
EXpectation Propagation LOgistic REgRession (EXPLORER):
Distributed Privacy-Preserving Online Model Learning

Shuang Wanga,1,*, Xiaoqian Jianga,1,**, Yuan Wua,1, Lijuan Cuia,b, Samuel Chengb, and
Lucila Ohno-Machadoa,1

Shuang Wang: shw070@ucsd.edu; Xiaoqian Jiang: x1jiang@ucsd.edu; Yuan Wu: y6wu@ucsd.edu; Lijuan Cui:
lj.cui@ou.edu; Samuel Cheng: samuel.cheng@ou.edu; Lucila Ohno-Machado: machado@ucsd.edu
aDivision of Biomedical Informatics, University of California, San Diego, San Diego, CA, 92093
bSchool of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, 74135

Abstract
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for
distributed privacy-preserving online learning. The proposed framework provides a high level
guarantee for protecting sensitive information, since the information exchanged between the
server and the client is the encrypted posterior distribution of coefficients. Through experimental
results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature
selection etc.) as the traditional frequentist Logistic Regression model, but provides more
flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than
having to retrain the entire data set when new observations are recorded. The proposed
EXPLORER supports asynchronized communication, which relieves the participants from
coordinating with one another, and prevents service breakdown from the absence of participants or
interrupted communications.
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1. INTRODUCTION
Frequentist logistic regression [1] has a long and successful history of useful applications in
biomedicine, including various decision support applications, e.g., anomaly detection [2]
survival analysis [3], and early diagnosis of myocardial infarction [4]. Despite its simplicity
and interpretability, the frequentist logistic regression approach has limitations. It requires
training data to be combined in a centralized repository and cannot directly handle
distributed data (the scenario in many biomedical applications [5]). It has been shown in last
decade that data privacy cannot be maintained by simply removing patient identities. For
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example, Sweeney showed that a simple combination of [date of birth, sex, and 5-digit zip
code] was sufficient to uniquely identify over 87% of US citizens [6]. Due to privacy
concerns, training data in one institute cannot be exchanged or shared with other institutes
directly for the purposes of global model learning. To address such a challenge, many
privacy-preserving models have been studied [7, 8, 9, 10]. Among the most popular ones,
privacy-preserving methods based on secure multiparty computing (SMC) [11, 12, 13, 14,
15] (i.e., building accurate predictive models without sharing raw data) do not change the
results and seem practical compared to solutions based on data generalization and
perturbation [16, 17, 18, 19] that change results.

For distributed model learning with multiple sites, a common scenario is that each site has a
subset of records with the same fields, which is usually referred to as horizontally
partitioned data. In this paper, we focus on the horizontally partitioned data for distributed
logistic regression learning in Bayesian paradigm. During the past decade, numerous
privacy-preserving/secure distributed frequentist regression models for horizontally
partitioned data [20, 21, 22, 23, 24, 25, 26] have been studied. For example, the
DataSHIELD framework [20] provides a secure multi-site regression solution without
sacrificing the model learning accuracy. However, in the above multi-site regression
frameworks, the information matrix and score vector exchanged among multiple sites may
result in information leakage during each learning iteration [27, 28]. To mitigate privacy and
security risks, Karr and Fienberg et. al. studied numerous SMC based distributed regression
model [21, 22, 23, 24, 25]. Unfortunately, as mentioned by El Emam et.al in [26],
aforementioned approaches can still potentially leak sensitive personal information.
Therefore, the authors [26] proposed a secure distributed logistic regression protocol to offer
stronger privacy/security protection. The computational complexity of the above protocol
grows exponentially with the increase of site number.

The closest work for the method presented here is the Grid LOgistic REgression (GLORE)
model [29] and the Secure Pooled Analysis acRoss K-site (SPARK) protocol [26], which
train frequentist logistic regression model in a distributed, privacy-preserving manner.
GLORE leverages non-sensitive decomposable intermediary results (i.e., calculated at an
individual participating site) to build an accurate global model. However, as GLORE does
not use any SMC protocol, there is no provable privacy guarantee. SPARK protocol uses
secure building block (e.g., secure matrix operation, etc.) to develop a secure distributed
logistic regression protocol. However, SPARK will not scale well for a large distributed
network, as its complexity grows exponentially with the network size. Both GLORE and
SPARK require synchronized communication among participants (i.e., all parties had to be
simultaneously online for multiple iterations of training until convergence). Additionally,
the frequentist logistic regression approach is inefficient in learning data that are frequently
being updated, because the model needs to be completely retrained when they receive any
additional observations.

We propose a Bayesian alternative for the distributed frequentist logistic regression model,
which we call EXpectation Propagation LOgistic REgRession (EXPLORER). EXPLORER
offers distributed privacy-preserving online model learning. The Bayesian logistic
regression model was described previously by Ambrose et al. [30], who compared it with
the frequentist logistic regression model in terms of performance. Marjerison also discussed
Bayesian logistic regression [31] and suggested a Gibbs sampling based optimization, which
unfortunately is very time-consuming operation. However, both papers assumed a
centralized computation environment, and privacy was not taken into consideration. In
comparison, EXPLORER focuses on privacy preservation and it is based on an efficient
state-of-the-art inference technique (i.e., expectation propagation [32]). To the best of our
knowledge, EXPLORER is the first paper addressing distributed logistic regression in the
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Bayesian setting. EXPLORER handles some shortcomings of the frequentist logistic
regression approach and other frequentist SMC models, as illustrated in Table 1.

