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Abstract

Background: SET domain is responsible for the catalytic activity of histone lysine methyltransferases (HKMTs) during
developmental process. Histone lysine methylation plays a crucial and diverse regulatory function in chromatin organization
and genome function. Although several SET genes have been identified and characterized in plants, the understanding of
OsSET gene family in rice is still very limited.

Methodology/Principal Findings: In this study, a systematic analysis was performed and revealed the presence of at least
43 SET genes in rice genome. Phylogenetic and structural analysis grouped SET proteins into five classes, and supposed that
the domains out of SET domain were significant for the specific of histone lysine methylation, as well as the recognition of
methylated histone lysine. Based on the global microarray, gene expression profile revealed that the transcripts of OsSET
genes were accumulated differentially during vegetative and reproductive developmental stages and preferentially up or
down-regulated in different tissues. Cis-elements identification, co-expression analysis and GO analysis of expression
correlation of 12 OsSET genes suggested that OsSET genes might be involved in cell cycle regulation and feedback.

Conclusions/Significance: This study will facilitate further studies on OsSET family and provide useful clues for functional

validation of OsSETs.
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Introduction

SET domain, named after the three Drosophila proteins
SUPPRESSOR OF VARIEGATION 3-9 [SU(VAR)3-9], EN-
HANCER OF ZESTE [E(Z)] and TRITHORAX (TRX) [1], has
been known to be involved in the biochemical process of the
histone lysine methyltransferases (HKMTs) [2]. It contains an
approximately 130-amino acid, presenting as an evolutionarily
conserved motif in chromosome proteins from yeast to mammals
and higher plants [3]. It consists of two non-contiguous regions
formed by N- and C-terminal ends of the primary sequence,
known as SET-N and SET-C, respectively, and an insert region
(SET-I) [4]. SET domain protein methyltransferases have
enormous impacts on the regulation of chromatin structure and
function [5,6]. They catalyze the transfer of methyl groups from
the cofactor S-adenosylmethionine (AdoMet) to specific lysine
residues of protein substrates, such as the N-terminal tails of
histone (H3 or H4) and the large subunit of the Rubisco
holoenzyme complex [7,8].

Baumbusch [1] first identified 39 SET domain genes in
Arabidopsis thaliana and divided them into four classes based on
the SE'T domains, cysteine-rich regions and additional conserved
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domains. Springer et al. identified 32 SET domain genes in
Arabidopsis and 22 ones in Zea mays, and classified the SE'T domain
proteins into five subfamilies, on the basis of phylogenetic analyses
and domain organization [9]. It revealed that the duplication of
SET domain proteins in plants was extensive and had occurred via
multiple. Ng et al. [10] inferred that there were at least 47 SET
genes in Arabidopsis, 35 members in maize and 34 ones in rice,
based on the annotation in Pfam and ChromDB database, which
were classified into seven groups. Pontvianne [11] reported that
SET domain genes in Arabidopsis can be divided into five classes (I
to V), based on their domain architectures and/or differences in
enzymatic activity of SET domain-containing proteins.

Presently, a number of SET genes have been functionally
identified in plants. Mutation of Arabidopsis SET domain genes
resulted in phenotypic abnormalities due to the improper
regulation of important developmental genes [1,9-11]. Arabidopsis
CURLY LEAF (CLF), a homolog of Drosophila E(J) gene, was
involved in the division and elongation of cells during leaf
morphogenesis [12-14]. Further evidences revealed that CLF can
directly mediate the repression of AGAMOUS (AG), FLOWERING
LOCUS C (FLC) and FLOWERING LOCUS T (FT) via lysine 27 of
histone H3 trimethylation (H3K27me3) and thus control floral
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organogenesis in a Polycomb repressive complex 2 (PRC2)[15—
18]. MEDEA (MEA), another E(Z) homolog in Arabidopsis, is a self-
controlled imprinting gene and functions in controlling the
proliferation of central cell [19-23]. Su(VAR)3-9 homolog
(SUVH) proteins KRYPTONITE (KYP, also known as SUVH4),
SUVH) and SUVH6 are shown to function in a locus specific
manner to undergo H3K9 methylation and cytosine metyltrans-
ferase 3 (CMT3)-mediated non-CG DNA methylation [24-27]. In
contrast to the E(Z) and SUVH proteins suppressing transcription,
ATXI1 functions as an activator of homeotic genes by lysine 4 of
histone H3 (H3K4) methylation [28-30]. These results uncovered
the extensive functions of SET proteins in plant development.

Rice is one of the major staple foods and an ideal model species
of monocotyledons for functional genomics analysis. In previous
studies, several SET proteins have been characterized in rice.
OsCLF and OsiEZI, both of which are FE() homologies, is
expressed preferentially in young seedlings and during reproduc-
tive development [31-33]. SET Domain Group 714 (SDG714)
and SDG728, encoding H3K9me2 histone methyltransferase,
display specific functions in chromatin modification and retro-
transposon repression [34,35]. The histone methyltransferase
SDG724 mediates H3K36me2/3 deposition at MADS50 and
RFTI and promotes flowering in rice [36]. Therefore, it is
necessary to carry out a comprehensive functional exploration for
OsSET gene family in rice.

In this study, the members of SET family in rice have been
analyzed based on complete genome and protein sequences and
annotations. Expression patterns and co-expression analyses were
performed to discover the potential functions of OsSET gene
family. Promoter cs-elements identification and the combined
analysis of expression correlation suggest that most of OsSET genes
may be cell cycle modulated and linked to the cell cycle
progression by histone modifications. Our results will provide a
useful reference for further functional analysis of members of
OsSET gene family in rice.

