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Summary
Remarkably, forces within a neuron can extend its axon to a target that could be meters away. The
two main cytoskeleton components in neurons are microtubules, which are mostly bundled along
the axon shaft, and actin filaments, which are highly enriched in a structure at the axon distal tip,
the growth cone. Neurite extension has been thought to be driven by a combination of two forces:
pushing via microtubule assembly and/or pulling by an actin-driven mechanism in the growth
cone [1, 2]. Here we show that a novel mechanism, sliding of microtubules against each other by
the microtubule motor kinesin-1 provides the mechanical forces necessary for initial neurite
extension in Drosophila neurons. Neither actin filaments in the growth cone nor tubulin
polymerization is required for initial outgrowth. Microtubule sliding in neurons is
developmentally regulated and is suppressed during neuronal maturation. As kinesin-1 is highly
evolutionarily conserved from Drosophila to humans, it is likely that kinesin-1-powered
microtubule sliding plays an important role in neurite extension in many types of neurons across
species.

Results
Characterization of Drosophila cultured neurons

Drosophila primary cells cultured from dissociated post-gastrulation embryos (stage 9–11)
[3–5] extend long neurites when cultured on Concanavalin A (ConA)-coated coverslips. To
verify that cells with long processes are indeed neurons, we first demonstrated that they
were positive for the pan-neuronal marker Elav [6] by using elav-Gal4 to drive a GFP-
tagged transmembrane protein mCD8 (elav>mCD8-GFP) [7] (Figure 1A–B), or by staining
with an anti-Elav antibody (Figure 1C–D). Furthermore, processes extended by these cells
were positive for Futsch, a neuron-specific MAP [8] (Figure 1D). The neurites contain
bundled microtubules and a majority of actin filaments accumulated in peripheral tips
(Figure 1C), as is seen in Drosophila neurons in vivo. We next ensured that the cultured
neurons had normal membrane organelle transport by examining mitochondria marked with
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Mito-GFP under the control of a motorneuron specific D42-Gal4 driver (D42>Mito-GFP)
[9]. GFP-labeled mitochondria moved along microtubule tracks visualized by mCherry-
tagged Jupiter, a microtubule associated protein [10] (Figure 1E; Movie S1). Finally, we
expressed an axonal marker, Tau-GFP [7, 11], and a dendritic marker, DenMark [12], under
D42-Gal4 and observed that Tau is concentrated in the longest neurite, while DenMark
labels the cell bodies and Tau-negative neurites (Figure 1F). Thus, cultured Drosophila
neurons could generate one axon and multiple dendrites. We conclude that the cultured
Drosophila neurons have normal neuronal characteristics.

Neither actin filaments nor tubulin polymerization is essential for initial neurite growth
In order to test the contribution of individual cytoskeletal elements to the formation of
processes, we blocked either actin or tubulin polymerization and examined neurite growth
(note that Drosophila neurons do not have cytoplasmic intermediate filaments [13]).
Fragmentation of actin filaments with 5 µM Cytochalasin D (CytoD) or their
depolymerization with 5 µM Latrunculin B (LatB) do not prevent neurite formation; instead,
the longest neurites, the potential axons, grow faster than in the control cultures (Figure 2A–
B; Figure S1E). Staining with phalloidin shows that LatB completely eliminates F-actin
from the neurite tips while CytoD reduces F-actin content and disorganizes actin network in
the cell (Figure S1A–D). This faster growth rate is not due to formation of large
multinuclear cells caused by the failure of cytokinesis, as the increase of growth rate was
clearly observed 1–2 hrs after plating (Figure 2A) when most cells have a single nucleus
(Figure S1F–F’). Furthermore, control and CytoD-treated neurons shows no significant
differences in the axon length after 3 days in culture (Figure S1G). Thus, while axons of
control neurons grow slower than axons of CytoD-treated neurons, they eventually catch up.
In conclusion, actin filaments in the growth cone are not required for axon outgrowth;
instead, their presence substantially slows down the growth. These data are consistent with
published results demonstrating that actin-destabilization treatment does not inhibit initial
axon elongation [14–18] and suggest that microtubules provide the driving force for initial
neurite outgrowth.

In order to test whether microtubule assembly promotes outgrowth [1], we inhibited tubulin
polymerization using 10 nM Vinblastine. As shown in the kymographs of EB1-GFP comets
(which track growing plus-ends of microtubules), this substoichiometric concentration of
Vinblastine is sufficient to block assembly (Figure 2C), but it does not cause
depolymerization of preexisting microtubules [19] (Figure S2A). We monitored neurite
growth for the first 80 min after plating in the presence of 10 nM Vinblastine. Inhibition of
polymerization did not stop outgrowth (Figure 2D), consistent with previous studies
demonstrating that axon growth does not solely depend on microtubule assembly [19, 20].
Thus, neither actin filaments in the growth cone nor microtubule assembly is essential for
initial neurite outgrowth in cultured Drosophila neurons.

Microtubule sliding drives initial neurite growth
How can microtubules promote process growth in the absence of actin filaments and tubulin
polymerization? We have previously demonstrated that conventional kinesin (kinesin-1)
drives microtubule sliding in Drosophila S2 cells and other cell types and that this sliding
can induce formation of cell processes [21]. We hypothesized that microtubule sliding could
potentially drive formation of neurites in Drosophila neurons.

