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HIV-1 Vpu Does Not Degrade Interferon Regulatory Factor 3

Dominik Hotter, Frank Kirchhoff, Daniel Sauter

Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany

It has been reported that HIV-1 Vpu mediates the degradation of interferon regulatory factor 3 (IRF-3) to avoid innate immune
sensing. Here, we show that Vpu does not deplete IRF-3 from transfected cell lines or HIV-1-infected primary cells. Further-
more, the Vpu-dependent suppression of beta interferon expression described in previous studies could be ascribed to inhibi-
tion of NF-kB activation. Thus, Vpu suppresses innate immune activation through inhibition of NF-kB rather than degradation

of IRF-3.

he viral protein U (Vpu) of HIV-1 is a 16-kDa integral mem-

brane protein produced together with Env during the late
stage of the viral replication cycle. The Vpu proteins of pandemic
HIV-1 group M (major) strains interact with the cytoplasmic tail
of newly synthesized CD4 in the endoplasmatic reticulum to me-
diate its polyubiquitinylation and proteasomal degradation (1, 2).
Degradation of the CD4 receptor may facilitate virion release, pre-
vent superinfection, and enhance the incorporation of functional
Env proteins into progeny viral particles. Second, Vpu promotes
virion release (3, 4) by counteracting the restriction factor tetherin
(BST-2), which tethers nascent virions to the cell surface (5, 6).
Recent studies have suggested that Vpu also reduces cell surface
expression of the natural killer (NK) cell ligands NTB-A and PVR
(7, 8) and the lipid-antigen-presenting protein CD1d (9) to pro-
tect HIV-1-infected cells against NK cells and natural killer T
(NKT) cells, respectively. Finally, it has been reported that Vpu
mediates depletion of interferon regulatory factor 3 (IRF-3), a
transcription factor that plays a central role in pathogen recogni-
tion receptor (PRR) signaling, to avoid innate immune sensing in
virus-infected cells (10, 11).

Vpu is only encoded by HIV-1 and its simian immunodefi-
ciency virus (SIV) precursors. We and others have shown that the
Vpu proteins of group M, N, O, and P strains of HIV-1, which
resulted from independent zoonotic transmissions, and their SIV
counterparts exhibit fundamental functional differences (12-16).
Perhaps most notably, only Vpus of pandemic group M strains
have acquired the capability to antagonize tetherin while main-
taining their CD4 function during adaptation to humans (12). In
comparison, Vpu proteins of rare HIV-1 group N strains are usu-
ally weak tetherin antagonists and fail to degrade CD4, and those
of nonpandemic HIV-1 group O and P strains lack significant
anti-tetherin activity (12-16). Obviously, differences in the abili-
ties of these viruses to avoid innate immune sensing of virally
infected cells by the Vpu-mediated counteraction of IRF-3 may
also play a role in their replication fitness and spread in the human
population. Thus, the initial goal of the present study was to ex-
amine whether these primate lentiviral Vpus also differ in their
abilities to degrade IRF-3 (10, 11).

First, we tried to confirm the published data that suggested that
the HIV-1 NL4-3 Vpu induces effective IRF-3 degradation in es-
tablished cell lines (10). To examine this, we transfected HeLa cells
expressing endogenous IRF-3 with different doses of pCG vectors
coexpressing AU1-tagged NL4-3 Vpu and enhanced green fluo-
rescent protein (eGFP) (12) by using Lipofectamine (Invitrogen)
according to the manufacturer’s instructions. To monitor cellular
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and viral antigen expression, the cells were lysed in mammalian
protein extraction reagent (Thermo Scientific) 2 days posttrans-
fection, and cell lysates were separated in 4-to-12% bis-Tris gels
(Invitrogen). Proteins were transferred onto polyvinylidene diflu-
oride (PVDF) membranes and probed with anti-IRF-3 antibody
(Santa Cruz Biotechnology). Subsequently, blots were probed
with anti-mouse or anti-rabbit IRDye Odyssey antibodies (Li-
Cor), and proteins were detected using a Li-Cor Odyssey scanner.
For controls, blots were incubated with antibodies specific for
B-actin (Abcam) and AU1 (Covance). The results showed that
NL4-3 Vpu was efficiently expressed but did not induce a reduc-
tion of IRF-3 expression levels (Fig. 1A). To further challenge this
unanticipated finding, we analyzed the effect of Vpu on endoge-
nous IRF-3 expression in 293T cells, which were also used in the
previous studies (10, 11). In contrast to HeLa cells, only one IRF-
3-specific band could be detected in unstimulated 293T cells,
which is consistent with previous results (10, 24). Although Vpu
was efficiently expressed in a dose-dependent manner, we did not
observe an effect of Vpu on the levels of endogenously expressed
IRF-3 (Fig. 1B). In agreement with published data, expression of
NSP1-NCDV, a nonstructural protein of the Nebraska calf diar-
rhea rotavirus reduced IRF-3 expression levels, whereas NSP1
from a closely related porcine rotavirus (OSU) was inactive (13—
15) (Fig. 1C). To examine the effect of Vpu on activated IRF-3, we
treated the cells with poly(I-C), a synthetic analog of double-
stranded RNA. Induction of innate immune signaling responses
by poly(I-C) was verified by activation of the beta interferon
(IFN-B) promoter (Fig. 1D). In agreement with our previous re-
sults, Vpu failed to reduce the expression levels of activated IRF-3
(Fig. 1D).