Results and Discussion

Identification and Classification of OsSET Gene Family

In the previous report [10], 34 SET genes in rice genome were
inferred, on the basis of annotation in Pfam and ChromDB
database. However, based on the update Pfam and ChromDB
database and MSU data, 43 SET family genes in rice were
identified in our study. These 43 OsSET genes were named from
OsSETI to OsSET43 according to their positions on chromosomes.
Nine genes, OsSET12, OsSETI13, OsSET18, OsSET23, OsSETZ29,
OsSET31, OsSET36, OsSET37 and OsSET39, were novel OsSET
genes compared to the ones in previous study. OsSET genes vary
substantially in the size of their encoded proteins and their
physicochemical properties (Table S1). OsSET33 has 25 exons and
24 introns, whereas OsSET14, OsSET20 and OsSET30 have no
intron. The position of the SET domain also varies within the
proteins. The shortest OsSET protein is OsSET9 with 231 amino
acids, while the longest one is OsSET30 with 1292 amino acids.
EXPASY analysis showed a large variation in isoelectric point (pl)
values (ranging from 4.4119 to 9.2625) and molecular weights
(ranging from 110.892 kDa to 138.5423 kDa). Nevertheless, only
3 (OsSETH4, OsSET14 and OsSETZ29) of the 43 OsSET genes were
predicted to be stable proteins. Details on other parameters of
protein sequences were shown in Table S1.

Chromosomal Localization and Gene Duplication

The genomic distribution of OsSET genes was determined by
their chromosomal positions on rice chromosome. Totally, 43
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OsSET genes were dispersed on the 12 chromosomes, presenting
unevenly in all regions of the chromosomes. A brief diagrammatic
representation of chromosomal distribution of OsSET genes was
described (Figure 1, the exact position on rice chromosome
pseudomolecules was given in Table S1). Seven OsSET genes are
on chromosome 2, six OsSET genes are on chromosome 1 and 8,
respectively; five OsSET genes are on chromosome 9; four OsSET
genes are on chromosome 3 and chromosome 4; two OsSET genes
are on chromosome 5, 7, 10, 11, 12, respectively; only one OsSET
gene i3 on chromosome 6.

During the evolution of a gene family, segmental duplication
and tandem duplication play important roles in generating new
members [37]. Therefore, both segmental and tandem duplication
events were investigated for elucidating the potential mechanism
of evolution of OsSET gene family. Analysis of the MSU RGAP
rice segmental duplication database revealed that 10 pairs of
OsSET genes could be assigned to MSU RGAP segmental
duplication blocks. The overall similarity of the cDNA sequences
of these genes ranged from 25.6% to 77.0% and all of them were
found to have their counterparts on duplicated segments (Table
S2). Interestingly, these duplicated segments can be clustered in 2
groups. Five OsSET genes (OsSET4, OsSET16, OsSET22, OsSET40
and OsSET42), which had high overall identities between each
other, belonged to the same group. While the overall identity
between OsSET30 and OsSET35 was 52.0%, and was included in
another group. None of the OsSET genes seemed to be generated
from tandem duplications in our analysis. These results implicated
that much of the diversity of the OsSET gene family in rice was
mainly due to the segmental duplication events.

Phylogenetic and Structural Analysis of OsSET Gene
Family

To determine the evolutionary relationships of SE7 family
genes between rice and Arabidopsis, an unrooted phylogenetic tree
was constructed from alignments of their full-length protein
sequences. The latest data showed that Arabidopsis SET family
genes can be divided into five classes (I to V), based on their
domain architectures and/or differences in enzymatic activity of
SET domain-containing proteins [11]. Coincidently, our phylo-
genetic analysis and their domain architectures support the
classification of rice and Arabidopsis SET gene family into five
classes (Figure 2, 3; Table S1).

Class I SET proteins include 2 rice OsSET proteins and 3
Arabidopsis SET  proteins. OsSET15/0siEZ1 and OsSET24/
OsCLF are the homologs of Arabidopsis SWINGER (SWN)/
SDG10 and CLF/SDGI, respectively. No Arabidopsis MEDEA
(MEA)/SDG5 homolog was found in rice. In addition to the C-
terminal SET domain, SANT domain (Swi3, Ada2, N-Cor, and
TFIIIB DNA binding domain) and cysteine rich CXC domain
were found in this subfamily. This result is in agreement with
previous studies [10]. Recent studies suggested that SANT
domains might be a histone-tail-binding module [38,39]. It is
reported that E(Z)-like proteins are components of PRC2
complexes and function as transcriptional repressors by
H3K27me3 in diverse eukaryotes [13,16,21,22]. Therefore,
OsSET15/0siEZ1  and  OsSET24/0OsCLF  may  have
H3K27me3 activities by these conserved domains.

