Relationship between compressive loading and ECM changes in tendons

Sean Docking¹ Tom Samiric² Ebonie Scase¹ Craig Purdam³ Jill Cook¹

- ¹ School of Primary Health Care, Monash University, Peninsula Campus, Frankston, Australia
- ² School of Public Health and Human Biosciences, La Trobe University, Bundoora Campus, Melbourne, Australia
- ³ Department of Physical Therapies, Australian Institute of Sport, Bruce, Australia

Corresponding author:

Sean Docking School of Primary Health Care Monash University PO Box 527 Frankston 3199, Victoria, Australia e-mail: sean.docking@monash.edu

Summary

Tendons are designed to absorb and transfer large amounts of tensile load. The well organised, strong yet flexible, extracellular matrix allows for this function. Many tendons are also subject to compressive loads, such as at the entheses, as the tendon wraps around bony protuberances or from internal compression during tensile loading or twisting. Tendinopathy, the clinical syndrome of pain and dysfunction in a tendon is usually the result of overload. However, it is not only the tensile overload that should be considered, as it has been shown that compressive loads change tendon structure and that combination loads can induce tendon pathology. This review summarises how load is detected by the tenocytes, how they respond to compressive load and the resulting extracellular matrix changes that occur. Understanding the effect of compression on tendon structure and function may provide directions for future matrix based interventions.

KEY WORDS: compression, extracellular matrix, tendon, tendinopathy.

Tendon ECM changes and compression

Tendons are exposed to different types of load during normal function. Tensile load is the prime load that ten-

dons endure, often functioning as elastic tissue to decrease the metabolic costs of high level function. In addition to tensile loads, compressive load is high at the enthesis and at points where the tendon has bony contact¹. Pathology at these points of compression is common and some features of pathology in tensile and compressed regions are similar to fibrocartilage, which is a normal response to compressive load. To fully understand this response to compressive load, it is important to briefly review the structure of normal tendon.

Normal tendons are a three dimensional network of tendon cells (tenocytes), interspersed between tightly packed collagen fibres that are orientated along the line of tensile loading². Also present in the extracellular matrix (ECM) are proteoglycans, glycoproteins and water as well as a range of enzymes, growth factors and cytokines.

Tenocytes synthesise all ECM proteins of tendon tissue³ and are capable of expressing different phenotypes in response to differing mechanical stimuli⁴. The synthesis of the ECM components is based on load applied, therefore there is variation in tendon architecture and composition along the length of tendons and in tendons with different functions (e.g. elastic storage compared to positional tendons)⁵. The difference in structure in tendons that are subjected to differing mechanical stimuli clearly demonstrates a capacity of the tendon and its cell to detect and respond to load.

Cook and Purdam¹ examined the evidence for compression in the development of overuse tendinopathy and highlighted the many tendons subject to compression, particularly close to their insertion into bone. Tendons that develop tendinopathy where compression is an important factor include the Achilles insertion, proximal hamstring, tibialis posterior, biceps long head, supraspinatus, gluteus medius and minimus, adductor longus/rectus abdominus, peroneal tendons, quadriceps and pectorals. Given that most tendons are affected by compression, it is timely to review the cellular and matrix response to compressive loads. To understand the response, it is important to first appreciate how tendons detect, respond and transduce mechanical stimuli.

Overview of mechanotransduction in tendons

Mechanotransduction describes the conversion of a mechanical stimulus to a biochemical response and is important in tendon remodelling. The exact mechanisms by which tenocytes detect mechanical stimuli and thereby alter the ECM remains poorly understood². It has been shown that the composition and tendon mi-

cro-architecture is continually adapting to the loads applied or removed, and that this adaptive process is driven by the tenocyte.

Tenocytes are sparsely distributed spindle shaped cells located end to end in rows in channels between collagen fibres. Tenocytes possess numerous cell processes extending between the cells in the rows and between rows of cells allowing communication between cells via the cell processes and gap junctions⁶. These gap junctions allow rapid exchange of ions and signalling molecules between cells, which can induce stimulatory and inhibitory responses to tensile load⁷. Whether these gap junctions play a role in compressive load is yet to be determined.

Tenocytes not only respond to mechanical loads⁸ but to local stimuli (e.g., hydrostatic pressure changes, cytokines and growth factors)⁹. Different types of mechanical load may activate tenocytes differently (e.g. shear stress compared with substrate strain)¹⁰. That is, both the type and magnitude of the load may elicit a different cellular response.