To examine a possible effect of Vpu on IRF-3 expression in
HIV-1-infected T cells, we transduced SupT1 cells with vesicular
stomatitis virus G protein (VSV-G)-pseudotyped HIV-1 NL4-3
constructs containing intact or defective vpu genes (20). Virus
stocks were generated by transient transfection of 293T cells as
described previously (21). To activate immune signaling, cells
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FIG 1 Vpu does not reduce IRF-3 expression levels. (A) HeLa cells were transfected with increasing concentrations (0, 0.5, 1.5, and 4.5 pg in all
experiments) of an expression plasmid for NL4-3 vpu. The values provided below panels A to D and F give the intensity of the IRF-3 signal, normalized
to the B-actin control. For better comparison, the mock value was always set as 1.0 in each panel. (B) 293T cells were transfected with increasing
concentrations of an expression plasmid for NL4-3 vpu. (C) 293T cells were transfected with 5 g of control plasmid or expression plasmids for NCDV
(active against IRF-3) or OSU (not active against IRF-3) NSP1 (15). Western blotting was performed 24 h later with an IRF-3 antibody kindly provided
by Michael David. (D) 293T cells were transfected with increasing concentrations of Vpu expression plasmid. To stimulate IRF-3-dependent signaling,
cells were cotransfected with 2 pg poly(I-C). Poly(I-C) stimulation was monitored in an IFN-f promoter reporter luciferase assay (right panel). At 2 days
posttransfection, cells were lysed and Western blotting was performed. The membrane was incubated with antibodies against IRF-3 and AU1. B-Actin was
used as a loading control and for normalization (left panel). (E) SupT1 cells were transduced with VSV-G-pseudotyped virus stocks of wild-type or
vpu-defective HIV-1 NL4-3. To induce IRF-3-dependent signaling, cells were coinfected with SeV 24 h before lysis at 3 days postransduction. Western blot
analysis was performed using three different anti-IRF-3 antibodies (from Santa Cruz Biotechnology [SC], a gift from Michael David [MD], and AR1).
Staining for the viral p55 and p24 Gag antigens was performed to monitor HIV-1 infection. B-Actin was used as loading control. (F) SupT1 cells were
transduced with the indicated VSV-G-pseudotyped HIV-1 constructs and analyzed by Western blotting 3 days later. IRES-env proviral constructs allowed
the expression of vpu alleles independent of overlapping env sequences.

were infected with Sendai virus (SeV) 2 days postransduction, as
reported in previous studies (10, 11, 16). SeV infection and im-
mune activation were confirmed by cytopathic effects and in-
creased NF-kB and IFN-B reporter gene activities (data not
shown). Three days postransduction, cells were lysed and ana-
lyzed by Western blotting. To further validate our results, we uti-
lized three different IRF-3 antibodies, including the one (desig-
nated MD) used in the previous studies of Doehle and colleagues
(10, 11, 17). Irrespective of the antibody used, we detected similar
levels of IRF-3 in cells infected with wild-type or vpu-defective
HIV-1 constructs (Fig. 1E). To exclude that we might miss Vpu-
mediated effects on IRF-3 expression levels due to allele-specific
differences, we infected cells with NL4-3-based constructs ex-
pressing different vpu alleles without overlapping env sequences.
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To generate these constructs, we first eliminated the vpu-env over-
lap and subsequently inserted an internal ribosome entry site
(IRES) element downstream of vpu to restore env expression. Just
like wild-type HIV-1 NL4-3, derivatives expressing JR-CSF or re-
paired YU2 Vpu failed to induce significant degradation of IRF-3
in transduced SupT1 cells (Fig. 1F). The expression of functional
Vpu from the IRES-env constructs has been shown before (12)
and was confirmed by a reduction of mature virions (i.e., p24) in
the cell lysates due to the counteraction of tetherin and/or degra-
dation of CD4 (Fig. 1F).

