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 review REVIEW

Cell Plate Formation in Plants

In mitotically dividing cells, separation of chromosomes (e.g., 
nuclear division) is followed by a physical separation of the two 
daughter nuclei by the establishment of a cell plate and/or cell 
wall (e.g., cell division). This process is generally termed cyto-
kinesis and is considered an essential part of the mitotic cell 
cycle, more specifically as the final step of the mitotic M-phase. 
Indeed, loss of cell plate formation in most organisms typically 
leads to severe defects in cell proliferation and cell differentia-
tion, mostly causing a premature abortion of the tissue or organ 
involved.1-3

Based on the different cell structure and morphology of vari-
ous biological systems (e.g., rigid cell wall in plants does not 
occur in animal cells), the process of cytokinesis shows a large 
variability between the different kingdoms, with a strong differ-
ence between plants and other eukaryotic organisms.4,5 In ani-
mals and yeast, following nuclear division, cytokinesis is initiated 
at the periphery of the division plane with the specification of 
the cleavage plane and subsequent rearrangement of microtubule 
(MT) structures that form a structural basis for the formation of 
the actin-myosin-based contractile ring.6-9 This actomyosin ring 
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In somatic cell division, cytokinesis is the final step of the cell 
cycle and physically divides the mother cytoplasm into two 
daughter cells. In the meiotic cell division, however, pollen 
mother cells (PMCs) undergo two successive nuclear divisions 
without an intervening S-phase and consequently generate 
four haploid daughter nuclei out of one parental cell. In line with 
this, the physical separation of meiotic nuclei does not follow 
the conventional cytokinesis pathway, but instead is mediated 
by alternative processes, including polar-based phragmoplast 
outgrowth and RMA-mediated cell wall positioning. In this 
review, we outline the different cytological mechanisms of 
cell plate formation operating in different types of PMCs and 
additionally focus on some important features associated with 
male meiotic cytokinesis, including cytoskeletal dynamics and 
callose deposition. We also provide an up-to-date overview of 
the main molecular actors involved in PMC wall formation and 
additionally highlight some recent advances on the effect of 
cold stress on meiotic cytokinesis in plants.
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contracts centripetally and mediates the ingression of cleavage 
furrows, eventually forming a small intercellular bridge (1–1.5 
μm) that contains a microtubular midbody. In the final step of 
cytokinesis, MT-mediated vesicle trafficking completes midzone 
assembly and forms an internuclear membrane, physically sepa-
rating the two newly formed daughter cells.7,10-12

In contrast to the centripetal-directed furrow ingression 
observed in animals and yeast, cell plate formation in plant cells 
typically involves the establishment of a centrally initiated MT 
structure; the phragmoplast.13-16 The phragmoplast is composed 
of short, overlapping microtubules of opposite polarity formed 
at the center of the cell and centrifugally expands to mediate the 
deposition of membrane vesicles along a plane marked earlier 
by a cortical microtubule array; the preprophase band (PPB).5,17 
Subsequent fusion of Golgi-derived vesicles and endosomes at 
the equatorial midzone of the phragmoplast generates a tran-
sient tubule-vesicular membrane, also called the cell plate, which 
grows out in a centrifugal direction to fuse with the parental 
plasma membrane at the cell periphery.18-20 In the final step, the 
intermediate cell plate matures and transforms into a rigid cell 
wall; a process which involves different actions, including the 
closure of plate fenestrae, incorporation of pectins and xyloglu-
cans, removal of excess membrane and replacement of callose by 
cellulose.15,21,22

