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One of the earliest genes identified with stem and early progenitor cells is the RNA-binding
protein, Musashi1 (Msi1). Through gene profiling of mammary epithelial cells transduced
with Msi1, a unique autocrine signaling pathway was identified that activates both the Wnt
and Notch pathways 1. This process was associated with increased secretion of the growth
factor, PLF1 and inhibition of the secreted Wnt pathway inhibitor, DKK3. Identification of
PLF1 as an effector of these pathways in the absence of the DKK3 tumor suppressor
provides a new avenue for investigating differences between normal and malignant tissues,
and potentially targeting tumor stem cells.

Introduction
Msi1 was first identified in Drosophila as a determinant of sensory organ development 2,
and later as a cell fate determinant of neuroglial stem cells 3. Msi1 blocks translation of
Numb, a negative regulator of Notch 4, as well as Ttk69, a transcriptional repressor
downstream of Notch 5, and each gene is inherited asymmetrically and separately by the
daughter cells. There are no studies of Ttk69 orthologs in mammalian cells, but it has been
shown to alter signal transduction downstream of growth factor receptor activation in insect
cells 6. Msi1 expression is also impacted by a second family of RNA-binding proteins
related to Drosophila Elav that are involved in the development and maintenance of the
nervous system in the fly and mouse 7, 8. Mammalian Elav orthologs HuB, HuC and HuD
promote mRNA stabilization by binding to AU-rich elements in the 3’-UTR of several target
mRNAs, including Msi19. Their activity has been linked to PKCα10, a protein kinase
involved in multiple signaling pathways 11, and are localized to the nucleus of neuronal stem
cells 12 similarly to Msi1 13.

Most studies of Msi1 have focused on regulation of the Notch pathway. Notch is activated
by sequential proteolytic cleavage of its membrane-associated form to a constitutively active
coactivator 14, whose expression is regulated by Msi1 and Numb 15. Numb promotes
ubiquitination of intracellular Notch 16 and interferes with its nuclear translocation 17. Msi1
associates with the cis-acting repressor motif, GU3–5(G/AG), in the 3’-UTR of Numb and
other targets to block translation 4.
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Musashi1 and mammary progenitor cells
Msi1 maintains the proliferation of multipotential neural stem/progenitor cells15, and is
rapidly downregulated in post-mitotic neurons3 and upregulated in central nervous system
tumors originating from neural stem cells 18, 19. Mammary stem cells, like other stem cells,
exhibit the ubiquitous feature of either remaining quiescent or undergoing self-renewal in
response to their microenvironment 20, and retain the ability to pass on newly labeled DNA
to their progeny by asymmetric cell division 21 (Fig. 1). “Label-retaining cells” are enriched
in the “side population”, which express higher levels of ABC transporter proteins, Msi1,
Notch1, CK19, ERα and a progenitor cell morphology22, as well as the CD24hi/CD133+

phenotype23. Human breast stem cells are enriched in Notch324, and Notch ligands promote
the proliferation of epithelial and myoepithelial progenitor cells24. Since the mammary
gland contains a population of multipotent stem/progenitor cells throughout development 25,
it is an ideal tissue in which to assess the pathways regulating stem/progenitor cell
proliferation, as well as those leading to malignant transformation 26.

We recently discovered that Msi1 regulated a unique autocrine signaling pathway in
mammary epithelial cells1. Msi1-transduced cells expressed the CD24hi/Sca-1+ and CD24hi/
CD29+ phenotypes. It remains controversial whether Sca-1 is a stem cell or progenitor cell
marker since CD24hi/Sca-1+ cells had no mammary gland repopulating activity compared to
CD24hi/Sca-1− cells 23, 27, whereas Sca-1+, but not Sca-1− cells, exhibited mammary
outgrowth activity 28, 29. On the other hand, CD24+/CD29hi mammary cells were found to
be multipotent self-renewing stem cells capable of reconstituting the mammary gland from a
single cell30. Preneoplastic tissue from MMTV-Wnt1 mice exhibited an increased
percentage of CD24+/CD29+ cells 30, and mammary outgrowth capacity segregated with
CD24lo rather than CD24hi cells 27. The upregulation of CD24hi/CD29+ cells by Msi1
therefore appears to be more consistent with its ability to drive expansion of multipotent
progenitor cells rather than pluripotent stem cells.