To exclude the possibility that some subtle effects of Vpu on
IRF-3 were missed because the cells were examined in bulk, we
next performed fluorescence-activated cell sorting (FACS)-based
assays. The pCG vectors used in these experiments coexpress the
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FIG 2 Vpu, Vpr, and Vif do not affect the level of IRF-3 expression. (A) 293T cells were transfected with 5 pg of pCG vectors coexpressing NL4-3 Vpu, Vpr, or
Vif proteins and eGFP via an IRES. A vector coexpressing NCDV NSP1 and yellow fluorescent protein (YFP) was used as a positive control. The cells were
permeabilized at 24 h posttransfection and stained for IRF-3 (Santa Cruz Biotechnology) for FACS analysis. (B) Levels of IRF-3 expression in the presence of the
indicated expression constructs relative to the empty vector control (set as 100%). Data are mean values (% the standard errors of the means) derived from three

independent experiments.

gene of interest and eGFP from the same RNA via an IRES and
thus allow the direct comparison of IRF-3 expression levels in
transfected and untransfected cells (18). Since previous studies
suggested that Vpr and Vif may also affect IRF-3 expression (16,
17), we included constructs expressing these accessory genes in
our studies. 293T cells were transfected with these expression con-
structs, and 24 h later the cells were fixed, permeabilized (Fix &
Perm cell permeabilization kit; ADG), and examined for IRF-3
expression by flow cytometric analysis using unconjugated anti-
IRF-3 (Santa Cruz Biotechnology) and Alexa Fluor 647-conju-
gated anti-rabbit antibodies (Invitrogen) (Fig. 2A). To determine
the relative IRF-3 expression levels, the mean AF647 fluorescence
intensity (MFI) of transfected (eGFP ™) cells was normalized to the
MFI of the untransfected (eGFP ™) cell population after subtrac-
tion of isotype control values. We found that Vpu, Vpr, and Vif
had no significant effect on IRF-3 expression levels, whereas NSP1
(NCDV) reduced it by about 40% (Fig. 2A and B).

To examine the effects in HIV-1-infected SupT1 cells we uti-
lized a variety of HIV-1 NL4-3-based proviral constructs coex-
pressing eGFP via an IRES element (12, 19, 20). These constructs
have the advantage that all viral genes are expressed from the wild-
type HIV-1 long terminal repeat promoter and via the regular
splicing sites. Thus, they represent a highly sensitive system to
examine the effects of accessory proteins, such as Vpu, on the
expression levels of cellular proteins in HIV-1-infected cells (12,
19, 21). Our results showed that individual or combined deletions
in the viral accessory vpu, vpr, and nef genes had no significant
effect on IRF-3 expression levels in HIV-1-infected T cells (Fig. 3A
and B). To examine the effects in primary target cells of HIV-1, we
transduced peripheral blood mononuclear cells (PBMCs) with
wild-type and vpu-deficient HIV-1 virions. Flow cytometric anal-
yses revealed that an intact vpu gene had no effect on IRF-3 ex-
pression levels but reduced tetherin expression by about 40% (Fig.
3C and D). This magnitude of tetherin degradation is in agree-
ment with published data (22-26) and verified functional expres-
sion of Vpu.

It has previously been shown that Vpu reduces IRF-3-de-
pendent expression of IFN-B (10, 11). To examine this, we
cotransfected 293T cells with a pCG-based plasmid expressing
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HIV-1 WITO Vpu (or an empty vector as control) and con-
structs containing the firefly and Gaussia luciferases (in a 5:1
ratio) under the control of the IFN- and pTAL promoters,
respectively. We used the WITO vpu for these experiments
because it is derived from a transmitted/founder subtype B
HIV-1 group M strain (27) and is thus more relevant for the in
vivo situation than the T cell line-adapted molecular HIV-1
NL4-3 clone. Previous studies showed that the WITO Vpu is
highly active in degrading CD4 and counteracting tetherin
(12). The pTAL promoter construct contains a minimal TATA-
like promoter (pTAL) region from the herpes simplex virus
thymidine kinase (HSV-TK) promoter (Clontech) that is non-
responsive to IRF-3 and NF-kB, and this served as an internal
control for transfection efficiencies. For immune activation,
cells were infected with SeV at 24 h posttransfection, and the
luciferase activities were determined 1 day later. The firefly
luciferase signals were normalized to the corresponding
Gaussia luciferase signals. In agreement with published data
(10), SeV induced IFN-@ promoter activity >20-fold and Vpu
substantially reduced this activation (Fig. 4A). Control exper-
iments confirmed, however, that the IRF-3 expression levels
remained unchanged in the presence of WITO Vpu (Fig. 4B),
suggesting that Vpu may inhibit IFN- promoter activity by an
IRF-3-independent mechanism. Recently, it has been reported
that Vpu impairs viral immune sensing by suppressing teth-
erin-induced NF-kB activation (28). Thus, we examined
whether NF-kB may play a role in the induction of IFN-B. In
agreement with this possibility, we found that the IFN-3 pro-
moter contains binding sites for both IRF-3 and NF-«B (Fig.
4C). Thus, the reporter construct used in previous studies (11,
12) may not be specific for IRF-3 activation. To determine
whether the IFN-{ promoter is responsive to NF-«kB, the activ-
ity of the IFN- promoter-dependent firefly luciferase was ex-
amined after activation of NF-kB through cotransfection of a
constitutively active mutant of IKKB (IKK ca). Luciferase ac-
tivities were determined 2 days posttransfection as described
above. The results demonstrated that IFN-3 promoter activity
was about 40-fold enhanced by NF-kB activation and that this
effect was greatly diminished by Vpu (Fig. 4D). Notably, ex-
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FIG 3 Lack of vpu, nef, or vpr expression does not affect IRF-3 expression levels in HIV-1-infected T cells. (A) SupT1 cells were infected with virus stocks of
different NL4-3 IRES eGFP mutants. At 3 days postinfection, cells were permeabilized and stained for IRF-3 (Santa Cruz Biotechnology) to perform FACS
analysis. (B) Levels of IRF-3 expression in cells infected with the indicated mutant NL4-3 constructs relative to the wild-type virus (wt; set as 100%). Data are
means (= standard errors of the means [SEM]) derived from three independent experiments. (C) PBMCs were transduced with VSV-G-pseudotyped virus
stocks of wild-type or vpu-defective NL4-3 IRES eGFP mutants. PBMCs were stimulated with interleukin-2 and phytohemagglutinin for 3 days prior to
transduction. At 3 days postransduction, the cells were permeabilized and stained for IRF-3 (Santa Cruz Biotechnology) or tetherin (eBioscience) for FACS
analyses. (D) Mean levels (= SEM; n = 3) of IRF-3 and tetherin expression in cells transduced with the vpu-defective virus relative to the wild-type control (set