The major contributions of this paper are as follows: we propose a Bayesian approach for
logistic regression that takes the privacy issue into account. Just like GLORE and SPARK,
the EXPLORER model learns from distributed sources, and it does not require access to raw
patient data. In addition, it provides online learning capability to avoid the need for training
on the entire database when a single record is updated. Furthermore, EXPLORER supports
asynchronous communication so that participants do not have to coordinate one another.
This prevents service breakdowns that result from absence of participants or communication
interruptions. Finally, we introduced Secured Intermediate iNformation Exchange (SINE)
protocol to enhance the security of the proposed EXPLORER framework, in order to further
reduce the risk of information leak during the exchange of unprotected aggregated statistics.
The proposed SINE protocol offers provable security and light-weighted computation
overhead to ensure the scalability of the EXPLORER framework.

2. Methodology
We start with a quick review of the logistic regression (LR) model. Assume a training
dataset D = {(x1, y1), (x2, y2), · · ·, (xm, ym)}, where yi ∈ {0, 1} and xi are the binary label
and the feature vector of each record, respectively, with i = 1, · · ·, m. We denote by Y = {y1,
· · ·, ym} the set of binary labels. The posterior probability of a binary event (i.e., class label)
yi = 1 given observation of a feature vector xi can be expressed as a logistic function acting
on a linear function βT xi so that

(1)

where the parameter vector β corresponds to the set of coefficients that need to be estimated
and that will be multiplied by the feature vector xi (i.e., βTxi) to make predictions. In this
paper, we drop the feature vector xi from the likelihood function and denote P (yi = 1 | xi, β)
as P (yi= 1 | β) to allow a more compact notation.

To estimate β from training datasets, existing learning algorithms can be categorized into
two classes, Maximum Likelihood (ML) estimation and Maximum a Posterior (MAP)
estimation. The procedures of estimating model coefficients through ML and MAP
estimators are elaborated in the supplementary materials - Sections S3 and S4. In this paper,
we focus on the MAP estimation for the proposed EXPLORER framework.

3. Framework of EXPLORER
In this section, we introduce the EXPLORER framework based on a factor graph, which
enables the independent inter-site update of all the participating sites without performance
loss. In a nutshell, a factor graph is a bipartite graph (see supplementary materials - Sections
S1 and S2) that comprises two different kinds of nodes (i.e., a factor node (square) and a
variable node (circle)). In a factor graph, each edge must connect a factor node and a
variable node. The joint probability over all variables can be expressed as products of some
factor functions in which each contains only a subset of all variables as arguments and is
represented by a factor node. Each variable node expresses a random variable. EXPLORER
requires two phases: initially the updates on coefficients must be made on each site (i.e.,
intra-site update), and then updated across sites (i.e., inter-site update).
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3.1. Intra-site update
Although we are interested in the distributed online model learning, let us first explain how
each participating site updates its own posterior distribution (i.e., intra-site update). In
general, the posterior probability of the j-th site with j = 1, 2, · · ·, n can be expressed as

(2)

where we introduce mh<sub>j</sub>→B<sub>j</sub>(βj) and  to capture the prior
probability and the likelihood function, respectively. Moreover, mj is the total number of
records in the first j sites with m0 = 0. However, the direct evaluation of the above posterior
is mathematically intractable, thus we need to resort to the Expectation propagation (EP)
algorithm, a deterministic approximate inference method. In the proposed EXPLORER

framework, we introduce an approximate function  representing a normal distribution

for each true likelihood function . Therefore, the approximate posterior distribution
can be expressed as

(3)

Based on the above factorization, we first introduce a variable node Bj (i.e., site header) to
capture the approximate posterior distribution q(βj). We introduce extra factor nodes hj and

 to capture the prior probability and the likelihood function (see Fig. 1), respectively. The

update of the approximate likelihood function  relies on the factor graph based-EP
algorithm (see Appendix A. for details).

The details of intra-site update rules in EXPLORER are listed in Algorithm 1 (A1). Since
we are using the Normal distribution as our approximate distribution, messages exchanged
between the factor nodes and the variable nodes can be parameterized by the mean vector
and its covariance matrix. The intra-site update starts from the initialization step (A1: line
1), where all the messages are initialized as uniform distributions with zero mean and
infinite variance for a new model learning task. However, for an online learning task with
previous results, we need to initialize the messages using their previous status. The
approximate posterior is initialized as the product of prior and all the approximate likelihood
functions. We can iteratively update the approximate posterior distribution of each site until
it converges through A1 from lines 2 to 7. The key idea of EP is to sequentially update the
approximate posterior distribution qi (βj) by incorporating a single true likelihood function

 as shown in line 5. For more details about EP-based LR, please refer to Appendix A.

Algorithm 1

Intra-site Posterior update in EXPLORER

1:

Initialize : each approximate likelihood function  and approximate posterior

n
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2: Repeat

3:  for all records i = mj−1 + 1, · · ·, mj do

4:

   Get partial posterior function q\i (βj) by removing the approximate factor  from the approximate

posterior: 

5:

   Update q(βj) by incorporating a single true likelihood function  according to Assumed Density

Filtering (ADF) [33]: 

6:

  Set the approximate factor: 

7:  end for

8: Until parameters converge

3.2. Inter-site update
To achieve asynchronous inter-site update (see Fig. 1), we introduce an additional variable
node B (i.e., server node) to capture the global posterior probability learnt from all sites.
Then, we connect each factor node hj with the server variable node B for exchanging
messages among sites. We assume that all sites share the same prior information, which is
captured by the factor node g0. The inter-site update of each approximate posterior qj (βj)
relies on a powerful message passing algorithm (i.e., belief propagation (BP)), which has
been widely used in Bayesian inference on factor graphs (see Appendix B for details). Based
on this framework, we can update sites in an asynchronous way.

Algorithm 2

Inter-site posterior update in asynchronous EXPLORER

1: Global initialization:
 Initialize all the messages mB→h<sub>j</sub>(β) and mh<sub>j</sub>→B (β) between server variable node B and
clients factor nodes hj, where the subscriptions B → hj and hj → B indicate the message directions.