Msi1-transduced cells expressed a higher percentage of CK6, CK19 and double-positive
CK14/CK18 cells, which are indicative of basal cells, a mixture of stem and progenitor
cells 1. CK6 is abundant in stem and basal cells 29, 31–33 and has been linked to proliferation
of alveolar epithelium and activation of the Wnt pathway 34. CK19 is expressed in luminal
progenitor cells that give rise to CK14+ basal cells 35, 36, and double-positive CK14/CK18
cells are bipotential progenitor cells32. The Wnt pathway drives alveolar proliferation, as
shown in MMTV-Wnt1 37 and MMTV-ΔN89β-catenin 38 transgenic mice. Activation of
ΔN89β-catenin in mammary basal cells under the control of the CK5 promoter produced
abundant end bud development 39. β-Catenin also participates in establishing the mitotic
spindle 40, suggesting an additional role in stem cell self-renewal and progenitor cell
proliferation. Expansion of mammary basal cells with characteristic CK6/CK14 expression
has also been noted in mice with increased Notch pathway activation 32. These results are
also consistent with Msi1 being a transducer of multipotential progenitor cell expansion
rather than stem cell self-renewal.

An additional finding of our study was that p21Cip1 was absent in Msi1-expressing cells,
which is in agreement with the ability of Msi1 to block its translation41. p21Cip1 is believed
to function as a rheostat to maintain a balance between stem cell quiescence and stem cell
exhaustion resulting from increased cell cycle entry42, 43. p21Cip1 is also associated with
chromosome segregation during mitosis 44, as well as the negative regulation of Wnt4
transcription 45. Like β-catenin 40, p21Cip1 may play a role in mitosis to regulate progenitor
cell expansion.
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Msi1 regulates the proliferin signaling pathway
Gene profiling of Msi1-expressing cells presented the initial clue that Msi1 regulated a
unique autocrine pathway. Msi1 produced an increase in the growth factor, PLF1, and an
equally large reduction of the secreted Wnt pathway inhibitor, DKK3 1, and closely
paralleled their respective changes in protein level in the conditioned medium of Msi1-
transduced cells (Fig. 2). PLF1 is one of three highly homologous genes related to the
prolactin gene family that map to a single locus on mouse chromosome 13 46. PLF1 is a
ligand for the Gi-protein-coupled IGF2R 47, 48 that mediates prolactin-induced alveolar
development in the mammary gland through activation of ERK and Jak2 49, 50. Receptor
activation by PLF1 activates ERK 48, 51 and transcription factor AP-1 52, and is blocked by
pertussis toxin 48, 51, which catalyzes ADP-ribosylation of the Giα subunit to prevent its
interaction with the receptor 53. This mechanism was corroborated in Msi1-expressing cells
by showing that pertussis toxin inhibited PLF1-mediated ERK activation by conditioned
medium from Msi1-transduced cells, and that depletion of PLF1 from the medium or its
downregulation by RNA interference inhibited ERK activation and Notch and Wnt
signaling1. IGF2R activation is known to increase β-catenin nuclear localization and
EMT 54, which are associated with growth and invasion 55. IGF2 increases the number of
Msi1-positive intestinal stem/progenitor cells and their susceptibility to tumorigenesis56.
Also pertinent to our findings is the identification of PLF2 and PLF3 as Wnt-1 target
genes57. Since the three PLF1 genes are transcribed from a single locus, it is likely that they
are all regulated in a similar manner. We previously found that PLF1 and PLF3 expression
increased in primary mouse mammary tumors, particularly in those with basal cell
characteristics58, 59. Interestingly, PLF2 has been shown to increase expansion of mouse
hematopoietic stem cells ex vivo 60. These results therefore support a role for PLF1 in Msi1-
mediated activation of the Wnt and Notch pathways and in mammary progenitor cell
expansion.

Downregulation of DKK3 was reciprocally related to PLF1 expression downstream of Msi1
signaling1(Fig. 2). DKK3 (also known as REIC or Reduced Expression in Immortalized
Cells) is one of four homologous secreted proteins 61 that function as tumor suppressors 62.
DKK1 and DKK2, but not DKK3, bind to the Wnt co-receptor, LRP5/6, to block Wnt
pathway activation 63, but DKK3 similarly prevents nuclear localization of β-catenin
through an as yet undefined mechanism64. Downregulation of DKK3 by RNA interference
in control cells showed that it negatively regulated both β-catenin/TCF- and CBF1-
dependent transcription, which resembled the phenotype resulting from Msi1 expression1.
DKK3 expression in lung, prostate and liver tumor cells has been shown to induce
apoptosis65–67 and disrupt acinar morphogenesis and growth of prostate tumor cells 68. In
melanoma cells, reduction of DKK3 expression resulted in loss of cell adhesion, increased
invasion, upregulation of the transcriptional repressor, Snail-1 69, and reduction of E-
cadherin 70, all of which are associated with EMT. However, gene profiling and western
analysis of Msi1-tranduced cells did not reveal reduction in E-cadherin, suggesting that this
mechanism is not operative. Reduction of DKK3 therefore appears to work in concert with
PLF1 to promote increased progenitor cell expansion upstream of Wnt and Notch signaling,
but not EMT per se.