as 100%) are indicated.

pression of constitutively active IKKB did not increase the lev-
els of endogenous IRF-3 in transiently transfected 293T cells
(Fig. 4E). Next, we examined the effect of SeV and Vpu on
NF-kB activation with the help of a reporter vector that ex-
pressed firefly luciferase under the control of three NF-kB
binding sites. We found that SeV induced the NF-kB-depen-
dent firefly luciferase expression about 6-fold and that this in-
duction was greatly diminished in the presence of Vpu (Fig.
4F). The analysis of 293T cells cotransfected with NF-kB-de-
pendent firefly luciferase, the pTAL promoter Gaussia lucifer-
ase construct, and expression plasmids for constitutively active
IKKB and Vpu confirmed that Vpu inhibits NF-kB induction
(Fig. 4G). This inhibition is not allele specific and has been
confirmed for a variety of different primate lentiviral Vpu pro-
teins, including that encoded by the NL4-3 molecular clone (D.
Sauter and F. Kirchhoff, unpublished observations). These re-
sults confirmed that Vpu may suppress viral imnmune sensing
and the secretion of inflammatory cytokines such as IFN-3 but
further suggest that these effects are due to inhibition of NF-kB
activation rather than IRF-3 degradation.

In summary, we showed here that Vpu does not significantly
deplete IRF-3, even at very high expression levels. Notably, our
studies involved the analysis of primary human cells infected with
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wild-type and vpu-defective HIV-1 strains, which allowed us to
readily distinguish between infected and uninfected cells and to
monitor other Vpu functions, such as degradation of tetherin (12,
21). The fact that even this highly sensitive experimental system
failed to reveal a significant effect of Vpu on IRF-3 expression
levels strongly argues against Vpu-mediated degradation of IRF-3.
Our results confirm, however, that Vpu reduces viral immune
sensing (10). However, this effect involved modulation of NF-«kB
rather than IRF-3-dependent signaling. Vpu-mediated inhibition
of NF-kB signaling may explain most results from previous re-
ports (10, 11). Notably, data supporting a direct role of Vpu on
IRF-3 expression were sparse in the studies of Doehle and cowork-
ers, and the effects of HIV-1 infection on IRF-3 expression levels
have been variable for different data sets; for example, a complete
lack of IRF-3 protein expression was observed in some Western
blot assays, but IRF-3 was still readily detectable by microscopy
and remained unchanged in one coimmunoprecipitation experi-
ment in the presence of Vpu (10). Furthermore, unspecific effects
of virus infection on cell viability may have contributed to the
reduction of IRF-3 expression in some experiments. In either case,
our observation that Vpu inhibits NF-kB activation may have
important implications, since this transcription factor plays a ma-
jor role in the induction of antiviral immune responses. Currently,
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luciferase signals were generally normalized to the corresponding Gaussia lu-
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we are investigating whether the effect of Vpu on NF-kB activity is
conserved between different primate lentiviruses and the mecha-
nism(s) underlying this Vpu function.
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