2: Local initialization for all the online sites:

3:

Initialize messages mB<sub>j</sub>→h<sub>j</sub> (β) and each approximate likelihood function  with i = mj−1
+ 1, · · ·, mj.

4: Repeat:

5: for all the online sites (parallel update)

6:  Update intra-site message: mh<sub>j</sub>→ B<sub>j</sub>(βj)= ∫ δ(β, βj) mB→h<sub>j</sub> (β) dβ

7:

 Set approximate posterior: 

8:  Update approximate posterior qj(βj) according to Algorithm 1.

9:  Update intra-site messages at variable node Bj :
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mBj→h j
(βj) = qj (βj) / mh j→Bj

(βj)

10:  Upload message at factor node hj :

mhj→B (β) = ∫δ (β, βj) mBj→h j
(βj) dβj.

11: end for

12: Send out message at server node B:

mB→hj
(β) = mg0→B(β)∏k=1

k≠ j

n
mhk→B(β).

13: Until parameters converge

14: Get the final approximate posterior distribution by multiply- ing all the incoming messages at the server
node B.

The details of the proposed asynchronous EXPLORER are listed in Algorithm 2 (A2). The
asynchronous inter-site update starts from the global and local initialization steps (A2: line 1
to 2), which follow the same initialization rules as those for the intra-site update. Then, we
can iteratively update the approximate posterior distribution of each site until it converges
via A2 from lines 4 to 12. In A2 line 6, we choose delta function δ(βj, β) as a factor function
of the factor node hj, which follows the suggestion in [34] for mathematical convenience
(see Appendix B. for details). Lines 6 and 7 show the factor node and variable node updates
according to the BP algorithm. In line 8, we perform an intra-site update according to
Algorithm 1. Then, in line 9, we update the message from variable node Bj to factor node hj.
Finally, factor node hj commits its message to the server node according to line 10, where
the message can be interpreted as the belief that the server node should take value β from the
j-th site. When the server node has collected all the updates from the corresponding online
sites, it can send the aggregated information back to each site as in line 12. Finally, the
approximate posterior can be obtained by multiplying all the incoming messages at the
server node B as in line 14. The asynchronous EXPLORER allows client sites to
dynamically shift from online to offine modes as needed. The impacts of sites with different
data size on convergence speed have been studied in the results section. The proposed
EXPLORER framework is based on the EP algorithm, which is guaranteed to converge to a
fixed point for any given dataset [32].

3.3. Distributed feature selection
Feature selection is important to logistic regression analysis. In this sub-section, we
introduce the distributed forward feature selection (DFFS) protocol, which is based on the
traditional forward feature selection (FFS) algorithm [35], but tailored for the EXPLORER
framework. To better understand DFFS protocol, let us start with a quick review of
traditional FFS algorithm.

Suppose there are d candidate features (i.e., xall = {x1, x2, · · ·, xd}). In the first iteration, the
FFS algorithm starts by taking only one feature into account at each time, so that one can
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find the best individual feature  for s1 = 1, 2, · · ·, d, which could result in the best
classification performance. Then, in the second iteration, FFS algorithm tries to find the best

subset  in terms of classification performance, where xs<sub>2</sub> is chosen
from the remaining d − 1 features in xall. We repeat the aforementioned procedures, until the

currently best subset  at iteration k + 1 degrades the classification

performance obtained through the subset . Finally, the

 is treated as the output of FFS algorithm. In traditional centralized
regression model, the classification performance is usually measured through averaged
classification accuracy using cross validation. However, in a distributed environment, it is
usually infeasible to perform cross validation over distributed sites, which motivated us to
develop the following DFFS protocol.

In our proposed DFFS, suppose there are n participant sites. Then, we create n EXPLORER
instances at the server side with n − 1 participant sites in each instance in parallel, where the
j-th site is excluded from the j-th EXPLORE instance, but it serves as the testing data for the
j-th EXPLORE instance. For example, given a candidate feature subset with l features, the j-
th EXPLORER instance can first learn a logistic regression model based on all the
participant sites except the j-th site. The j-th EXPLORER instance can send its learnt model
to the j-th site to verify its classification performance. Then, the j-th site can report the
classification accuracy back to the server. It is worth mentioning that the information
exchanged between the j-th site and the server node are aggregated information. Since there
are n parallel EXPLORER instances at the server side, the server can calculate an averaged
classification accuracy based on the reports from each instance, which is analogous to a
centralized n cross validation. The averaged classification accuracy can be used as the

criteria for selecting the best  at the l DFFS iteration. Then, all the
EXPLORER instances will move to the (l + 1)-th DFFS iteration. By repeating the above

procedures, we can find the best feature subset  with the maximum
classification performance.

3.4. Secured intermediate information exchange
The information exchanged among all participant sites in EXPLORER framework are the
posterior distribution of the model parameter β, which is assumed as normal distribution and
captured by the mean vector and the covariance matrix. Compared with raw data, the
posterior distribution (i.e., the mean vector and the covariance matrix) only reflects the
aggregated information of the raw data rather than information based on individual patients,
which has already reduced the privacy risk. However, as identified by previous studies [27,
28, 26], aggregated information may potentially leak private information. We propose a
Secured Intermediate iNformation Exchange (SINE) protocol as an optional module for
further enhancing the confidentiality of the EXPLORER framework.

As we illustrated in the Section 3.2, the posterior distribution of the global model parameter
is calculated by multiplying all the incoming messages from n sites at the server node. In the
context of Gaussian distribution, the global distribution obtained through the multiplication
of all the incoming messages [36] can be captured by its mean vector μ and covariance
matrix V as follows,

(4)
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(5)

where Vj and μj are the covariance matrix and the mean vector obtained from the j-th site (j
= 1, 2, · · ·, n), respectively. The proposed SINE protocol is mainly based on the modified
secure sum algorithm, which offers provable security guarantee [37, 24].