Class II subfamily can be divided into three clusters of IIA, B
and C based on their domains, which is also in accordant with the
previous reports [9,10]. Eight members in rice (OsSET14,
OsSET17, OsSET18, OsSET21, OsSET27, OsSET28, OsSET38
and OsSET39) and five in Arabidopsis (SDG35-39) belonged to
Class ITA, which only contain the SET domain. Class IIB proteins
(OsSET12, OsSET13, OsSET23, OsSET26, OsSET36, SDG40,

June 2013 | Volume 8 | Issue 6 | 65426



Genome-Wide Analysis of OsSET Gene Family

CM Chr.01 Chr.02 Chr.03 Chr.04 Chr.056 Chr.06 Chr.07 Chr.08 Chr.09 Chr.10 Chr.11 Chr.12
0
IV OsSET7 Il OsSET33 l VB 0sSET40. VB 0sSETS
A OsSET14 e -
A OsSET27 ¥
Il 0sSET lIA_0sSET28 i
= IIC OsSET3¢-H
A CSETo IIB 0sSET29 B2
| OsSET15 . i o
VB Osseng --------------- P VB 0sSET3S
VB 0sSET25 T - 1IB-OSSET36
=1 IIA OsSET38
15 Osserzs ff
" M VB 0sSET30” IIA OsSET39
IC 0sSETS IIA OsSET13 IIC OsSET31
IC OsSET19 ot i Il OsSET37 VB 0sSETA1
§ Ic 055519 R VBGssET22 &
s VA OsSET10 B il =
e Il OsSET43
lIl OsSET2 va GsSET20
/ A OsSET‘W &
VA 0sSET11 IIB OsSET23 VB 0sSET32
“BIOSSET12
OsSET3-
VAGESES s IIA OsSET21
VBOSSET4 /&
VBOSSETS
IV OsSET6

Figure 1. Chromosomal distribution, and tandem and segmental genome duplications of the OsSET gene family. The scale on the left
is in megabases (Mb). The ovals on the chromosomes (vertical bars) indicate the positions of centromeres; the chromosome numbers are shown on
the top of each bar. The segmental duplication genes are connected by a dotted line.

doi:10.1371/journal.pone.0065426.g001

SDG41, SDG42, SDG43) have a Rubisco LSMT substrate-
binding domain (RSB domain), which allows the binding of the
protein to its substrate, such as the N-terminal tails of histones H3
and H4 and the large subunit of the Rubisco holoenzyme complex
[7]. Class IIC has five SET proteins in rice (OsSET8, OsSET9,
OsSET19, OsSET31 and OsSET34/SDG724) and five in
Arabidopsis (ABSENT, SMALL, OR HOMEOTIC DISCS 1
HOMOLOG 1 (ASHH1)/SDG26, ASHH2/SDG8, ASHH3/
SDG7, ASHH4/SDG24 and ASHl-related 3 (ASHR3)/SDG4
[40-42],). All proteins except OsSET31 in class IIC have an AWS
domain (Associated With SET, a sub unit of pre-SET domain)
[10]. Five of the members in class IIC have an additional cysteine-
rich post-SET domain. Although some of the class II subfamily
genes have been demonstrated to methylate H3K36 at the region
of actively transcribed genes [43], the functions of the additional
domains are still little known.

Class II HKMTs consist of four rice SE'T members (OsSET1,
OsSET2, OsSET33 and OsSET37) and seven Arabidopsis genes.
Five of the Arabidopsis genes encode homologs of Trithorax (trxG),
which named as Arabidopsis Trithorax-like protein (ATX1/SDG27,
ATX2/SDG30, ATX3/SDG14, ATX4/SDG16 and ATX5/
SDG29), while another two genes, ATXR3/SDG2 and
ATXR7/SDG25, are ATX-RELATED (ATXR) genes [44].
Class III subfamily genes have several additional highly conserved
protein domains, including PWWP, FYRN/C and plant homeo-
domain (PHD). The PWWP domain was shown to be a DNA or
methyl-lysine histone binding domain [45-47]. In Arabidopsis, class
IIT proteins are able to methylate H3K4me2/3, acting as
antagonistic regulators with Polycomb Group (PcG) proteins to
maintain transcriptional OFF and ON states of their target genes
[48,49]. Interestingly, PHD finger is considered to be specific and
highly robust binding modules for H3K4me2/3 in humans and
plants, resulting the recruitment of basal transcriptional active
factor(s)[50-53]. ATX1 has been demonstrated to interact with
ASHH1/SDG26, suggesting that trxG complexes could involve
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different sets of histone lysine methyltransferases in Arabidopsis [40].
These results provide an efficient insight for functional identifica-
tion of trxG in rice.

OsSET6, OsSET7, ATXR5/SDG15 and ATXR6/SDG34 are
included in class IV, which characterized with a PHD domain and
a SET domain. ATXR5 and ATXR6 are involved in DNA
replication [54]. Although class IV proteins are near to class III on
their evolutionary relationship, they are distinct from class III for
the absence of PWWP domain. The result suggests that the
PWWP domain may be crucial for the antagonistic mechanism
between PcG and trxG.