In the meiotic cell division, similar to the mitotic one, seg-
regation of chromosomes (nuclear division) is always accompa-
nied by the formation of a cell plate (cytokinesis). In plant male 
meiosis, however, two different types of cell plate formation are 
documented; namely successive and simultaneous cytokinesis. 
In the former mechanism each meiotic cell division is directly 
followed by a cytokinetic event. As such, a transitory dyad is 
generated after meiosis I and a tetrad is formed after meiosis 
II (Fig. 1). Inherent to this way of division, the tetrad figure 
in successive-type PMCs is typically constrained to a tetrago-
nal (isobilateral) shape and sometimes to a T-shaped or linear 
shape,23,24 as for example observed in the Asparagales clade.25 In 
contrast, in the process of simultaneous cytokinesis, cell plate 
formation is uncoupled from chromosomal segregation and 
cytokinesis occurs when both meiotic divisions are finalized. So, 
in this mechanism, a double ‘perpendicular’ cell plate structure 
is generated at the end of meiosis II.26,27 Resulting tetrads are 
hereby much more variable in morphology (Fig. 1), displaying 
both tetragonal, rhomboidal and tetrahedral arrangements.25 In 
general, the successive-type of cytokinesis is typically observed 
in monocotyledonous PMCs, whereas the simultaneous-type is 
characteristic for dicotyledonous male meiocytes.28-30
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of the meiotic cell plate is not pre-
defined by a pre-prophase band,33 
but instead is determined by the MI 
spindle structure, more specifically 
by the central spindle fibers. These 
MT fibers are installed at mid-pro-
metaphase and, upon separation of 
homologous chromosomes, are not 
removed, but instead remain posi-
tioned at the meiocyte’s midzone. 
During MI cytokinesis these central 
spindle fibers form a phragmoplast-
like MT structure that, supple-
mented with and spatially guided 
by polar MT bundles, surrounds the 
growing cell plate and mediates cen-
trifugal cell wall expansion (Fig. 2). 
As such, Shamina et al. (2007) stated 
that the position of the MI cell plate 
depends on the spatial organization 
of the MI spindle apparatus and the 
localization of the MI nuclear poles.32 
In support of this, the absence of 
a central bipolar spindle in maize 
dv PMCs (e.g., chaotic, monopolar 
and non-polar spindle figures) often 
results in a complete loss of meiotic 
cell plate formation, eventually yield-
ing multinuclear monads that occa-
sionally display randomly positioned 
cell wall fragments.34 Similarly, other 
defects in MI spindle formation, 
such as the unequal distribution of 
free MT bundles between the two 
MI half-spindles and alterations 
in anti-parallel spindle connection 
(e.g., the “disconnected” spindle 
phenotype in wide F1 hybrids) typi-
cally leads to MI cytokinetic abnor-
malities, including loss of cell wall 
establishment and the formation of 

short daughter membranes (e.g., incisions).32

A second feature of successive PMC cytokinesis, not observed 
in conventional somatic cytokinesis, is the increased circumfer-
ence (increased number of MTs) and progressive curvature of the 
phragmoplast MT fibers during centrifugal movement.32 This 
increased circumference and associated MT accumulation is not 
attributed to MT recycling within the phragmoplast, as observed 
in mitotic cells,18 but instead is caused by the polymerization of 
new MTs emanating from the polar regions of the telophase spin-
dle structure. These newly formed MTs grow toward the equa-
tor, closely associating with the pre-existing central phragmoplast 
fibers, and connect with the opposite polar MTs to replicate the 
midzonal phragmoplast structure. This polar-based MT supply 
not only increases the cytoskeletal MT amount of the expand-
ing phragmoplast, but also constitutes the basis for the C-curved 

Cytological Mechanisms of Male Meiotic Cell Plate 
Formation

From a mechanistic point of view, cell plate formation in succes-
sive-type male meiocytes follows a similar pattern as observed 
in “conventiona” cytokinesis.31 Indeed, by studying cytoskel-
etal rearrangements during meiotic telophase I in a number of 
monocotyledonous plant species, Shamina et al. (2007) demon-
strated that the successive-type of meiotic cytokinesis is directed 
by a centrifugally expanding phragmoplast and that this mobile 
phragmoplast directly guides vesicle-mediated deposition of cell 
wall components to generate the cell plate.32 However, compared 
with normal “conventional” cell plate formation, meiotic cytoki-
nesis displays some alterations, more specifically in the establish-
ment and dynamics of the MT structures.32 First, the position 