The SINE protocol, as shown in Fig. 2, begins by generating a pair of secure random

matrices  (with size d × d) and  (with size d × 1) at each participant site before the start
of each learning iteration, where d is the dimension of μj. Meanwhile, the server also

generates a pair of random matrix  and random vector  with the same size as these of

 and . Then, the server sends  and  to a randomly selected site (e.g., the j-th site).

The j-th site adds its own  and  with the received  and  and sends the summation
to its neighboring site according to the standard secure sum protocol. Finally, the last site

send its summation (i.e.,  and ) back to the server node. According to the

secure sum protocol, the server can easily recover the summation  and , as

 and  were generated at the server side.

Now, for secure information exchange among client sites and server, each client site can

send out the secured information  and  instead of the raw

information  and , respectively. Then, at the server side, one can easily recover the

true summation  and , where the

aggregations of  and  are

obtained in the current step and the summations of  and  are already
obtained in the previous step. It is worth mentioning that unlike frequentist LR where the
information matrix must be passed through all participant sites, in EXPLORER, each Vj and
μj can be updated independently by each site and aggregated at the server node, which
reduces the privacy and collusion risks by avoiding the inter-site communication of sensitive
information. The following is the proof of security of the proposed SINE protocol based on
secure summation principle [38].

Proof of security of the SINE protocol—Let’s suppose rk,l and vk,l are two elements at

the k-th row and the l-th column of the secure random matrix  and the covariance matrix

, respectively. We also suppose that vk,l is known to lie in the range [−10M, 10M), which
can be validated by selecting a significantly large number for M (e.g., M = 50). Then, rk,l is
a randomly selected floating number with maximum precision at 10−N-th digits from the
range [−10M, 10M), which means there are total 2 × 10N+M possible choices for any rk,l.

Given the summation  at the attacker side, the probability to gain the original
information (i.e., v̂k,l = vk,l) can be expressed as,
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where v̂k,l and r ̂k,l are the estimates of vk,l and rk,l at the attacker side, respectively.

Moreover, since there are total d2 elements in , the probability to recover the original
covariance matrix can be calculated as

, where  is the estimate of 
at the attacker side. Then, we can always select some large numbers for both N and M (e.g.,

M +N = 100), such that the probability  that an attacker can gain the original
information is sufficiently small.

4. Experimental results
We evaluated EXPLORER in 5 perspectives with 6 simulated datasets and 5 clinical
datasets. Specifically, the perspectives we evaluated include: 1). distributed feature
selection, 2). modeling interaction, 3). classification performance, 4). model coefficients
estimation, and 5). model convergence. A summary of these 6 simulated and 5 clinical
datasets [1, 4, 39] can be found in Table 2, which includes the information of dataset
description, number of covariates, number of samples and class distribution for each dataset.
The rule of simulated dataset generation will be introduced within each experimental task,
where we considered three different types of simulated datasets i.e., independent and
identically distributed (i.i.d.) dataset [40], correlated dataset [41] and binary dataset [42].
Moreover, Table 3 shows the detailed descriptions of covariates in each clinical dataset used
in our experiment, where numerical covariates are indicated with “*” and categorical
variables are converted into binary covariates through dummy coding [43]. For example, a
categorical variable with c possible values (e.g., 0, 1 and 2 for c = 3), in dummy coding, will
be converted into c−1 binary covariates (e.g., 0 → (0, 0), 1 → (1, 0) and 2 → (0, 1) ).

4.1. Dataset preparation
In our experiment, each training dataset was created by randomly choosing 80% records
from a given dataset and the corresponding testing dataset was generated through the
remaining 20% records. Moreover, in order to obtain more reliable results and to be able to
compare the results in a statistical way, we conducted each experimental task over 30 trials
through the aforementioned method of training/testing datasets generation. Unless explicitly
stated, each training dataset was evenly partitioned [29, 26] among all the participant
EXPLORER sites. For example, if there are m records in a given training dataset and n
participant sites in a task, the sub-dataset possessed by each site is equal to , where we
assume that m is divisible by n. In addition, for all 2-site EXPLORER setups of datasets 3 to
11, the difference between means (DBM) of class distribution and covariates of the 2 sites
has been shown in Figs. D.6 to D.14 in Appendix D, which offers an intuitive sense about
how heterogeneous these sites are.

4.2. Distributed feature selection
Feature selection is an important part of logistic regression analysis. In this sub-section, we
studied the distributed feature selection capability of a 5-site EXPLORER setup based on a
simulated dataset with 5 covariates, 500 number of records (i.e., the dataset 1 in Table 2).
The simulated dataset 1 was generated by drawing samples from 5 independent normally
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distributed variables [44] with zero means and unit variances, where similar dataset
generation strategy has been repeatedly employed in many previous studies [29, 26, 40].
Then, we randomly drew 4 values for the model parameter β from a normal distribution with
mean 0 and variance 5 as β = [1.7813, −2.2428, 0, 3.1668, 0, −1.8701]T, where β0 = 1.7813
is the intercept, β2 and β4 are assigned by zeros for the purpose of studying feature selection.
Finally, the outcome variable (i.e., classification label) was drawn from a normal
distribution with probability of success equal to π(βxi), where π(·) is a logistic function as
show in (1) and xi is a vector composed of a constant “1” followed by the aforementioned 5
covariates. As we are interested in the study of feature selection in this task, we treat all 500
records in the simulated dataset 1 as training data and randomly split them into 5 sub-
datasets with equal sizes for all participant EXPLORER sites (i.e., 100 records per site) in
each experimental trial.