Class V proteins are characterized by the presence of pre-SET
and SET domains. This class can be divided into VA [SU(VAR)3—
9 (SUVR)] and VB (SUVH) for the latter having an YDG/SRA
domain [1]. Class VA contains three OsSET proteins (OsSET'3,
OsSET10 and OsSET11) and 5 SUVAR)3-9 (SUVR) proteins
(SUVR1/SDG13, SUVR2/SDG18, SUVR3/SDG20, SUVR4/
SDG31 and SUVR5/SDG6). OsSET10, SDG18 and SDG31 also
have an N-teminal plant-specific domain, WIYLD, which binds
ubiquitin and enables conversion of H3K9mel to H3K9me3 [55].
Subfamily VB consists of 12 OsSET proteins (OsSET5/SDG714,
OsSET14, OsSET16, OsSET20, OsSET22/SDG728, OsSET25,
OsSET30/SDG710, OsSET32, OsSET35/SDG727, OsSET40,
OsSET41, OsSET42) and 9 SUVH proteins (SUVH1/SDG32,
SUVH2/SDG3, SUVH3/SDG19, SUVH4/KYP/SDG33,
SUVH5/SDGY9, SUVH6/SDG23, SUVH7/SDG17, SUVHS8/
SDG21, SUVH9/SDG22 and SDG11). It has reported that the
YDG/SRA domain can mediate epigenetic inheritance by
recruiting histone deacetylase (HDAC), DNA methyltransferase
(DNMT) to methyl-CpG site [56-58]. Similarly, the YDG/SRA
domain of KYP, SUVH)5 and SUVHG6 binds directly to
methylated DNA at both CpG and non-CpG site, thereafter,
providing a binding site for CMT?3 via its chromodomain to CHG
methylation [59]. OsSET5/SDG714, an H3K9 methyltransferase,
1s also involved in DNA methylation in rice [35,60], which implies
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Figure 2. Phylogenetic analysis of Arabidopsis and rice SET proteins. Phylogenetic tree of rice and Arabidopsis SET proteins. An unrooted NJ
tree of rice and Arabidopsis SET proteins is shown. The six classes are marked by different colors. Scale bar represents 0.1 amino acid substitution per

site.
doi:10.1371/journal.pone.0065426.9002

a similar mechanism between class VB OsSET proteins and DNA
methylation. SUVRS establishes the heterochromatic state by
H3K9me2 deposition in a DNA methylation-independent man-
ner through zinc fingers [61]. However, no such DNA binding
domain was identified in rice SUVR like proteins. Therefore, there
must be a distinct mechanism for SUVR in rice.

Because SET domain is essential for the catalytic activity of SE'T
proteins, the MEME motif search tool was employed to identify
the conserved motifs of SET domains from 84 SET proteins in rice
and Arabidopsis. Three distinct motifs, motifs 2, 3 and 1, were
located orderly at SET-N, SET-I and SET-C region of SET
domain, respectively (Figure 4). 55 out of 84 (65.5%) SET
proteins have motifs 1, 2 and 3. 17 (20.2%) SET proteins only
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have motifs 1 and 3. OsSET29 and OsSET39 have motifs 2 and 3.
OsSET12, OsSET13 and OsSET23 only have motif 1. OsSET3
and OsSET16 only have motif 2. The other five SET proteins
(OsSET26, OsSET36, SDG40, SDG42 and SDG43) have none of
the three motifs. Interestingly, 24 out of 29 (82.8%) proteins that
have no more than 2 motifs are subfamily IIA or IIB members,
which showed diversity in these two subfamilies.

Identification of Cis-elements in OsSET Gene Promoters
To understand the molecular mechanism of OsSET genes in
transcriptional regulation, cis-elememts at the promoter regions
were identified (Table S3). As a result, 255 cis-elements were
obtained. In addition to basic TATA-box and CCAAT box, cis-
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elements such as MYB recognition, auxin responsive, gibberellin one or more consensus DNA sequence of E2F binding sites [63—
(GA) response, abscisic acid (ABA) responsive and E2F-binding 65]. It was reported that ATX1/SDG27, ATXR5/SDG15, and
site were found at the promoter regions of OsSET genes. It is well ATXR6/SDG34 in Arabidopsis, OsSET6, and OsSET7 in rice, and
known that E2F transcription factors control the cell cycle by lots of other cell cycle or DNA replication related genes were
regulating transcription of genes required for DNA replication and considered as E2F targets for their E2F binding cis-elements
cell cycle [62]. Many investigations show that the E2F targets have [54,63,64]. While, in our analysis, we found 32 OsSET genes had
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Figure 4. Sequence LOGOs for each motif of SET domains using the MEME algorithm. MEME motifs are displayed by stacks of letters at
each position. The total height of the stack is the “information content” of that position in the motif in bits. The height of the individual letters in a
stack is the probability of the letter at that position multiplied by the total information content of the stack. X- and Y-axis represents the width of
motif and the bits of each letters, respectively.

doi:10.1371/journal.pone.0065426.g004
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Table 1. Conserved E2F binding cis-elements analysis of the
OsSET gene promoters.

Accession Number® IDP Sequences

$000217 SITEIIBOSPCNA TGGTCCCAC

5000224 SITEIOSPCNA CCAGGTGG

S000366 E2FANTRNR TTTCCCGC

5000396 E2F10SPCNA GCGGGAAA

S000417 E2FAT TYTCCCGCC; Y=T/C
S000455 PE2FNTRNRTA ATTCGCGC

S000476 E2FCONSENSUS WTTSSCSS; W=A/T; S=C/G

?Accession number of cis-element in PLACE database.
®Locus identity number of cis-element in PLACE database.
doi:10.1371/journal.pone.0065426.t001

E2F binding site (E2FCONSENSUS, SITEIIBOSPCNA, SI-
TEIOSPCNA, E2FANTRNR, E2F1IOSPCNA,  E2FAT,
PE2FNTRNRI1A) (Table. 1). Therefore, the analyses revealed
that most of the OsSET genes might be regulated by E2F
transcription factors.