The tenocyte has a number of mechanisms for detecting the mechanical environment such as their internal cytoskeleton, cellular projections (cilia), cell-cell communication and local/circulating chemical messengers. In the 1990's, Ingber described the 'tensegrity' model in an attempt to understand mechanotransduction and the role of cell deformation and the cytoskeleton¹¹⁻¹³. The internal cytoskeletal structure forms a network of struts and cables that are placed in a state of isometric tension, due to the forces applied on the cell by the surrounding ECM, allowing the cell to be responsive to mechanical stresses. When under tensile strain, Type I collagen production is up-regulated in cultured tenocytes, however when the cytoskeleton is disrupted with cytochalasin D, collagenase mRNA expression is shown to be upregulated indicating increased catabolism¹⁴. This three dimensional internal network can detect and respond to tensile strain; however the ability of the cytoskeleton to detect compressive stresses has not been investigated.

Primary cilia, solitary finger-like immotile projections that extend from the cell surface into the extracellular environment, have been observed in almost two-thirds of all tenocytes² and have a role in detecting tensile load. Cilia are microtubule based sensory organelles and shown to be aligned parallel to the collagen fibres forming a cantilevered beam with adhesions to the fibrillar matrix². The cilia have been shown to deflect in response to tensile loading and lengthen when deprived of stress suggesting these cellular projections play an important role in detecting load^{15, 16}. Although, it is not known how cilia react to compressive load in the tendon. In other tissues such as bone, cilia has been shown to detect fluid flow^{17, 18}, and this may be increased with compressive load.

How does tendon react to compression?

Pauwels¹⁹ described connective tissue differentiation (fibrous, fibrocartilage, cartilage and bone) in response to differing mechanical stimuli, which as a result deter-

mines the expression of an appropriate form of connective tissue. Tissues respond to different loading parameters by altering their matrix structure to be suitable to transmit and absorb the applied loads²⁰. Tendon, designed primarily to withstand tensile load, demonstrates several adaptive responses when subjected to compression. A substantial change in tendon composition and structure adjacent to a bony prominence has been described where the tendon is subjected to compressive forces. Gillard et al.21 demonstrated fibrocartilage at the compressive region (where the tendon wraps around the calcaneus and talus) within the normal flexor digitorum profundus tendon of the rabbit, with a return to normal fibrous tissue upon removal of compression through surgical intervention. Milz et al.²² also showed in the Achilles tendon that areas of fibrocartilage at, and proximal to, the insertion were normal adaptive changes.

What is the structure of compressed tendon (fibrocartilage)?

Tenocytes alter their phenotype as a result of compressive forces by becoming more rounded (chondrocytic) and express cartilage-like matrix proteins such as large proteoglycans and Type II collagen. They protect themselves by their position in lacunae and also by releasing large proteoglycans that slow the dissipation of fluid and reduce fluid shear stress (CJ Handley, personal communication²³). Large proteoglycans such as aggrecan and versican are found in higher concentrations in both compressed and pathological tendon. This suggests that compression may be critical in the overload that drives the onset of pathology. These large proteoglycans may help with cell and/or tendon protection by limiting loads on the cell and decreasing stress on the tendon. Small proteoglycans are still synthesised by the tenocytes, but there is a greater predominance of large proteoglycans. In addition to the ongoing slow production of Type I collagen, there is some production of Type II collagen in the areas subject to compression within tendons²⁴. Whether this production also exists in tendon pathology where compressive overload is a factor, is not yet known.

When does adaptation to compression become pathological?

A naturally occurring response to compressive load resulting in fibrocartilage occurs when tendon sustains compressive loads near a bony prominence that are not excessive but due to the normal positional and functional demands. The fibrocartilage is essential to allow the tendon to both tolerate the compressive load and maintain capacity to act in conjunction with the tensile load bearing part of the tendon.