Table 4 shows the feature selection results for simulated dataset 1 using Ordinary LR with
FFS algorithm and EXPLORER with DFFS protocol as described in Section 3.3, where β′
and β″ are model parameters averaged over 30 trials learnt by Ordinary LR and
EXPLORER, respectively, the Prob. indicates the chance of a given covariate to be selected
by either FFS or DFFS algorithms during the 30 trials, and two-sample Z-tests are
performed between β′ and β″. In two-sample Z-test, the null and the alternative hypotheses
are “β′ = β″” and “β′ ≠ β″”, receptively. In Table 4, we can see both FFS algorithm and
the proposed DFFS protocol achieved similar feature selection performance in terms of both
qualitative and statistical comparisons, where the model parameters (i.e., β1 to β5) used for
generating outcome variable are also listed as a reference. The two-sample Z-test results
show that there is no statistically significant difference between β′ and β″. Moreover, for
both FFS and DFFS algorithms, the covariates with non-zero model parameters (i.e., βi ≠ 0
for i = 1, 2, · · ·, 5) are fully selected over all 30 trials (i.e., Prob. equals to 1). However, for
these covariates with zero model parameters (i.e., βi = 0 for i = 1, 2, · · ·, 5), the chances of
selection are quite small (e.g., Prob. is less than 0.3). As we have demonstrated the DFFS
capability of the proposed EXPLORER framework, in the rest of our experiments, we
assume that all covariates in remaining datasets have been pre-selected.

4.3. Model with interaction
Interaction effects in regression reflects the combined impact of variables, which is very
important for understanding the relationships among the variables. In this section, we
studied a 4-site EXPLORER setup with interaction based on a simulated dataset (i.e., the
dataset 2 in Table 2). The simulated dataset 2 was generated by first drawing 500 samples
from 3-dimension multivariate normal distribution (i.e., x1, x2, x3) with zero means and
randomly generated covariance matrix. Second, we consider the interaction between x1 and
x2, x1 and x3, and x2 and x3. Finally, a record vector xi can be represented as xi = [1, x1, x2,
x3, x1x2, x1x3, x2x3]T. Moreover, we randomly drew 7 values for the model parameter β =
[−1.2078, 2.9080, 0.8252, 1.3790–1.0582, −0.4686, −0.2725]T, where β0 = −1.2078 is the
intercept. Then, the outcome variable was drawn from a normal distribution with probability
of success equal to π(βxi).

In Table 5, we performed side-by-side comparisons of Hosmer-Lemeshow (H-L) Goodness-
of-fit test [45] (i.e., H-L test), and AUCs between model learning with and without
interaction for both ordinary LR and EXPLORER. In an H-L test, the null and alternative
hypotheses are “the model fits the data well” and “the model does not provide an adequate
fit”, respectively. In a two-sample Z-test of AUCs, the null and alternative hypotheses are
“AUCs of ordinary LR and EXPLORER are equal” and “AUCs of both models are
unequal”, respectively. In Table 5, we can see that both EXPLORER and ordinary LR
achieve good H-L test performances. For AUCs, the two-sample Z-test results show that
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there is no statistically significant difference between AUCs of ordinary LR and
EXPLORER. As the simulated dataset 2 was generated with interaction, the AUCs of model
with interaction outperform that of model without interaction, which demonstrated that
interaction would be an important factor in some regression studies.

4.4. Classification performance
Since EXPLORER is proposed for distributed privacy-preserving classification, we are very
interested in its classification accuracy and how well the model fits the datasets compared
with ordinary LR. In this section, the classification performances are verified over 4
simulated datasets and 4 clinical datasets for total 8 datasets. A brief summary of all
aforementioned 8 datasets can be found in Table 2, and the detailed descriptions of
covariates of each clinical dataset have been listed in Table 3. Besides the simulated i.i.d.
and correlated datasets used in previous tasks, we also included several simulated binary
datasets using binomial distribution in this task. Moreover, we carefully chose these
simulated and clinical datasets to provide a wider range of class distribution, sample size and
number of covariates. All the model parameters β’s for generating outcome variables are
randomly sampled from the normal distributions. In this experimental task, we only
considered the 2-site EXPLORER setup, where the impact of using different number of
participant EXPLORER sites on the model convergence will be discussed shortly in Section
4.6.

First, the H-L test [45] was used to verify the model fit for the proposed EXPLORER. In our
experiment, we perform an H-L test at a 5% significance level. Table 6 shows the H-L tests
results (i.e., test statistic and p-value) for both EXPLORER and ordinary LR based on
aforementioned 8 datasets. There are no conspicuous differences on p-value and test statistic
between EXPLORER and ordinary LR for all 8 datasets.

Second, Table 7 illustrates both the qualitative and statistical comparison of AUCs between
Ordinary LR and 2-site EXPLORER based on 8 datasets, where the standard deviation of
AUCs are obtained over 30 trials. For qualitative comparison, we can see the maximum
difference of AUCs between ordinary LR and EXPLORER is only 0.007. Similarly, in two-
sample Z-test of AUCs between ordinary LR and EXPLORER, no statistically significant
differences have been observed.

4.5. Model coefficients estimation
From results above, we demonstrated that the proposed EXPLORER can achieve similar
classification and model fit performance when compared with the ordinary LR model.
However, in biomedical research, another important aspect of LR is the interpretability of
the estimated coefficients β, where the linear function βT xi can be interoperated as the log
odds ratios of a binary event yi = 1. Thus, it is also very important to verify that estimated
coefficients using the proposed EXPLORER are compatible with those of ordinary LR.

Tables 8 to 11 compare the estimated model coefficients β, their standard deviation over 30
trials, two-sample Z-test of these estimated coefficients between the ordinary LR and 2-site
EXPLORER on simulated datasets 3 to 6. The same results for clinical datasets 7 to 10 can
be found in Appendix C through Tables C.13 to C.16. The results shown in Tables 8 to 11
and Tables C.13 to C.16 further confirm that EXPLORER and ordinary LR are compatible.