Expression Profiling of OsSET Genes in Rice

To investigate the transcript accumulation of OsSET genes in
the entire life cycle, the expression profiling covering 24
developmental stages (Table S4) in Minghui 63 were analyzed
using Affymetrix rice microarray data from CREP database. A
hierarchical cluster displaying the logarithm of average signal
values for the 40 OsSET genes were generated. Distinctly, the
expression patterns of OsSET genes could be classified into two
major groups (Figure 5). 20 genes belonged to Group I, most of
which showed high transcript accumulations (average expression
signal from 777.3 to 4211.1) in the tissues analyzed. OsSET41 had
the highest expression level in the entire life cycle. These genes
could be further divided into three subgroups, subgroup Al-3.
Subgroup Al consists of 8 genes, which have high expression level
in panicles and/or stamen. Subgroup A2 has 7 OsSET genes, all of
which show relative high expression level in almost all tissues
analyzed. Subgroup A3 has 5 OsSET genes, which display higher
expression in vegetative tissues than in reproductive tissues. Group
B contains 20 genes, exhibiting relative low expression signals in
most tissues or preferential expressions in some tissues. OsSET5,
OsSET6, OsSETI10, OsSET17, OsSET27, OsSET28, OsSET32 and
OsSET37 showed high expression in panicles; OsSET6, OsSET10
and OsSET27 expressed relatively higher in stamen, In addition,
OsSET28 in spikelet and seed, OsSET32 in seed, OsSET37 in stem
showed tissue-specific expressions.

The expression patterns of some OsSET genes were further
confirmed by real-time PCR analysis. The expression levels of
OsSET3, OsSETY9 and OsSETI9, which have no probeset
information in CREP database, were detected in different tissues
(Figure 6). OsSET3 shows a relative high expression in root, flag
leafs, panicles and mature endosperm. Both OsSET9 and OsSET19
are included in class II, however, their expression patterns are
divergent: OsSETY are highly expressed in the later stage of
endosperm (21 days after pollination), whereas the expression of
OsSET19 enriched in young leaf and decreased in endosperm. The
expression levels of OsSET11, OsSET24/0sCLF and OsSET15/
OstEZI are also detected, which are in accordance with the
microarray data. OsSET26 has a low expression pattern in
microarray analysis, whereas our quantitative PCR result shows
a relative higher expression level in vegetative stage than
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reproductive stage. OsSET39 expresses relatively higher in root,
leaf and panicles, and the expression is enriched in the developing
endosperm, implying multiple functions in plants development.

On the purpose of revealing more information in OsSET gene
expression pattern, genes that showed differential expression
during various developmental stages in comparison to seed were
analyzed. Genes that considered as preferential expression in a
given stage showed tremendous differences (Fig 7, Table S5). Up-
regulated genes mainly accumulated in panicles and stamen,
suggesting that OsSET genes may participate in various molecular
pathways in flowering development. Surprisingly, although down-
regulated genes accumulated in seedlings, they were activated in
stamen, either. These microarray and real-time PCR results
indicate that OsSET genes may play essential roles through the life
cycle of rice.

The expression patterns of segmentally duplicated OsSET genes
were examined by Affymetrix microarray data. Probesets were
available for all segmental duplication genes in microarray data. A
comparison of expression level revealed that a pair of segmental
duplicated genes always showed similar expression pattern,
although one of the copy showed low expression level, or was
not expressed at significant levels in most of the tissues (Figure 8).
In the group of OsSET4, OsSETI6, OsSET22, OsSET40 and
OsSET42 (Figure 8A), for instance, 2 out of 5 genes had a
similarly high expression level. The resemblance also existed in the
OsSET30 and OsSET35 group (Figure 8B). We might therefore
infer that immediately after segmental duplication, the two copies
of genes might be functionally redundant. However, only one of
them is functional retained while the other degenerates into a
pseudogene eventually.

Responses of OsSET genes under NAA, KT, and GA3
Treatments

Phytohormones play critical roles in plant growth and
development. To investigate the OsSET genes in response to
phytohormone treatment, differential expression analysis was
performed. As a result, 9 OsSET genes that were differentially
expressed under one or more of the phytohormone NAA, KT,
GA3 in seedlings in trefoil stage, compared with the control
without treatment. The fold change values with respect to control
were given in Table S4. Three OsSET genes showed differential
expression under all three phytohormone treatments, among
which OsSET23 and OsSET36 were up-regulated, whereas
OsSETI18 was down-regulated. OsSET2 and OsSET16 were up-
regulated to KT, and OsSET24 and OsSET34 were up-regulated to
GA3 treatment. In contrast, OsSET17 and OsSET37 were down-
regulated specifically to KT and GA3 treatment, respectively. The
expression profile of the remaining genes in response to NAA, KT,
and GA3 was not significant. These results partially in accordance
with the cis-elements analysis, showing that the above 9 OsSET
genes have one or more GA responsive elements (Table. S3).

Identification and Functional Annotation of Genes Co-
expressed with OsSET Genes

Co-expression analysis has been successfully exploited to
identify functional transcription regulators in Arabidopsis, rice and
other organisms [66,67]. Hence, in order to disinter more
information of the OsSET genes, 40 OsSET genes with matching
probeset were selected as ‘“‘guide genes” to identify the co-
expressed genes using expression data from CREP database, with
an absolute value of the Pearson correlation coeflicient (PCC)
greater than 0.75 (&= 0.05) [68,69]. As a result, 2390 genes whose
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expression pattern tightly correlated with 30 OsSET members were
extracted (Table S6a).

We next analyzed the GO annotations assigned to these genes
by agriGO tools. The enriched GO annotations particularly
concentrate on cellular process, cellular component biogenesis and
organization, biological regulation and metabolic process
(Figure 9, Table S6b). They encode proteins as macromolecular
complex (protein complex, DNA polymerase, protein-DNA
complex) in cell or organelle, substantially. The molecular
functions tightly associated with them are catalytic activity,
transcription regulator and binding. These results suggest that
the functions of OsSET genes may be associated with DNA
replication and gene transcription.