Figure 1. Schematic overview of successive and simultaneous type of cytokinesis in plant male meiosis 
and the corresponding morphological variation of the resulting tetrads.
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phragmoplast movement in successive-type PMCs is analogous 
to that of anaphase-B in animal cell division.32

In contrast to the successive-type of cytokinesis, the simulta-
neous-type strongly differs from somatic cytokinesis as neither a 
preprophase band (PPB)33 nor a classical phragmoplast structure 
is formed.35,38-41 Moreover, in contrast to the centrifugally directed 
outgrowth of the cell plate in somatic and successive-type PMC 
cells, cell plates in these PMCs typically show an inward-oriented 
infurrowing of the callosic parental wall to partition the meiotic 
cytoplasm.30,31,39,42 This centripetal ingrowth process is mediated 
by and directed along phragmoplast-like MT structures, called 
radial microtubule arrays (RMAs), which physically demarcate 
the meiocyte’s nuclear cytoplasmic domains (NCDs) and define 
the position of the future cell wall.38,43 RMAs are formed by the 
interaction of actin filaments and microtubuli that emanate from 
the microtubule organizing centers (MTOCs) localized on the 
outer surface of the telophase II nuclei.41,44 Hence, subsequent 
formation of the meiotic cell plate is not fixed to pre-defined posi-
tions on the parental wall, but rather is imposed by the spatial 

shape of the phragmoplast edge fibers (Fig. 2). The antiparallel 
connection at the equator region combined with the progressive 
expansion of the polar MT fibers is hereby suggested to be the 
driving force inducing the enhanced curvature of the phragmo-
plast MT fibers.32

Based on these unique features, the cytological mecha-
nism underlying centrifugal movement of the phragmoplast 
in successive-type PMCs is thought to be differentially regu-
lated as compared with mitotic cell division. In ‘conventional’ 
somatic cytokinesis, lateral phragmoplast expansion is mediated 
through dynamic MT fiber processing; e.g., by degrading cen-
trally located MTs and emergence of new MTs at the external 
side (Fig. 2). This MT-driven lateral expansion is most likely 
guided by a pre-established cytoskeletal array, composed of actin 
fibers that connect the phragmoplast midzone with the cortical 
division plane.35 In meiotic cell division, however, no such actin 
structures are present36,37 and phragmoplast MTs do not show 
an outward polymerization-depolymerization process. Based on 
these findings, Shamina et al. (2007) speculated that centrifugal 

Figure 2. Microtubule array formation and direction of cell wall formation in “conventional” cytokinesis and in male meiosis I and II of respectively 
successive and simultaneous type PMC cytokinesis. The newly formed cell plate and associated deposition of transient callose is presented in blue. 
Phragmoplast and RMA microtubule structures are indicated in green and polar MT bundles are shown in gray.
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Besides its functional role in microspore development, cal-
lose deposition at PMC cytokinesis also strongly influences pol-
len morphology and aperture pattern ontogeny.59,60 Albert et al. 
(2011) hereby found that PMC cytokinetic callose deposition 
is a two-step process, in which transient callosic cell plates are 
formed first, as an intermediate structure for cell wall formation, 
whereas callosic plugs are deposited later at specific places on the 
outer tetrad wall to specify the position and the pattern of the 
pollen apertures.61

Molecular Regulation of PMC Cytokinesis

In contrast to somatic cytokinesis, little is yet known about the 
molecular mechanism(s) underlying meiotic cell plate formation. 
Most cytokinesis-defective mutants (e.g., hyd1, knolle, kor, keule) 
are seedling-lethal, impeding the analysis of putative meiosis-
specific functionalities.62,63 It is suggested that the construction 
of the cell wall in both mitotic and meiotic cells is dependent on 
or shares similar molecular mechanisms, however, both cytologi-
cal and genetic studies in Arabidopsis have revealed some distinct 
alterations in molecular regulation. For example, immunocyto-
logical examination demonstrated that KNOLLE, a cytokinesis-
specific syntaxin protein63 that normally localizes to the newly 
formed cell plate in mitotically dividing cells, is not required for 
male meiotic cell plate formation.64 As such, it was suggested that 
-at least partially- different cell plate forming mechanisms oper-
ate in both types of cell division.