4.6. Model Convergence
In this section, we focus on the study of convergence for the inter-site update. Although, as
shown in [32], the EP algorithm can always converge to a fixed point, we wanted to verify
through experimental results that the convergence accuracy of EXPLORER does not depend
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on the data order or on the number of participating sites. Table 12 shows the two-sample Z-
tests of estimated coefficients between 2- and 4-site, 2- and 6-site, and 2- and 8-site
EXPLORER setups, respectively, where the dataset partitioning stragetries can been found
in the Section 4.1. We can see that there is no difference in terms of the statistical
comparison of estimated coefficients among different settings.

We analyzed the convergence speed of asynchronous n-site EXPLORER with n = 2, 3, · · ·,
8 using Edinburgh dataset. Fig. 3 depicted the convergence of all 11 coefficients based on an
8-site setup. In Fig. 3, we can see that the convergence speeds for all 11 coefficients and all
8 participant sites are very fast, although the initial coefficients from different sites are quite
different. Usually, within 4 or 5 iterations, all the coefficients will converge to their fixed
points. To reach a tolerance of Mean Squared Error (MSE) level of 10−8, EXPLORER takes
9 iterations on average, where the MSE of each inter-site update is calculated using the
estimated coefficients after each inter-site update in the asynchronous EXPLORER phase
and their converged values.

We also studied the impact of evenly partitioned dataset sizes on the convergence speed.
Fig. 4 shows the convergence speed of an evenly partitioned Edinburgh dataset with n = 2 to
8, where each participant site has approximately 1128/n randomly partitioned records. Figs.
4 (a), and (b) show that the MSE decays very fast, and it is less than 10−4 within 3 iterations.
These results, especially Fig. 4 (b), also illustrate that the MSEs for each site at the 1st
iteration are mainly data-driven. Fig. 4 (c) illustrates the MSE of each site after the 1st
iteration update for n-site setups with n = 2, 3, · · ·, 8 in box plots. As the total number of
records in our experimental dataset is fixed, the amount of data that each site holds is
inversely proportional to number of involved sites. In Fig. 4 (c), we can see the larger
amount of data that each site holds, the smaller the divergence of the estimated coefficients
among different sites.

Finally, we studied the impact of unevenly partitioned Edinburgh dataset on the convergence
speed. As shown in Fig. 5 (a), (b) and (c), we randomly selected 500, 750 and 1000 records
for the first site, respectively. The remaining n − 1 sites shared the rest of the records evenly.
Fig. 5 (a), (b) and (c) show, as expected, that the MSE of the first site decreases as the
number of records it holds increases. As the number of records in the first site reaches 1000,
the MSE drops from 2.5 to less than 10−2 within 1 iteration update. Please note that in our
asynchronous EXPLORER, the inter-site information exchange starts at the 2nd iteration.
This observation illustrates how the online learning works, where the model learnt from a
large dataset can be used to improve the model learnt from a relatively smaller dataset. For
example, in Fig. 5 (c), the models from site 2, 3, 4 learnt at the first iteration have been
significantly improved at the second iteration with the information obtained from the site 1,
where their MSE reduced from 100 to 10−4. However, the improvement of site 1 resulting
from other sites is small, as its MSE reduction is only from the order of 10−2 to 10−4. The
complexity analysis can be found in supplementary materials - Section S5.

5. Discussion and Limitation
There is currently great interest in sharing healthcare and biomedical research data to
expedite discoveries that improve quality of care [46, 47, 48, 49, 29, 50, 51]. Unfortunately,
healthcare institutions cannot share their data easily due to government regulations and
privacy concerns. In this paper, we investigated an EXpectation Propagation LOgistic
REgRession (EXPLORER) model for distributed privacy-preserving online learning. The
proposed framework provides a high level guarantee for protecting sensitive information.
Through experimental results, EXPLORER shows the same performance (i.e., classification
accuracy, model parameter estimation) as the traditional frequentist Logistic Regression
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model. Practical applications of privacy-preserving predictive models can benefit from
methods such as the ones employed in EXPLORER, since there it does not require re-
training every time a new data point is added, and it does not need to rely on synchronous
communication as its predecessor distributed logistic regression model [29].

5.1. Privacy analysis
The proposed EXPLORER provides strong privacy protection, since the exchanged statistics
are always aggregated over a local population of mj −mj−1 records. This is analogous to the
generalization operation used for table deidentification (i.e., k-anonymization [49]) and the
aggregated statistics reduce the risk of privacy breach of individual patient. For example,
when a malicious user is eavesdropping at the server side, he can only observe the difference
between mh<sub>j</sub>→B (β) and mB→h<sub>j</sub>(β) at each inter-site update, where
mB→h<sub>j</sub>(β) and mh<sub>j</sub>→B (β) are the messages from server node at the
previous iteration and the message uploaded to server node at the current iteration,
respectively. Therefore, the malicious user cannot match this aggregated difference back to
each individual record in EXPLORER. A very interesting direction is to extend EXPLORER
to satisfy objective privacy criteria like ε-differential privacy. We plan to investigate in
future work how differential privacy can be applied.

Moreover, we introduced secured intermediate information exchange (i.e., SINE) protocol to
enhance the security of the proposed EXPLORER framework, which could significantly
reduce the risk of information leak due to the exchange of unprotected aggregated statistics
among EXPLORER clients and server. SINE protocol is based on the modified secure sum
algorithm in secure multi-parity computation, which offers a high level provable security
guarantee [52].