As is generally known, SET domain proteins have comprehen-
sive impacts on the regulation of chromatin structure and function
[5,6]. Therefore, we focused on 503 out of 2390 co-expression
genes which may be associated with epigenetic regulation (histone
genes, cell cycle related genes, DNA replication, transcription
factor, chromatin reassemble related genes and so on. Table S6c).
After the recalculation and student-¢ test of PCC, 450 genes were
co-expressed with 29 OsSET genes. In addition, 13 OsSET genes
were co-expressed with each other tightly. Except for OsSET28,
the other 12 OsSET genes have close expression relationships with

PLOS ONE | www.plosone.org

histone genes, cell cycle control related genes and chromatin
assemble factors, anther-specific proline-rich protein (APG) genes,
DNA replication related genes and so on. The result gives
informative clues in functional characterization of these OsSET
genes.

OsSET Proteins May Be Involved in Cell Cycle Regulating
by Histone Modification

The visualized figure in Figure 10A shows the close
relationships between 12 OsSET genes and 13 histone protein
genes (containing H1, H2A, H2B.1, H2B.2, H3 and H4). In this
network, OsSET) is co-expressed with all of these histone genes,
OsSET24 is co-expressed with 11 histone genes, OsSET37 has 9 co-
expressed histone genes, OsSET7 has 7 ones, both OsSET11 and
OsSET44 have 5 ones, while others has 1 or 2 co-expressed histone
genes. OsSET) and other five genes (OsSET20, OsSET22,
OsSET30, OsSET32 and OsSET4I) belong to class VB. Os-
SET24/0sCLF is a class I member. OsSET37 and other two genes
(OsSETI, OsSET33) belong to class III. OsSET7 is a class IV gene.
OsSETI1 is a class VA gene. This co-expression network indicated
that OsSET protein may not only modify histone lysine, but also
be involved in multiple histone site modification directly or
indirectly. Because histone proteins are essential for the packaging
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Figure 6. Relative expression of eight OsSET genes in Zhonghua11. root, roots at trefoil stage; stem, stems at heading stage; leaf, leafs at at
trefoil stage; Fleaf, flag leafs at heading stage; P4, panicles at meiosis stage of young panicle development; S3, seeds of 3 days after pollination; EN,

endosperm, the number followed it means the days after pollination.
doi:10.1371/journal.pone.0065426.9006

of newly synthesized DNA into chromosomes [70], we speculated
that OsSET proteins may be relevant to cell cycle regulation.

Subsequently, we found that the 12 OsSET genes in Figure 9A
were co-expressed with 19 cell cycle related genes, simultaneously
(Figure 10B). These cell cycle related genes include 14 cyclin
genes (Cyes, A-, B- and D- Type), and 5 cyclin-dependent kinase
genes (CDKs, A-, B- and C-Type). It is noted that OsSET),
OsSET24 and OsSET37, which are co-expressed with most of
histone genes, are also tightly co-expressed with various kinds of
Cycs and CDRs. While OsSET22 and OsSET32 are co-expressed
with A- and D-type Cycs, the OsSET33 is only co-expressed with
D-type Cycs (OsCyeD2;2 and OsCyeD3;2). OsSET20 and OsSET33
are co-expressed with OsCDEB3;2 and OsCDKC;3. OsSET7 is co-
expressed with OsCDEB;1 and OsCDEB;2. OsSETI and OsSET32
are co-expressed with CDAC;3.

Usually, Cycs and CDKs act as complex at a precise time and
drive the cell cycle progression by phosphorylating downstream
target proteins. Cell cycle progression is critical for the mainte-
nance of epigenetic marks and for allowing the daughter products
to acquire a distinct epigenetic landscape [71]. Thus, the relevance
might exist between SET, histone and cell cycle related protein. In
human, it has been confirmed that Retinoblastoma (RB) can target
H3K9 methylation to cyclin E promoter by SET-domain protein,

Value

Suv39H1, resulting in heterochromatin protein 1 (HP1) binding
and silencing [72]. In higher ecukaryotes, cell cycle is mainly
controlled by E2F transcription factors, which acts through a
conserved RB-E2F/DP pathway (DP, related to the E2F family
that can dimerize with E2F members)[64,73-75].

In  Arabidopsis, CDKAs/CycDs complex can activate the
expression of E2F/DP targets by phosphorylating RB and further
releasing RB from its cooperator E2F/DP complex [76-78].
Genome-wide identification and expression analysis have found
conserved E2F, RB, Cycs and CDKs in rice [79-81]. In our
performances, two homologies of E2F (OsDELI and OsE2F2) and
two RB homologies (OsRBI and OsRB2) were found to be co-
expressed with these 12 OsSET genes (Figure 10C). In
consequence, these 12 OsSET proteins may be required for the
RB-E2F/DP pathway during cell cycle progression. Although
there is no direct evidence showing the connection between SET
proteins and RB i viwo in plant, the CLF of Arabidopsis can bind
the RB proteins both in maize and human [82], Shen et al
proposed that HP1-HKMT-RB-E2F/DP complexes could repress
E2F targets in plants [73]. In co-expression network of this study,
the rice PcG gene OsSET24/0sCLF, a homology of Arabidopsis
CLF, is co-expresses with OsE2F2, OsDELI, OsRB2 and OsDP
tightly. Thus, it is possible that a similar RB-PRC2 complex
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Figure 7. Expression patterns of OsSET genes found in segmentally duplicated regions of the rice genome. X-axis represents the
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Figure 10. Co-expression network of OsSET genes. A. The co-expression relationship among OsSET genes and histone genes (H2A, H2B.1, H2B.2,
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doi:10.1371/journal.pone.0065426.g010

results might provide light in the relationship between these
OsSET proteins and RB-E2F/DB complex.