Forward genetic screens in Arabidopsis have resulted in the 
isolation and characterization of several mutants showing clear 
defects in male meiotic cytokinesis; e.g., tes, stud, anq1/mkk6 
and mpk4.65-68 All these mutants show normal meiotic chromo-
some segregation but exhibit a complete failure of cytokinesis at 
the end of male meiosis and consequently generate large tetra-
spores harboring four haploid nuclei.26 Molecular identification 
of tes and stud revealed that they are two allelic variants of the 
same gene, namely TES/STUD/AtNACK2. The correspond-
ing protein has an N-terminal domain homologous to kine-
sin motor proteins and shares sequence similarity with a small 
number of plant kinesins, including the Arabidopsis HINKEL 
(HIK) protein and NACK1 and NACK2 from tobacco.43,69-71 
Since all these proteins are involved in cytoskeletal MT organi-
zation during mitotic cytokinesis, TES was suggested to func-
tion as a PMC-specific MT-associated motor protein, playing an 
essential role in the regulation of meotic RMA formation and/
or stability.43

Similar to HIK/AtNACK1, ANQ1/MKK6 and MPK4 are 
both components of the MAPK signaling cascade that regu-
lates somatic cytokinesis in Arabidopsis. Indeed, using in vitro 
expression assays in yeast, Takahashi et al. (2010) demonstrated 
that cytokinesis is controlled by a pathway that consists of ANP 
MAPKKKs, that can be activated by HIK, and which in their 
turn activate downstream ANQ1/MKK6 MAPKK, with MPK4 
MAPK being the presumed target of ANQ1/MKK672 (Fig. 3A). 
Consequently, functional loss of one of these proteins, such as 
MPK4 and ANQ1, causes severe defects in somatic cell plate for-
mation and leads to dwarfism and stunted growth.73-75 In addition, 

positioning of the nuclei at the end of MII.16,37,45,46 This is well 
demonstrated by several Arabidopsis meiotic mutants, in which 
post-meiotic cleavage plane formation is not constituted by a 
pre-defined conformation pattern, but instead always occurs in 
between the gametophytic nuclei formed,47 generating polyads 
instead of the normal tetrads. As such, the simultaneous-type of 
meiotic cytokinesis constitutes a special type of cell plate forma-
tion, in which the position of the cell plate is mediated by the 
location of the newly formed daughter nuclei and not through a 
predefined cytoskeletal imprinting (e.g., PPB). A similar mecha-
nism of cell plate formation also occurs in the nuclear endosperm, 
more specifically at the moment of cellularization.35,48 Indeed, in 
nuclear endosperms, initial development is comprised of several 
successive cycles of nuclear division without cytokinesis, generat-
ing a syncytial group of nuclei that reposition to the cortical cyto-
plasm. Next, similar as in simultaneous-type PMCs, MT arrays 
radiate from MTOCs on the nuclear envelope and interdigitate at 
the equator regions, defining the cellular boundaries and NCDs 
of the syncytial nuclei.49 Cell plate formation mediated by these 
RMA structures then finally leads to the assembly of cell walls 
between both sister and non-sister nuclei (e.g., cellularization). 
Strikingly, in another syncytial plant organ, namely the female 
gametophyte (embryo sac with eight nuclei), ‘non-conventional’ 
RMA-mediated cell plate formation only occurs between non-
sister nuclei, whereas a conventional cytokinesis event (spindle-
derived interzonal MTs) occurs between sister chromatids.35,50 
Thus, in a more general perspective, RMA-based cell plate for-
mation in simultaneous-type PMCs is not a unique biological 
process, but instead can be considered as a general type of cyto-
kinesis, specifically occurring in multinuclear coenocytic cells.

