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 Mini-Review Mini-Review

The quest for light is one of the major challenges for plants 
since their life depends on photosynthesis. Changes in the light 
environment can profoundly affect the developmental program 
of plants and this is particularly evident during germination 
when seedlings have to switch from a heterotrophic existence, 
depending on seed reserve, to a fully photoautotrophic metabo-
lism. When germination occurs underground, in the absence of 
light, seedling development is characterized by rapid hypocotyl 
elongation, slow root growth and unexpanded cotyledons which 
are folded in a structure known as the apical hook, enclosing 
an inactive shoot apical meristem (SAM). This developmen-
tal program, also known as etiolation or skotomorphogenesis, 
allows the emergence of the seedling from the soil.1,2 Etiolated 
seedlings are extremely sensitive to dim light and can efficiently 
direct their growth toward the light source, a response called 
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By being sessile, plants have evolved a remarkable capacity to 
perceive and respond to changes in environmental conditions 
throughout their life cycle. Light represents probably the 
most important environmental factor that impinge on plant 
development because, other than supplying the energy source 
for photosynthesis, it also provides seasonal and positional 
information that are essential for the plant survival and fitness. 
Changes in the light environment can dramatically alter plant 
morphogenesis, especially during the early phases of plant 
life, and a compelling amount of evidence indicates that light-
mediated changes in auxin homeostasis are central in these 
processes. Auxin exerts its morphogenetic action through 
instructive hormone gradients that drive developmental 
programs of plants. Such gradients are formed and maintained 
via an accurate control on directional auxin transport. This 
review summarizes the recent advances in understanding the 
influence of the light environment on polar auxin transport.
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phototropism. The phototropic response is mediated by the 
blue light-absorbing phototropin receptors, and helps the etio-
lated seedlings to reach the sunlight faster.3 Once the seedling 
shoot emerges from the soil, the elongation of the hypocotyl is 
arrested, the apical hook unfolds and the root growth is acceler-
ated. The SAM starts producing leaves and active chloroplasts 
are developed to establish a functional photosynthetic apparatus. 
This developmental program called photomorphogenesis or de-
etiolation is triggered by specific families of photoreceptors, the 
blue light-absorbing chryptochromes and the red/far-red light-
absorbing phytochromes.1,2 Once the photoautotrophic lifestyle 
is gained, the young seedlings still have to compete with the 
neighboring vegetation for sunlight. The shade of plant cano-
pies, which is depleted in photosynthetically active wavelengths, 
can induce in most angiosperms the so-called shade avoidance 
response. The shade avoidance response, which is triggered by 
phytochromes, is characterized by the elongation of stem-like 
organs at the expense of leaf and root development as an attempt 
to overgrow neighbors and ensure a better uptake of sunlight.4,5

Several hormones, such as gibberellins, cytokinins and brassi-
nosteroids, have been implicated in the morphological adapta-
tion of plants in response to changes in light environment,6-8 
but a key role of auxin is clearly emerging.9 One of the most 
peculiar properties of auxin lies in the existence of an active 
intercellular polar transport throughout the plant, a mechanism 
that is necessary for formation of instructive auxin gradients 
that influence almost all developmental processes including 
embryogenesis, post-embryonic organogenesis, root meristem 
maintenance and vascular tissue differentiation.10,11 At a cellu-
lar level, polar auxin transport (PAT) is achieved through the 
action of a number of plasma membrane (PM) transporters that 
regulate the influx and efflux of auxin.10,11 In the model plant 
Arabidopsis thaliana, the cellular influx of auxin is mediated by 
the AUXIN RESISTANT1/LIKE AUX1 (AUX1/LAX) family 
of amino acid permease-like proteins,12 whereas the efflux from 
the cells is mainly controlled by members of the PIN-FORMED 
(PIN) family of transmembrane proteins.13 Members of the sub-
family B of ATP-binding cassette/P-Glycoprotein (ABCB/PGP) 
transporters have also been demonstrated to mediate cellular 
auxin efflux and to interact with PIN transporters at different 
levels.14,15 Among the auxin transporters, the PIN efflux carrier 
proteins are polarly localized at the plasma membrane of cells 
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shown to take part in the process of apical hook formation and 
maintenance.24,26 Recently, the AGC kinase WAG2 has been 
shown to repress apical hook unfolding and to be required for 
the auxin maximum at the concave side of the hook.27 WAG2 
expression is regulated by light via the basic Helix-Loop-Helix 
transcription factor PHYTOCHROME INTERACTING 
FACTOR 5 (PIF5), clearly linking auxin transport to light sig-
naling.27 WAG2 has been shown to phosphorylate several PINs 
in vitro, leading to the idea that it might regulate PIN polarity in 
vivo.27 However, its role in the regulation of auxin fluxes in the 
apical hook is still unclear, since no changes in PIN1 and PIN3 
polarity were observed in wag2 mutants’ apical hook.27

