suggesting distinct differences in the antigen recall
responses in the disease states.
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