Callose Deposition at the Meiotic Cell Plate

A characteristic feature of meiotic cytokinesis is the abun-
dant presence of callose. Although deposition of callose is also 
observed in mitotic cell division, more specifically as a transient 
intermediate in de novo cell plate formation,19,51 in meiotically 
dividing cells callose is placed both at the division site as well as 
at the outer cell wall.52 Outer PMC callose deposition initiates at 
prophase I and progressively continues during the meiotic cell 
cycle, resulting in a thick callosic cell wall at the end of MII.53 
A similar callose deposition has also been observed in female 
meiocytes,54 suggesting that the callosic cell wall functions as 
a molecular filter to isolate developing PMCs and MMCs from 
the surrounding tissue, enabling the specific differentiation and 
programmed development of the enclosed meiocytes.53 In addi-
tion, meiotic deposition of callose is also essential for subsequent 
spore development, and more specifically for the establishment of 
a proper pollen cell wall.55 In male sporogenesis, the outer callose 
wall of newly formed microspores constitutes a basic framework 
for the deposition of new cell wall components (e.g., sporopol-
lenin) and, upon degradation, provides components essential for 
the synthesis of the outer pollen wall layer; e.g., the exine. In line 
with this, loss of meiotic callose deposition typically leads to an 
abortion of microspores and associated gametophytic sterility.56-58
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the equator of the phragmoplast, thereby mediating or facilitat-
ing the expansion of the phragmoplast at the end of the cell cycle 
(Fig. 3B).

loss of MPK4 and ANQ1 in Arabidopsis also 
induces defects in male meiotic cell plate forma-
tion, similar as observed in tes.67 As such, it is 
now generally conceived that TES, as a func-
tional homolog of HIK, together with MPK4 
and ANQ1/MKK6 constitute a similar MAPK 
signaling pathway that mediates post-meiotic 
RMA and cell plate formation in Arabidopsis74 
(Fig. 3A).

The exact mechanism by which this MAPK 
signaling cascade initiates and regulates cell 
plate formation in PMCs is yet unknown. 
However, recent studies have demonstrated 
that the downstream MAPK actor MPK4 is 
able to phosphorylate three members of the 
microtubule-associated protein MAP65 fam-
ily; e.g., MAP65-1, -2 and -3.68,76 Similarly, in 
the orthologous tobacco NACK-PQR path-
way, the MPK4 ortholog NRK1/NTF6 was 
found to phosphorylate MAP65-1.77 MAP65s 
are MT-associated proteins that are involved 
in the dynamic organization and structural 
positioning of MTs at distinct sites during the 
cell cycle.78 More specifically, AtMAP65-1 pro-
motes tubulin polymerization and microtubule 
nucleation79 and additionally drives microtu-
bule cross-bridging between parallel or anti-
parallel aligned MT to induce the formation 
of large MT bundles, making them more resis-
tant to cold and MT-destabilizing drugs.78,80-82 
Similarly, MAP65-3 controls MT stabilization 
by selectively cross-linking antiparallel interdig-
itating microtubules (IMTs) toward their plus 
ends.83,84 For MAP65-2, less is known about the 
specific function in MT dynamics. GFP expres-
sion studies and genetic analysis in somatic cells 
demonstrated that both MAP65-1, -2 and -3 
localize at the phragmoplast76,81,85 and are essen-
tial for phragmoplast formation and cell plate 
assembly.86 Although subcellular localization 
and functional assessment of these MAP65s has 
not been performed in developing PMCs, the 
strong homology with somatic cytokinesis sug-
gests that MPK4 most likely controls meiotic 
cell plate formation through the phosphoryla-
tion of MAP65s. A more detailed mechanistic 
insight into MAPK-mediated cytokinesis comes 
from Sasabe et al. (2006) who found that phos-
phorylated NtMAP65-1 accumulates during the 
late M phase of the cell cycle (at the phragmo-
plast) and that phosphorylation of NtMAP65-1 
by NRK1/NTF6 reduces its MT-bundling 
activity in vitro.77 Thus, in contrast to its pre-
sumed promotive function in MT bundling, it is now assumed 
that MAPK-mediated phosphorylation of MAP65-1 and other 
MAP65s enhances the destabilization and turnover of MTs at 