The hypocotyl acts also as a central communication organ 
between the shoot and the root, the communications occurring 
notably through auxin transport. Recent evidence indeed dem-
onstrated that light has a profound effect on PAT in the hypo-
cotyl during de-etiolation.28,29 In dark-grown hypocotyls, PIN1 
expression is dramatically reduced, and it is conversely induced 
upon exposure to light.28 The light-mediated regulation of PIN1 
expression in the hypocotyl has been shown to depend on the 
action of CONSTITUTIVE PHOTOMORPHOGENIC 1 
(COP1), a RING E3 ubiquitin ligase that acts as the master 
regulator of photomorphogenesis.28 The repression of PIN1 
expression in etiolated hypocotyls has been proposed to inhibit 
the PAT from the shoot to the root, in agreement with previous 
analyses showing impaired PAT in dark-grown hypocotyls.28,29 
At a physiological level, the dark-induced inhibition of shoot-to-
root PAT has been shown to strongly inhibit root growth and 
lateral root development,28,30 allowing for a tight co-ordination 
of shoot and root development during the photomorphogenetic 
response.28

The light-mediated regulation of PIN3 activity plays a key 
role in regulating phototropic hypocotyl bending.25 It was 
recently demonstrated that PIN3 is expressed in the endodermal 
cells of etiolated hypocotyls where it is localized in an apolar 
fashion, being present on both the outer and inner PM.31 Upon 
exposure to unilateral blue light PIN3 localization becomes 
asymmetrical, disappearing from the outer PM in the cells on 
the side of the hypocotyl directly exposed to the light signal.31 
Polarization of PIN3 in the inner side of endodermal cells has 
been proposed to be required to pump away auxin from the illu-
minated flank of the hypocotyl and to form a hormone maxi-
mum on the side opposite to the light signal, thus promoting the 
asymmetric growth response that drives hypocotyl bending.25,31 
This regulation of PIN3 polarity is dependent on phototropins 
action and it requires PIN3 phosphorylation via the PINOID 
kinase.31 Genetic evidence indicated that other auxin transport-
ers, such as PIN7, AUX1 and ABCB19, may also participate 
in phototropic responses although their precise role is not yet 
clearly defined.31-33

Light does not regulate auxin transport only in the aboveg-
round tissues. Indeed, auxin transport in the root apex is also 
influenced by the light environment, despite the fact that 
roots are not directly exposed to light. It has been shown that 
darkness promotes vacuolar targeting of PIN2 in the root api-
cal meristem (RAM), a response proposed to alter local auxin 

and their polarity determines the direction of the auxin flux.16 
PIN proteins are constitutively recycled via endocytosis and 
auxin has been shown to inhibit this process to enhance its own 
efflux, thus influencing the polarity of the PINs.17,18 Endocytic 
recycling and transcytosis have been shown to play a role in con-
trolling polar PIN targeting19,20 and evidence of protein phos-
phorylation regulating PIN polarity have also been provided.21,22

Although several studies have revealed how the light environ-
ment can alter auxin homeostasis at different levels by modify-
ing its biosynthesis and degradation,9 recent works indicate that 
the regulation of auxin fluxes plays a central role in regulating 
and co-ordinating plant development in response to changes in 
the light environment.

The apical hook is one of the hallmarks of skotomorpho-
genic development. The formation of the apical hook is caused 
by asymmetrical growth of the cells on the two opposing sides 
of the upper part of the hypocotyl.23,24 The differential growth 
response coincides with the establishment of an auxin signal-
ing maximum on the concave side of the apical hook, depen-
dent on transport of auxin synthesized in cotyledons.23-25 The 
expression and the polar localization of several PINs is dynami-
cally regulated during the establishment of the apical hook, but 
only PIN3 has been demonstrated to play a key role in the early 
stages of apical hook formation, whereas PIN1, PIN4 and PIN7 
play redundant roles in the maintenance of the hook folding.23,25 
Relevantly, auxin influx carrier proteins AUX1 and LAX3 and 
ABCB/PGP efflux facilitators ABCB19 and ABCB1 have been 