When the compressive loads are excessive and/or suddenly increased in magnitude or volume, then tendinopathic changes occur. The cell and matrix changes in tendon pathology are described extensively. These

	Normal tendon	Fibrocartilage	Pathological tendon
Cells	Few spindle shaped cells	No cell proliferation Cells rounder	Cell proliferation Cells rounder, more endoplasmic reticulum
Proteoglycans	Minimal mostly decorin and biglycan	5-10-fold higher than in tensile tissue, mostly aggrecan	3-fold higher than tensile tissue, 25-fold higher metabolic rate of normal tendon ³² Biglycan and aggrecan increase, decorin maintained ³³
Collagen	Predominately Type I	Type I & II	Type I collagen, some Type II, substantial increase in Type III collagen
Collagen structure	Ordered collagen network	Ordered collagen network	Disorganised collagen network
Vascularity	Minimal	None to minimal	Variable but can be abundant

Table 1. Differences between fibrocartilage and tendon pathology (Reproduced	with permission from Cook and Purdam: Is
compressive load a factor in the development of tendinopathy?. British Journal	of Sport Medicine 2012; 46:53).

changes include cell activation and proliferation, which leads to substantial matrix changes²⁵. The cell proliferation drives a rapid increase in the production and degradation of large proteoglycans, with a half-life of around 2-3 days^{26, 27}. The cells preferentially synthesise Type III collagen (some Type I and II is produced also) leading to increased collagen turnover. As Type III collagen is thinner and less capable of fibril formation, collagen disorganisation and neurovascular ingrowth results²⁸.

These changes associated with pathology are sometimes referred to as fibrocartilaginous metaplasia^{29, 30} due to the similarity to fibrocartilage³¹. However, despite the role of compressive stresses in pathology and the obvious similarities between tendon pathology and fibrocartilage, the term fibrocartilaginous metaplasia in reference to pathology is incorrect due to key differences as listed in Table 1.

Compressive loads, in isolation and in combination with tensile load have been investigated for their ability to induce tendon pathology. Soslowsky et al.³⁴ investigated the effect of different loads on rat supraspinatus tendon and examined the effect of compressive load, tensile load and the combination of both. They showed that compressive load (by interposing tissue between the tendon and acromion) in itself had minimal effect in the tendon, tensile load (running downhill) was clearly detrimental, but the combination of loads was especially damaging to the tendon³⁵. Increased cross-sectional area and decreased mechanical properties were maximal in tendons exposed to both compressive and tensile loads. This has immediate clinical relevance as many tendons are subject to an environment of both tensile and compressive loads in relative combinations.

How does this relate to tendinopathy?

Normal adaptation to compression is present within the tibialis posterior tendon as it passes posterior to the medial malleolus and presents as an appropriate model for understanding compression in the development of tendinopathy^{36, 37}. Within these areas of fibrocartilage the presence of aggrecan binds with water, slowing the permeability of fluid and protecting the fibrillar and cellular components of the tendon from lateral forces²³. In contrast, the tensile region of the tendon is proposed to have higher fluid permeability due to low concentrations of aggrecan, allowing the tendon to withstand high tensile load. However, this zone of fibrocartilage is not well demarcated and a zone of transitional tissue exists between the two mechanical distinct regions. As this transitional zone is unsuited to compressive loads, this area of tendon may be implicated in the development of tendinopathy. If excessive loading (tensile, compressive or more likely combination load) is placed upon tendon, this may lead to the flow of fluid and the depletion of bound water within the high fluid permeability areas (tensile and transitional zones). Grigg et al.38 reported a reduction in the Achilles tendon AP diameter at these high fluid permeability areas (mid-substance of the tendon) as a result of repeated eccentric load. In pathological tendons, which have been shown to contain high levels of aggrecan, this alteration in AP diameter was not observed38.

The movement and loss of water through the tendon may expose the tenocyte to compressive load. In response to the loss of water from the tendon, the tendon may synthesise and release large water binding proteoglycans in an attempt to maintain homeostasis. This process has been shown to occur in a pathological state and occurs within days³⁹. As previously discussed, this would bind water to the matrix and protect the cellular and fibrillar components of the tendon against future insult by reducing the permeability of water through the matrix. Further loading to the tendon may perpetuate the response and result in extensive disorganisation of structure⁴⁰. Pathological features similar to fibrocartilage (cell rounding, aggrecan deposition) have been induced in the supraspinatus tendon in the rat within the transitional zones normally occupied by normal spindle shaped tenocytes⁴¹.