5.2. Scalability and Communication Complexity
Since EXPLORER is working in a distributed fashion, it introduced additional
communication overhead between server and clients. In general, the communication
overhead between server and clients is proportional to the number of participating sites.
Since we use the Normal distribution as the approximate distribution, the messages
propagated between the server and the clients consist of the d dimensional mean vector β
and its covariance matrix V with d(d + 1)/2 unique elements. Moreover, unlike SPARK
protocol [26] with exponentially increased complexity against network size, SINE protocol
is light-weighted with linearly grown complexity against network size, which offers a much
better scalability.

5.3. Limitation
Although EXPLORER showed comparable performance to LR, it has some theoretical
limitations: its optimization procedure is not convex, and therefore there is no guarantee for
global optimal solutions. The proposed EXPLORER also introduced communication
overhead, which is proportional to the number of participant sites. The convergence speed of
EXPLORER depends on the partition size of each involved site.

6. Conclusions
In summary, EXPLORER offers an additional tool for privacy-preserving distributed
statistical learning. We showed empirically on two relatively data sets that the results are
very similar to those of ordinary logistic regression. These promising results warrant further
validation in larger data sets and further refinement of the methodology. Inability to openly
share (i.e., transmit) patient data without onerous processes involving pair-wise agreements
between institutions may significantly slow down analyses that could produce important
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results for healthcare improvement and biomedical research advances. EXPLORER
provides a means to mitigate this problem by relying on multi-party computation without
need for extensive re-training of models, nor reliance on synchronous communications
among sites.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Expectation Propagation based Logistic Regression
Assumed-density filtering (ADF) method is a sequential technique for fast computing an
approximate posterior distribution in Bayesian inference. However, the performance of ADF
technique depends on the data order. Expectation propagation (EP) algorithm [53], as an
extension of ADF, exploits a good approximation to the posterior by incorporating iterative
refinement on the solution produced by ADF. Thus, EP is usually much more accurate than
ADF. EP works by approximating each likelihood term through minimizing Kullback
Leibler (KL) divergence between true posterior and approximate posterior within a tractable
distribution (e.g., distributions in exponential family). Then by iteratively performing this
approximation process, the approximate distribution will finally reach a fixed point [32].

In our Bayesian logistic regression problem, parameter β is associated with a Gaussian prior
distribution as

Given a training dataset D = {(x1, y1), (x2, y2), · · ·, (xN, yN)}, the likelihood function for
parameter β is written as
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Then let us denote the true posterior distribution of β by p(β |y) ∝ p(β) Πi p(yi|β) = p(β) Πi
fi(β) and approximate posterior by q(β |y) ∝ p(β)f̃i(β). It is mathematically convenient to
choose a Guassian distribution for approximation term f̃i(β) such that the resulted
approximate posterior will also be a Gaussian. To perform an efficient EP process, f̃i(β) can
be parameterized as

The procedure to obtain the posterior approximation through EP algorithm is shown as
follows [54]:

1. Initialize the prior distribution: f ̃0(β) = N (β, 0, v0I),<lbr>set m0 = 0, V0 = v0I

, where v0 is a hyper prior.

2. Initialize the term approximations f̃i(β) to 1:

set mi = 0, vi = ∞ and Zi = 1,

3. Initialize the posterior probability distribution q(β):

set mnew = m0, Vnew = V0 and Z = Z0.

4. Until all (mi, vi, Zi) converge:<lbr>for i = 1, · · ·, N :

a. Remove f̃i(w) from the posterior q(β)

b. Update m new and V new according to ADF

where 

c. Update the approximated terms fi(w)
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Appendix B. Factor Graph construction and Message passing in
EXPLORER

In this section, we will introduce the details of the factor graph construction and message
passing in the EXPLORER. Let us write down the factorization of the posterior distribution
of each site as follows

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

where  is a normalization constant. In the above equation, p(βj | Y1Y2Y3)is
equivalent to belief b(βj) in the BP algorithm, which is captured by the variable node Bj.
Therefore, in the context of factor graph and BP algorithm, we can interpret the product term

 as the message collected from all the factor nodes  and the integral term ∫ δ
(βj, β)p(β|Y2Y3) as the message sent from factor node hj. Moreover, according to the factor
node update rule in BP algorithm, we can identify the delta function δ(βj, β) as the factor
function and p (β | Y2Y3) as the message sent from server node B. In practice, there are
many ways to select factor functions to reflect the contribution of p(βj |β). In this paper, we
follow the suggestion in Loeliger [34] and choose δ(βj, β) to represent the probability p(βj |
β) for mathematical convenience, because of ∫δ(βj, β)p (β | Y2Y3) dβ= p(βi|Y2Y3).
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Appendix C. Model parameters learning on clinical datasets
Table C.13

Learnt model parameter β of dataset 7 (biomarker CA-19 and CA-125) using Ordinary LR
and 2-site EXPLORER

β
Ordinary LR EXPLORER two-sample Z Test

value std. value std. Test statistic p-value

β0 −1.442 0.243 −1.539 0.252 1.517 0.12934

β1 0.027 0.005 0.030 0.005 −2.234 0.02547

β2 0.016 0.006 0.019 0.008 −1.481 0.13849

Table C.14

Learnt model parameter β of dataset 8 (low birth weight study) using Ordinary LR and 2-site
EXPLORER

β
Ordinary LR EXPLORER two-sample Z test

value std. value std. Test statistic p-value

β0 −0.009 0.346 −0.009 0.308 −0.004 0.99671

β1 0.220 0.118 0.220 0.116 0.015 0.98831

β2 0.462 0.150 0.453 0.146 0.224 0.82279

β3 0.258 0.437 0.185 0.409 0.667 0.50459

β4 0.519 0.116 0.527 0.115 −0.292 0.77064

β5 −0.795 0.133 −0.809 0.134 0.416 0.67711

β6 −0.856 0.139 −0.862 0.137 0.152 0.87930

β7 0.021 0.010 0.023 0.009 −0.727 0.46710

β8 −0.010 0.002 −0.010 0.001 1.169 0.24258

Table C.15

Learnt model parameter β of dataset 9 (UMASS aids research) using Ordinary LR and 2-site
EXPLORER