Figure 1. Confocal laser scanning microscopy images of pPIN1::PIN1 
− GFP expression (green channel) in 5-d-old seedlings grown in light 
(A) or in the dark (B). PIN1 − GFP displays polar PM localization in the 
SAM and leaf primordia of light-grown seedlings (A). By contrast, 
PIN1 − GFPis targeted to the vacuole in the SAM and leaf primordia in 
etiolated seedlings (B). Red channel depicts seedling autofluorescence. 
The growth conditions and microscopy used for this experiment were 
previously described.28
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canopy shade strongly increases auxin levels through the 
action of the auxin biosynthetic enzyme TRYPTOPHAN 
AMINOTRANSFERASE OF ARABIDOPSIS 1/SHADE 
AVOIDANCE 3 (TAA1/SAV3) in a pathway that requires 
the action of phytochrome B and PIF7.40,41 The shade-induced 
increase in auxin levels has been shown to be required for the 
promotion of hypocotyl elongation that is central to the shade 
avoidance response of young seedlings.40,42 Relevantly, canopy 
shade induces PIN3 expression in the hypocotyl and promotes 
its lateral localization in the endodermal cells toward the flanks 
of the hypocotyl.42 This shade-induced relocalization of PIN3 
has been proposed to promote auxin efflux toward the cortical 
cells of the hypocotyl, enhancing the cell elongation response.42 
In shade conditions, a strong downregulation of PIN1 in the 
hypocotyl, along with a concurrent decrease in auxin levels 
in the RAM (as inferred by the DR5::GUS auxin signaling 
marker) can also be observed (Fig. 2). This suggests that shade 
might activate a PIN1-dependent mechanism, similar to that 
observed in etiolated seedlings, to partition auxin levels between 
shoot and root.28 Such a regulatory mechanism might inhibit 
growth of the root system43 while auxin-mediated responses in 
the shoot such as hypocotyl cell elongation and the inhibition 
of leaf expansion take place.42,44 Similarly to what occurs dur-
ing etiolation, this shade-mediated regulation of auxin trans-
port pathways is likely central to the re-allocation of resources 
allowing to fine tune plant development and architecture to light 
conditions.

As we have discussed, it is becoming evident that light can con-
trol auxin transport in different ways, including the induction of 
tissue-specific PIN expression or the modulation of subcellular 
localization and abundance of PIN proteins28,31,35,42 (Fig. 3). In 
differentiated tissues, PIN expression levels and polarity appear 

transport activity, leading to reduced RAM proliferation and 
root growth.28,34 It was also demonstrated that, in the dark, 
PIN2 is targeted to the vacuole for degradation, leading to a 
reduction of the protein levels at the PM, similarly to what is 
observed on one side of the RAM during the root gravitropic 
responses.35,36 Dark-induced vacuolar targeting of PIN2 is not a 
root-autonomous process, but requires signals from the shoot.28 
Recent evidence indicated that PIN2 levels in the RAM depend 
on the amount of shoot-derived auxin, that is itself determined 
by the light-mediated regulation of PIN1 expression in the hypo-
cotyl.28 COP1 has been shown to participate in the regulation 
of PIN2 levels in the RAM by light and gravity.28 Moreover, 
a requirement of PIN2 ubiquitylation for its vacuolar targeting 
and degradation in the dark has also been demonstrated.32 This 
would suggest that PIN2 might be a direct target of the COP1 
E3 ubiquitin ligase, although this remains to be demonstrated. 
Other auxin transporters, such as PIN1, PIN3 and PIN7 are also 
targeted to the vacuole in dark-grown RAM, but genetic analyses 
suggest that only PIN1 and PIN2 are essential for the regulation 
of root growth in response to light.28,34 Dark-dependent vacuolar 
targeting of PIN1 was also observed in organs other than the 
RAM, such as leaf primordia and SAM, both in adult plants37,38 
and in etiolated seedlings (Fig. 1). The vacuolar targeting of 
PIN1 in aerial organs leads to a dramatic reduction of PIN1 PM 
levels that closely correlate with a decrease in the auxin signaling 
activity in the distal end of leaf primordia.38 This response has 
been associated with the reduced organogenesis and leaf growth 
observed in dark-grown plants,38 indicating that PIN vacuolar 
targeting provides a mechanism for regulating growth of both 
shoot and root.

Alterations of plant architecture induced by canopy shade 
have also been associated with auxin transport.39 Indeed, 

Figure 2. Time-course analysis of the histochemical localization of GUS activity in PIN1::GUS (upper row) and DR5::GUS (lower row) seedlings grown 
for 4 d in normal light conditions (high R/FR), and then exposed to shade (low R/FR) for 48 h. PIN1::GUS is specifically downregulated in the hypocotyl 
after 24 h of shade and its expression can be restored by exposing plants for 24 h to normal light conditions after the initial shade treatment. Notice 
that a concurrent reduction of DR5::GUS staining in the root apex of plants exposed to shade could also be observed (insets in the lower row), and 
could subsequently be increased by exposing plants for 24 h to normal light conditions after the initial shade treatment. The growth conditions, light 
settings, staining procedures and microscopy used for this experiment were previously described.28,44 d.a.g., days after germination.
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Figure 3. Schematic representation of the light-regulation of PIN auxin efflux carriers in etiolated (left) and light-grown (right) seedlings. Each square 
summarizes the effect of a particular light stimulus on the development of a specific tissues and the levels of regulation of PIN carriers involved (see 
main text for details). Numbers between parentheses indicate the corresponding references.