Compression may not only occur as a result of the tendon being adjacent to a bony prominence, but occur during tensile loading such as in the midsubstance of the Achilles tendon. Lavagnino et al.⁴² developed a finite computational model to measure mechanical stresses placed on the cell during tensile strain. Cellular tensile strain was suggested to be similar to the strain on the tendon yet shear stress (perpendicular to the long axis of the tendon) was significantly increased when strain rate was increased. The reason for this lateral shear stress was suggested to be due to fluid flow perpendicular to tensile strain. This increase in lateral compression placed on to the tenocyte may help explain why high elastic storage (high strain rate) movements are deleterious to the tendon and implicated in tendinopathy^{34, 43} yet heavy slow resistance loads (low strain rate) are more beneficial⁴⁴.

In summary, tendons adapt to the loads placed on them either with normal adaptive responses or with a pathological response. The exact mechanisms that lead to adaptation versus pathological change are not completely understood but are likely to be related to the frequency and type of load (with a combination of tensile and compression load being the most provocative). Characterisation studies of the clinical and imaging presentation of tendinopathy at various tendons^{45, 46} identify the site of compression adjacent to the tendon insertion as a predominant site of pathology, strongly suggesting that compression is an important consideration in the development and management of tendinopathy. Compression to the tendon is not solely isolated to the insertion and can occur due to normal anatomical bony prominences away from the insertion, due to alterations in biomechanics that induce compression from an adjacent bony prominence or changes to fluid flow and matrix structure. Compression is not responsible for all tendinopathies as some tendons lack a nearby bony prominence (e.g. flexor tendons of the forearm, proximal insertion of the patellar tendon). However, clearly compression appears to be implicated in pathology and results in substantial changes to the structure and function of the ECM and therefore of the tendon. Opportunities to reduce compressive loads on the tendon, especially when in combination with tensile loads may prevent a deleterious tendon response.

References

- Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy?. Br J Sports Med 2012; 46(3):163-168.
- Donnelly E, Ascenzi MG, Farnum C. Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. J Orthop Res 2010; 28(1):77-82.
- 3. Benjamin M, Ralphs JR. Tendons and ligaments-an overview. Histol Histopathol 1997; 12(4):1135-1144.
- Sarasa-Renedo A, Chiquet M. Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports 2005; 15(4):223-230.
- Matuszewski PE, Chen YL, Szczesny SE, Lake SP, Elliott DM, Soslowsky LJ et al. Regional variation in human supraspinatus tendon proteoglycans: decorin, biglycan, and aggrecan. Connect Tissue Res 2012; 53(5):343-348.
- 6. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR. Tendon cells in vivo form a three dimensional network of cell

processes linked by gap junctions. J Anat 1996; 189(Pt 3):593-600.

- Waggett AD, Benjamin M, Ralphs JR. Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol 2006; 85(11):1145-1154.
- Almekinders LC, Banes AJ, Ballenger CA. Effects of repetitive motion on human fibroblasts. Med Sci Sports Exerc 1993; 25(5):603-607.
- Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med 1992; 11(3):533-578.
- Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J et al. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage 1999; 7(1):141-153.
- Ingber DE. Integrins, tensegrity, and mechanotransduction. Gravitational and space biology bulletin: publication of the American Society for Gravitational and Space Biology 1997; 10(2):49-55.
- Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59:575-599.
- Ingber DE. Control of capillary growth and differentiation by extracellular matrix. Use of a tensegrity (tensional integrity) mechanism for signal processing. Chest 1991; 99(3 Suppl):34S-40S.
- Lavagnino M, Arnoczky SP. In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res 2005; 23(5):1211-1218.
- Lavagnino M, Arnoczky SP, Gardner K. In situ deflection of tendon cell-cilia in response to tensile loading: an in vitro study. J Orthop Res 2011; 29(6):925-930.
- Gardner K, Arnoczky SP, Lavagnino M. Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 2011; 29(4):582-587.
- Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review. Ann Biomed Eng 2008; 36(12):1978-1991.
- Hoey DA, Chen JC, Jacobs CR. The primary cilium as a novel extracellular sensor in bone. Frontiers in endocrinology 2012; 3:75.
- 19. Pauwels F. Biomechanics of the Normal and Diseased Hip. Berlin: Springer-Verlag; 1976.
- Majima T, Marchuk LL, Sciore P, Shrive NG, Frank CB, Hart DA. Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J Orthop Res 2000; 18(4):524-531.
- Gillard GC, Reilly HC, Bell-Booth PG, Flint MH. The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 1979; 7(1):37-46.
- Milz S, Rufai A, Buettner A, Putz R, Ralphs JR, Benjamin M. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat 2002; 200(Pt 2):145-152.
- Wren TA, Beaupre GS, Carter DR. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev 2000; 37(2):135-143.
- Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments-an adaptation to compressive load. J Anat 1998; 193(Pt 4):481-494.
- Cook JL, Feller JA, Bonar SF, Khan KM. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes' patellar tendons. J Orthop Res 2004; 22(2):334-338.
- Samiric T, Parkinson J, Ilic MZ, Cook J, Feller JA, Handley CJ. Changes in the composition of the extracellular matrix in patellar tendinopathy. Matrix Biol 2009; 28(4):230-236.
- Shim JW, Elder SH. Influence of cyclic hydrostatic pressure on fibrocartilaginous metaplasia of achilles tendon fibroblasts. Biomech Model Mechanobiol 2006; 5(4):247-252.