Figure 3. Cytokinesis in plants is regulated by a distinct MAPK signaling pathway. (A) 
Schematic overview of all the components involved in the MAPK signaling cascade that 
mediates de novo cell plate formation in tobacco and Arabidopsis cells. Proteins with a 
proven function in male meiotic cytokinesis are underlined. Full black arrows represent 
phosphorylation steps, dotted arrows indicate for an indirect or not fully known regulatory 
pathway. Figure based on previously published network figures.67,72 (B) Putative model for 
the downstream regulatory cascade mediating MAPK-activated cell plate expansion in both 
“conventional” and PMC cytokinesis.
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Impact of Temperature Stress on PMC Cell Plate 
Formation

Recent publications have demonstrated that meiotic cell plate 
formation, both in successive- and simultaneous-type PMCs, is 
extremely sensitive to temperature stress, and more particularly 
to cold stress. Tang et al. (2011) for example found that cold-
induced pollen lethality in a wheat thermo-sensitive genic male 
sterile (TGMS) line is caused by an abnormal separation of dyads 
during male meiosis I, indicating for a specific defect in male 
cytokinesis.98 Histological studies hereby revealed that low tem-
peratures alter the formation of the MI phragmoplast, leading to 
severe defects in cell plate assembly and meiocyte development. 
A more in depth cytological examination demonstrated that cold 
stress specifically affects the typical Chinese lantern-shaped actin 
MI phragmoplast structure.99 In addition, transcriptome studies 
revealed that cold stress dramatically represses the expression of 
many structural cytoskeleton-associated genes, including pro-
filin, ADF (actin-depolymerizing factor), myosin and formins.98 
Hence, sensitivity of meiotic cytokinesis to low temperature 
stress appears to be mediated by transcriptomic alterations of 
genes that play key roles in the dynamic organization of the actin 
cytoskeleton. Similar to TGMS wheat, cold also induces defects 
in meiotic cell plate formation in the simultaneous-type PMCs 
of Arabidopsis.100 Cytological examination hereby revealed that 
short periods of low temperature stress specifically alter the for-
mation the microtubular RMAs at telophase II and hence cause 
defects in meiotic cytokinesis and cell wall formation, yielding 
restituted meiocytes that contain bi- and polynuclear spores. 
However, in contrast to the TGMS wheat line, the Arabidopsis 
cold-induced multinuclear spores do not abort, but instead dis-
play nuclear fusion before pollen mitosis I (PMI), eventually 
generating diploid and polyploid pollen grains. Thus, in plants 
showing simultaneous type of meiotic cytokinesis, cold stress 
may lead to sexual polyploidization, yielding polyploid offspring 
with higher genetic plasticity and phenotypic adaptability to 
cope with adverse climate conditions. In support of this hypoth-
esis, also in Brassica, a substantial increase in 2n male gamete 
formation was observed under low temperature conditions, but 
the mechanism by which these cold-induced gametes are formed 
is not yet known.101

In contrast to temperature-affected MT figures in somatic 
cells, cold-affected RMA structures in Arabidopsis PMCs are 
not reassembled upon transfer to normal conditions, but instead 
persist and lead to defects in cell plate formation, similar as 
observed in the Arabidopsis mutants tes and mpk4. As such, 
one could presume that the cold-sensitivity of meiotic RMAs 
is not based upon physical or structural features, but instead is 
regulated on the molecular level, for example, through altera-
tions in MAPK signaling. Initial studies hereby did not show 
any regulatory involvement of TES, ANQ, MPK4 or MKK2; a 
cold-induced kinase that positively regulates MPK4 activity.100 
However, more in depth studies are needed to fully examine the 
molecular mechanism underlying the cold sensitivity of PMC 
cytokinesis.