OsSETs May Function in Reproductive Development of
Rice

Floral organ identity in plants are controlled by combinations of
activities mediated by MADS box genes, some of which were
identified in our co-expression analysis (Figure 10E). OsMADS18
is co-expressed with OsSET20 and OsSET37. OsMADS32 is co-
expressed with OsSETI, OsSET5, OsSETI1, OsSET20, OsSET30
and OsSET41. OsMADS34 is a member in SEPALILATA (SEP)
subfamily [83,84], which is co-expressed with OsSETS, OsSET11,
OsSET20, OsSET30 and OsSET37. Recent research revealed that
OsMADS18, one of APETALAI (AP1)/FRUITFULL (FUL)-like

PLOS ONE | www.plosone.org 1

genes, was induced in the shoot apical meristem (SAM) during
meristem phase transition, which acted co-ordinately in the
meristem to specify the identity of the inflorescence meristem
(IM) downstream of the florigen signal [85]. The expression
domains of OsMADS32 are mainly restricted to the marginal
region of the palea and inner floral organs, showing its
contribution on floral organ identity in rice [86]. OsMADS34
plays a role in the early development of spikelet formation [84]. In
the above co-expression network, OsSET20 is co-expressed with
three MADS box genes, while OsSET] is co-expressed with one
MADS box gene. Besides, another five SET genes, OsSET5,
OsSETI1, OsSET20, OsSET30 and OsSET37, are co-expressed
with two MADS box genes. Therefore, it is possible that these
OsSETs may take part in flowering transition and early floral
development in rice.
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In the co-expression network (Figure 10E), 8 OsSET genes are
correlated with 4 APG-like protein genes, while OsSET5 and
OsSET37 are co-expressed with four APG genes. Noticeably, the
APG gene Os05g34700 is co-expressed with 8 OsSET genes. The
transcripts of these 8 OsSET genes accumulate in young panicles.
It was reported that APG transcript was confined to anther during
microspore development in Brassica. napus flower buds [87]. It was
also suggested that five APG genes in Silene latifolia were related to
anther fertility, which were required for development of fertile
pollen [88]. Hence, we might infer that these OsSET genes are
involved in rice reproductive development though the regulation
of OsAPGs during microsporogenesis stage.

Except for the above 13 OsSET genes, the other genes were also
characterized by co-expression analysis. For example, OsSET6,
OsSETI0, OsSET16 and OsSET35 have a high expression level in
stamen, and their co-expression genes include transcription factor,
binding protein, pollen allergen and so on (Figure 5 and
Figure 10E). Among them, OsSET6, OsSETI0 and OsSETI6
are co-expressed with a cyclin gene. Meanwhile, OsSET10 is co-
expressed with five pollen allergen genes and 2 MADS-box genes
(OsMADS2 and OsMADS63). OsSET35 is co-expressed with
OsMADS2. The previous report showed that OsMADS? transcript
was first observed in the region where stamen primordia were
formed, and then appeared in the lodicule primordia as well as the
stamen primordia [89,90]. OsMADS63 is the homolog of
Arabidopsis AGL66, which encodes a MIKC*-type DNA binding
factor as heterodimer affecting pollen viability, germination, and
pollen tube growth [91]. Our analysis suggests that these four
OsSET members might affect on the development of male
gametophyte.

Conclusions

In conclusion, 43 OsSET genes can be classified into five classes
as supported by phylogeny and conserved domains organization.
Phylogenetic and structural analysis indicated that the domains
beyond SET domain were significant for their specific functions.
The expression analysis revealed that OsSET genes might
participate in various molecular pathways both in vegetative and
reproductive development. GO enrichment analysis showed that
the above OsSET genes and their co-expressed genes seemed to
particularly affect the same or similar GO categories. Promoter cis-
elements identification and the combined analysis of expression
correlation suggested that most of OsSET genes might be cell cycle
regulated and were associated in the cell cycle progression by
histone modifications via E2F. Moreover, we found that some
MADS-box and APG proteins may be associated with OsSET on
the regulation of cell differentiation and reproductive redevelop-
ment in rice.

Although the studies of plant SET genes have received much
progress, only a minority of OsSET genes has been verified in rice.
The challenges still exist for the large number of genes in this
family. It is a time-consuming process to molecular characterizes
the functions and mechanisms of all OsSET genes in traditional
approach. Thus our studies would provide valuable data for
inferring the putative functions and pathways of the OsSET genes.

Materials and Methods

Identification of OsSET Members in Rice

Hidden Markov Model (HMM) profile of SET domain
(PF00856) downloaded from Pfam (http://pfam.sanger.ac.uk/)
were employed to identify the putative OsSET genes in rice (Oryza.
satwa) [92]. The BlastP search was carried out using the HMM
profile on website of MSU RGAP (http://rice.plantbiology.msu.

PLOS ONE | www.plosone.org

12

Genome-Wide Analysis of OsSET Gene Family

edu/) and KOME (http://cdna0l.dna.affrc.go.jp/cDNA/), fol-
lowed by removal of redundant sequences from the two databases.
Meanwhile, the keyword “SET” was also performed in these
databases. Additionally, the Pfam and SMART database (http://
smart.embl-heidelberg.de/smart/batch.pl ) were used to confirm
and make classification of each predicted SET protein.