- Khan KM, Cook JL, Bonar F, Harcourt P, Astrom M. Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 1999; 27(6):393-408.
- Jarvinen M, Jozsa L, Kannus P, Jarvinen TL, Kvist M, Leadbetter W. Histopathological findings in chronic tendon disorders. Scand J Med Sci Sports 1997; 7(2):86-95.
- Galliani I, Burattini S, Mariani AR, Riccio M, Cassiani G, Falcieri E. Morpho-functional changes in human tendon tissue. European journal of histochemistry: EJH 2002; 46(1):3-12.
- Maffulli N, Testa V, Capasso G, Ewen SW, Sullo A, Benazzo F et al. Similar histopathological picture in males with Achilles and patellar tendinopathy. Med Sci Sports Exerc 2004; 36(9):1470-1475.
- Parkinson J, Samiric T, Ilic M, Cook J, Feller J, Handley C. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. Arthritis & Rheumatism 2010; 62(10):3028-3035.
- Samiric T, Parkinson J, Ilic MZ, Cook J, Feller JA, Handley CJ. Changes in the Composition of the Extracellular Matrix in Patellar Tendinopathy. Matrix Biology. 2009; 28(4):230-236.
- Soslowsky LJ, Thomopoulos S, Tun S, Flanagan CL, Keefer CC, Mastaw J et al. Neer Award 1999. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg 2000; 9(2):79-84.
- Soslowsky LJ, Thomopoulos S, Esmail A, Flanagan CL, Iannotti JP, Williamson JD, 3rd et al. Rotator cuff tendinosis in an animal model: role of extrinsic and overuse factors. Ann Biomed Eng 2002; 30(8):1057-1063.
- Giori NJ, Beaupre GS, Carter DR. Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 1993; 11(4):581-591.
- 37. Wren TA, Beaupre GS, Carter DR. Tendon and ligament

adaptation to exercise, immobilization, and remobilization. J Rehabil Res Dev 2000; 37(2):217-224.

- Grigg NL, Wearing SC, Smeathers JE. Eccentric calf muscle exercise produces a greater acute reduction in Achilles tendon thickness than concentric exercise. Br J Sports Med 2009; 43(4):280-283.
- Parkinson J, Samiric T, Ilic MZ, Cook J, Feller JA, Handley CJ. Change in proteoglycan metabolism is a characteristic of human patellar tendinopathy. Arthritis Rheum 2010; 62(10):3028-3035.
- Hamilton B, Purdam C. Patellar tendinosis as an adaptive process: a new hypothesis. Br J Sports Med 2004; 38(6):758-761.
- Scott A, Cook JL, Hart DA, Walker DC, Duronio V, Khan KM. Tenocyte responses to mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum 2007; 56(3):871-881.
- Lavagnino M, Arnoczky SP, Elvin N, Dodds J. Patellar tendon strain is increased at the site of the jumper's knee lesion during knee flexion and tendon loading: results and cadaveric testing of a computational model. Am J Sports Med 2008; 36(11):2110-2118.
- Kujala UM, Sarna S, Kaprio J. Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med 2005; 15(3):133-135.
- Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P et al. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med 2010; 38(4):749-756.
- Ohberg L, Alfredson H. Sclerosing therapy in chronic Achilles tendon insertional pain-results of a pilot study. Knee Surg Sports Traumatol Arthrosc 2003; 11(5):339-343.
- Kong A, Van der Vliet A, Zadow S. MRI and US of gluteal tendinopathy in greater trochanteric pain syndrome. European radiology 2007; 17(7):1772-1783.