β
Ordinary LR EXPLORER two-sample Z test

value std. value std. Test statistic p-value

β0 −2.368 0.382 −2.199 0.355 −1.779 0.07527

β1 0.050 0.011 0.046 0.010 1.482 0.13833

β2 0.000 0.005 −0.001 0.005 1.097 0.27271

β3 −0.614 0.142 −0.602 0.141 −0.327 0.74355

β4 −0.726 0.122 −0.707 0.120 −0.606 0.54419

β5 −0.072 0.020 −0.079 0.020 1.434 0.15143

β6 0.231 0.125 0.227 0.128 0.137 0.89088

β7 0.437 0.096 0.427 0.096 0.411 0.68095

β8 0.164 0.105 0.147 0.106 0.611 0.54091
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Table C.16

Learnt model parameter β of dataset 10 (mammography experience study) using Ordinary
LR and 2-site EXPLORER

β
Ordinary LR EXPLORER two-sample Z test

value std. value std. Test statistic p-value

β0 −1.020 0.665 −0.904 0.458 −0.785 0.43227

β1 −0.176 0.251 −0.301 0.209 2.089 0.03673

β2 1.281 0.242 1.204 0.198 1.345 0.17877

β3 1.732 0.286 1.643 0.236 1.320 0.18667

β4 −0.183 0.034 −0.195 0.033 1.484 0.13780

β5 1.238 0.182 1.243 0.180 −0.097 0.92265

β6 1.199 0.255 1.185 0.239 0.211 0.83267

β7 −0.671 0.555 −0.621 0.405 −0.400 0.68887

β8 −0.096 0.493 −0.031 0.349 −0.588 0.55628

Appendix D. Heterogeneity among different EXPLORER sites
For all 2-site EXPLORER setups of datasets 3 to 11, the difference between means (DBM)
of class distribution and covariates of the 2 sites has been shown in Figs. D.6 to D.14 in this
section, which offers an intuitive sense about how heterogeneous these sites are.

Figure D.7.
Heterogeneity between 2 different EXPLORER sites for dataset 4 over 30 trials.
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Figure D.8.
Heterogeneity between 2 different EXPLORER sites for dataset 5 over 30 trials.

Figure D.9.
Heterogeneity between 2 different EXPLORER sites for dataset 6 over 30 trials.
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Figure D.10.
Heterogeneity between 2 different EXPLORER sites for dataset 7 over 30 trials.

Figure D.11.
Heterogeneity between 2 different EXPLORER sites for dataset 8 over 30 trials.
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Figure D.12.
Heterogeneity between 2 different EXPLORER sites for dataset 9 over 30 trials.

Figure D.13.
Heterogeneity between 2 different EXPLORER sites for dataset 10 over 30 trials.
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Figure D.14.
Heterogeneity between 2 different EXPLORER sites for dataset 11 over 30 trials.
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• EXPLORER handles learning from distributed sources without sharing raw
data.

• EXPLORER allows client sites dynamically shift from online to offline modes.

• EXPLORER offers online learning capability for efficient model update.

• EXPLORER provides high estimation accuracy and strong privacy protection.
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Figure 1.
Factor graph of EXPLORER with 3-site asynchronous update.
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Figure 2.
Secured intermediate information exchange (SINE) protocol.

Wang et al. Page 27

J Biomed Inform. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The convergence speed of all 11 coefficients of the Edinburgh dataset for an asynchronous
8-site EXPLORE setup.
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Figure 4.
The convergence speed of evenly partitioned datasets; a) 4-site setup; b) 8-site setup; c) The
MSE of each site after the 1st iteration update for n-site setups with n = 2, 3, · · ·, 8.
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Figure 5.
The convergence speed of unevenly partitioned dataset; a) site 1 with 500 records; b) site 1
with 750 records; c) site 1 with 1000 records.
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Figure D.6.
Heterogeneity between 2 different EXPLORER sites for dataset 3 over 30 trials.
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Table 1

Comparing EXPLORER with GLORE (as well as other frequentist SMC models)

Privacy-preserving Asynchronous communication Online learning

GLORE (and other frequentist SMC models) x

EXPLORER x x x
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Table 2

Summary of datasets used in our experiments, where the class distribution (i.e., the percentage of positive and
negative outcome variables) has been listed as reference.

Dataset Dataset description # of covariates # of samples Class distribution (positive/negative)

1 Simulated i.i.d. data 5 500 0.618 / 0.382

2 Simulated correlated data 6 500 0.764 / 0.236

3 Simulated i.i.d. data 15 1500 0.641 / 0.359

4 Simulated correlated data 15 1500 0.651 / 0.349

5 Simulated binary data 5 500 0.846 / 0.154

6 Simulated binary data 15 1500 0.726 / 0.274

7 Biomarker (CA-19 and CA-125) 2 141 0.638 / 0.362

8 Low birth weight study 8 488 0.309 / 0.691

9 UMASS aids research 8 575 0.256 / 0.744

10 Mammography experience study 8 412 0.432 / 0.568

11 Myocardial infarction 9 1253 0.219 / 0.781
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Table 6

Comparisons of H-L tests for datasets 3 to 10 using Ordinary LR and 2-site EXPLORER

Dataset ID
Ordinary LR EXPLORER

Test statistic p-value Test statistic p-value

3 5.789 0.679 6.557 0.634

4 9.405 0.470 12.684 0.366

5 13.587 0.247 16.952 0.204

6 9.247 0.424 10.417 0.368

7 7.087 0.665 14.030 0.639

8 11.927 0.287 13.099 0.217

9 11.598 0.280 12.965 0.266

10 13.055 0.234 14.082 0.229
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