Chromosomal Localization and Gene Duplication

OsSET genes were mapped on rice chromosomes according to
their positions available in MSU RGAP. The distribution of
OsSET genes was drawn by Maplnspect (http://www.
plantbreeding.wur.nl/UK/software_mapinspect.html ). The du-
plicated genes were elucidated from the segmental genome
duplication of rice (http://rice.plantbiology.msu.edu/segmental
dup/500 kb/segdup 500 kb.shtml ), with the maximal length
distance permitted between collinear gene pairs of 500 kb [93].
Tandem duplicates were defined as genes separated by five or
fewer genes. The distances between these genes on the
chromosomes were calculated and the percentage of sequence

similarities between the proteins encoded by these genes were
determined by MegAlign software 4.0 (MEGA4) [94].

Phylogenetic Analysis of OsSET Family

The protein sequences of OsSET family and Arabidopsis SET
domain group (SDG) were aligned using ClustalX (version 2.0)
program. An un-rooted neighbor-joining [93] phylogenetic tree
was constructed in ClustalX based on the full sequences of the
proteins with default parameters from rice and Arabidopsis.
Bootstrap analysis was performed using 1,000 replicates. The
phylogenetic tree thus obtained was viewed using MEGA 4
software.

Structural and Sequence Analysis of OsSET Genes

Information in gene structures, transcripts, full-length cDNA,
BAC accessions for each gene and characteristics of corresponding
proteins were procured from MSU RGAP, KOME and
GRAMENE. Protein sequences of putative OsSET members
collected from the MSU RGAP and KOME were analyzed by
EXPASY PROTOPARAM tool (http://www.expasy.org/tools/
protparam.html ). Information in the number of amino acids,
molecular weight, theoretical isoelectric point (pl), amino acid
composition, and instability index (instability index of >40 was
considered as unstable) were obtained [95]. The conserved
domains of the OsSET protein in rice were determined by PFam
program.

Protein sequences were analyzed in the MEME program
(http://meme.sdsc.edu/meme/cgi-bin/meme.cgi ) to confirm the
conserved motifs. The MEME program was employed using the
following parameters: number of repetitions-any, maximum
number of motifs-200, optimum motif width set to >2 and <200.

Promoter sequences (—2000 bps) of OsSET family genes were
obtained from the Rice Annotation Project (RAP) database
(http://rapdb.dna.affrc.go.jp/tools/dump ). The cis-elements of
promoters were identified using the PLACE Web Signal Scan-
PLACE  (http://www.dna.affrc.go.jp/ PLACE/signalup.html )
[96,97].

Genome-wide Expression analysis of OsSET Family
Expression profile data of OsSET gene family in 24 tissues for
Minghui 63 were extracted from CREP database (http://crep.
ncpgr.cn, Microarray data sets: GSE19024) [98]. Expression
values of each gene were logarithm in Microsoft excel 2007 and
cluster analyses were performed using J-express 2011 with
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euclidean distances and hierarchical cluster method of “complete
linkage”. The average signal value of biological replicates for each
sample was used for analysis. When more than one probeset was
available for one gene, the higher signal value of the probesets was
used for analysis. Expression level in each of the tissues was
compared against the expression in seed using a student-¢ test. The
genes up- or down-regulated by more than two-fold and with p
values <0.05 were considered to be differentially expressed. The
average expression of more than two biological replicates for each
sample was used for analysis.

Identification of Correlated Genes and Network

Construction

The co-expression data were downloaded from the CREP
database. The standard deviations for the expression level of each
OsSET gene in 24 tissues were calculated. First, we ranked the
genes according to the correlation coefficients and screen ones that
were greater than 0.75 positively correlated with OsSET gene
expression. Then the Pearson correlation coefficient (PCC) and
the student-¢ test of candidate genes that we interested in were
recalculated with R project (version 2. 14.1). As the permutation
test done by Ouyang ¢t al., PCC =0.7 were significant (o = 0.05),
We mapped the correlated genes (at a more strict level, PCC
=0.75, p value =0.05) to the network with Cytoscape v2.8.1
[69,99]. GO enrichment was performed by Singular Enrichment
Analysis  (SEA) tool in agriGO (http://bioinfo.cau.edu.cn/
agriGO/index.php ) with default parameters using the rice
MSUG6.1 genome annotation as background [100]. Statistical
significance was determined using Fisher’s exact test and Yekutieli
multi-test adjustment.

Real-time PCR Analysis of Representative Genes in OsSET
Family

Primers designed for the RT-PCR analysis were listed in Table
S6. Samples were ground in liquid nitrogen using a mortar and
pestle. Total RNA (4 pg) was isolated using a RNAiso (Takara)
and treated with RNase-free DNase I (Takara) for 15 min to
eliminate possible contaminating DNA. First strand cDNA was
then reverse transcribed from total RNA with an oligo(dT)18
primer in a 20 pl reaction (diluted to 40 ul before use) using an M-
MLV Reverse Transcriptase (Promega) according to the manu-
facturer’s instructions. Real-time quantitative PCR was carried out
on ABI StepOneTM Real-time PCR instrument (Applied
Biosystems), containing 5 ul of 2x SYBR Premix EX Taq
(Takara), 0.5 pl of Rox Reference Dye II (Takara), 0.5 pl of the
cDNA sample, 2 UM of each gene-specific primer, in a final
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