Notch-mediated transformation has been reported downstream of Ras and ERK
activation 71, which is also in agreement with the dependence of Msi1-induced Notch and
Wnt signaling on ERK activation1(Fig. 2). One mechanism common to activation of both
pathways is inhibition of GSK3β by ERK, which is necessary to prime GSK3β for
inactivation by other protein kinases 72(Fig. 2). Since GSK3β in its activated state
phosphorylates and promotes ubiquitination and proteasomal degradation of β-catenin 73
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and intracellular Notch 74, this mechanism provides a link between Msi1 and Wnt and Notch
pathway activation.

PLF1 induced ERK signaling correlated with the CD24hi/CD29+ progenitor cell phenotype
of Msi1-transduced cells1. CD24 is highly expressed in invasive tumor cells75, and mediates
its effects through integrinβ1, the subunit expressed by CD29, and which itself is
upregulated through the Ras/ERK pathway76. CD24 expression is linked to IGF2 signaling
through IGF2R, the same receptor activated by PLF1. Importantly, deletion of the IGF2
gene reduced CD24 expression by 90% and suppressed invasion of glioblastoma cells77.
Thus, increased PLF1 signaling through the IGF2R accounts for most, if not all, of the
phenotypic changes occurring in Msi1-expressing cells. In summary, increased PLF1
secretion and reduced DKK3 expression by Msi1 leads to ERK activation and increased
Notch and Wnt pathway activation. Inhibition of p21Cip1 and Numb work cooperatively
with Notch and Wnt to promote cell cycle transit and progenitor cell expansion, but not
terminal differentiation. Still undefined in this process is the role of the Msi1 target, Ttk69,
which may function in the regulation of noncoding RNA. We have recently found that Msi1
induces a microRNA signature that resembles a breast cancer phenotype78 (X. Wang and
R.I. Glazer, unpublished results). Thus, one role of Msi1 in mammary tissue is the expansion
of an early multipotenital progenitor cell population during development. Whether this is a
determinant of susceptibility to tumorigenesis will be the subject of future studies.
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Sca-1 stem cell antigen-1
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Figure 1.
Mammary gland differentiation. The degree of differentiation increases from top to bottom
as cells become more committed. Stem cells are distinguished by their long label retention
that reflects quiescence and nuclear expression of p21Cip. Stem cells undergo self-renewal
within the end bud niche through interactions by integrins on their cell surface, eg. CD29
(integrinβ1), with the extracellular matrix. In response to various stimuli, stem cells exit the
niche and actively divide into early progenitors that express Musashi1 (Msi1), CK19,
CD24+/Sca-1− and CK24+/CD29hi. As cells become further committed, they differentiate
into bipotential luminal and myoepithelial progenitor cells that express ERα, CK7, CK14+/
CK18+ and Sca-1. These cells give rise to CD24hi/Sca-1hi/CK6+ luminal progenitor cells,
and Sca-1+/CK14+ myoepithelial progenitor cells. Committed luminal cells are CD24+/
Sca-1−/CK18+/CK14−, whereas myoepithelial cells are CK14+/CK18−.
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Figure 2.
Musashi signaling pathways associated with mammary progenitor cell expansion. Notch is
processed proteolytically to an extracellular domain (NEC) and an intracellular domain
(NIC). The Notch ligands Delta1 (DL1) and Jagged1 (Jag1) associate with NEC, and induce
cleavage and release of membrane-bound NIC. NIC translocates to the nucleus, where it
serves as a coactivator of CSL to activate transcription of Hes/Hey, Notch, DL1/Jag2 and
cyclin D1. Musashi inhibits the translation of Numb and p21Cip1 by binding to a motif in the
3-UTR. Inhibition of Numb prevents NIC degradation and nuclear translocation, whereas
inhibition of p21Cip1 prevents inhibition of CDK’s to promote G1/S transition. Preliminary
studies indicate that Musashi increases secretion of the growth factor proliferin, which is
known to mediate ERK activation through the Gi-coupled IGFII receptor and inhibit GSK3β
activity. Msi1 also blocks expression of the Wnt pathway inhibitor, DKK3, to increase β-
catenin/TCF activity by an unknown mechanism.
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