Another protein involved in male meiotic RMA formation 
in Arabidopsis is SEPARASE (AESP). AESP is a caspase fam-
ily protease that is required for the proteolytic cleavage of the 
cohesin complex at the metaphase-to-anaphase transition and 
the release of sister chromatid cohesion during meiosis and mito-
sis.87 Interestingly, besides a persisted chromatid cohesion and 
aberrant chromosome segregation, aesp meiocytes (e.g., RNAi 
and the conditional rsw4 mutant) also show clear alterations 
in telophase II RMA formation, including reduced MT exten-
sion, partial phragmoplast formation and complete loss of RMA 
establishment.88,89 In addition, aesp PMCs often generate micro-
spores with multiple nuclei, clearly indicating for a defect in mei-
otic cytokinesis. Since these alterations are not observed in other 
chromosome segregation-defective mutants (e.g., Arabidopsis 
syn1 and ask1 and maize dv),47,90,91 AESP is thought to play a 
pivotal role in PMC cytokinesis, and more specifically in the for-
mation of the RMA. In addition,89 Yang, et al (2011) speculated 
that AESP regulates the maintenance of PMC cell polarity, most 
presumably through the control of cyclin levels. However, a clear 
connection between AESP activity and meiotic RMA formation 
remains to be established.

Two proteins have been found to be specifically required for 
the deposition of callose at the developing cell plate in male mei-
otic cytokinesis: glucan synthase-like GSL1 and GSL5. Indeed, 
cytological analysis of double gsl1/gsl1 gsl5/+ and gsl1/+ gsl5/
gsl5 mutants not only revealed defects in pollen grain develop-
ment, but additionally displayed loss of callose at newly formed 
PMC cell plates, without affecting the deposition of callose at 
the outer wall. Moreover, since the resulting microspores were 
occasionally larger and multinucleate, similar as observed in 
the cytokinesis-defective tes and mpk4, the deposition of cal-
lose at the male meiotic cell plate appears to be essential for 
normal PMC cytokinesis and haploid spore formation. Single 
gsl1 or gsl5 mutants, on the other hand, do not show any defect 
in meiotic callose deposition or microspore development. As 
such, Enns et al. (2005) concluded that GSL1 and GSL5 are 
both redundantly required for the deposition of callose at PMC 
cell plates and for the proper separation of the four daughter 
cytoplasms.57

Glucan synthase-like proteins, also termed callose synthases 
(CalSs) have been shown to interact with phragmoplastin, 
annexins, Rop1, sucrose synthase (SuSy) and UGT1 to form a 
functional complex that mediates callose deposition in a wide 
set of cell or organ types.92,93 Proteomic studies revealed that 
annexin-like proteins may modulate CalS activity94 whereas 
SuSy could be involved in providing primer substrate for callose 
synthesis.95 The Arabidopsis genome encodes 12 putative callose 
synthases (CalS1-12) and most have been found to mediate the 
deposition of callose in one or more specific organs or cell types; 
e.g., the cell plate, pollen tube, plasma membrane, plasmodes-
mata, etc. As such, GSL5 is not only required for the callosic 
cell wall in dividing PMCs but also mediates deposition of cal-
lose in developing pollen and wounded tissues (e.g., papillae).96 
Moreover, GSL5 expression is highly induced in leaves subjected 
to wounding, pathogen infection and SA treatment.97
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complete insight into the molecular regulation of PMC cytoki-
nesis. As such, future research needs to be focused on the iden-
tification and elucidation of both molecular and environmental 
factors underlying the specificity and variability in male meiotic 
cell plate formation in plants.
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Conclusions and Future Perspectives

The formation of the cell plate in plant male meiocytes is a unique 
biological process that shares both cytological and molecular fea-
tures with somatic cytokinesis. The large variability in meiotic 
tetrad forms together with the different cytoskeletal dynamics 
observed in successive- and simultaneous-type PMCs demon-
strates that male meiotic cytokinesis has adopted many forms 
and may be regulated differently between different plant species 
and/or clades. Although during the last years some regulatory 
cues have been revealed (e.g., MAPK signaling cascade), many 
essential components are still unknown, withholding us from a 
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