To test whether sliding occurs in neurons that grow processes, we applied fiduciary marks
on microtubules that would allow us to visualize their behavior. To create the marks, we
tagged the Drosophila α-tubulin (α-tub84B) with a photoconvertible protein tdEOS [22],
and generated a transgenic line of flies carrying UASp-tdEOS- α-tub84B. We drove the
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tdEOS-α-tub84B with maternal αtub-Gal4 and zygotic D42-Gal4 (Figure 3A, 3E, and 3I).
We then photoconverted ~3 µm-wide segments of tdEOS-labeled microtubules (Figure 3B,
3F, and 3J) and imaged them for 10 min. In young neurons (<3 hrs after plating), we
observed robust movement of the labeled segments away from the initial photoconverted
zone (Figure 3C–D and 3G–H; Movies S2), demonstrating active microtubule sliding. This
translocation cannot be caused by the release and subsequent repolymerization of the tagged
tubulin dimers, because inhibition of either polymerization with 10 nM Vinblastine or
depolymerization with 20 nM Taxol did not block microtubule movement (Movie S3). We
conclude that the microtubule movement in young neurons is the result of sliding.

In contrast to the robust microtubule sliding in young cultures, older neurons (>16 hrs after
plating) with significantly decreased neurite outgrowth (growth plateaued after 10 hrs in
Figure 2A) had dramatically reduced microtubule movements (Figure 3K–L; Movie S4). To
quantify sliding, we measured the fluorescence outside the initial photoconverted segment
10 minutes after photoconversion (see Supplemental Experimental Procedures). This
measurement confirmed that the motility of microtubules is high in young neurons and
decreases ~50-fold in mature neurons (Figure 3M). Thus, microtubules actively slide only in
rapidly growing young neurons; sliding stops in mature neurons. This is consistent with our
hypothesis that microtubule sliding powers neurite outgrowth.

If microtubule sliding generates the force necessary for neurite extension, each growing
process must contain microtubules that extend to its tip. To visualize microtubules, we used
a GFP-tagged protein trap line of the microtubule-associated protein Jupiter, Jupiter-GFP
[23], to visualize overall microtubule distribution. In agreement with our tdEOS-αtub data,
we observed extensive microtubule movement as well as microtubule buckling and looping
in young Jupiter-GFP expressing neurons (Movie S5). For simultaneously imaging of
microtubules and the neurite tips, we labeled the cell membrane of Jupiter-GFP expressing
neurons with CellMask DeepRed dye. This labeling clearly revealed that in CytoD-treated
neurons, microtubules push against the membrane at the tips of the growing neurites (Figure
3N–N”; Movie S5). Furthermore, even when tubulin polymerization was blocked by 10 nM
Vinblastine, we still observed microtubules pushing against the membrane (Movie S5),
demonstrating that the microtubule-dependent membrane protrusion is not driven by tubulin
polymerization at the microtubule ends. These data collectively support our model that
microtubule sliding provides the mechanical force for initial neurite extension.

Microtubule motor kinesin-1 powers microtubule sliding
What is the driving force for microtubule sliding? We have previously demonstrated that
kinesin-1 is responsible for microtubule sliding against each other in S2 cells [21] and
therefore tested whether this mechanism could operate in Drosophila neurons. The maternal
kinesin-1 heavy chain (Khc) null embryos (Khc27 germline clone) die during early
gastrulation [24], preventing us from culturing Khc null neurons. In order to examine the
effect of Khc on sliding, we crossed female flies carrying germline clones of a strong
hypomorphic allele, Khc23, which retains ~25% of wild-type Khc activity [25, 26], to males
carrying Khc27 balanced with a GFP-marked balancer. We found that microtubule motility
was dramatically decreased in neurons from maternal Khc23/Khc23 (Khc23 germline clone)
and zygotic Khc23/Khc27 embryos (Figure 4A–B; Movie S6). Furthermore, we found that
young Khc mutant neurons failed to efficiently initiate microtubule bundling (Figure S2B–
C), which is similar to the effects that we observe in S2 cells after Khc RNAi knockdown
[21]. These data strongly indicate that kinesin-1 drives microtubule sliding in neurons.

We next tested whether kinesin-1 is required for neurite extensioin. Most neurons cultured
from maternal Khc23/Khc23 and zygotic Khc23/Khc27 embryos die after overnight culture.
Instead, we injected Khc 3’-UTR dsRNA into embryos that are maternally heterozygous and
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zygotically homozygous of the Khc null allele, Khc27 (Khc27 mutant embryos). Consistent
with our hypothesis, elimination of Khc led to dramatic defects in axon extension (Figure
4C–D; Figure S2D–E). Quantification shows that Khc mutant axons are significantly shorter
than control axons (Figure 4F). Importantly, the effect of dsRNA is specific, as the short
neurite phenotype was fully rescued by co-injection of Khc cDNA covering the protein
coding region together with the Khc 3’-UTR dsRNA (Figure 4E–F).

The major function of kinesin-1 is cargo transport along microtubules. It is therefore
potentially possible that the the neurite extension defects could be caused by inhibition of
organelle transport. We tested this possibility by treating cells with Cilibrevin D, a specific
dynein inhibitor [27]. Because kinesin-1 and cytoplasmic dynein are interdependent in
organelle transport [28, 29], treatment with 30 µM Ciliobrevin D completely stops
kinesin-1-depedent mitochondria movement (Figure S2F–G) as well as movement of other
organelles [27]. However, this treatment neither stopped microtubule sliding (Movie S6) nor
affected axon extension (Figure S2H–I). Therefore, microtubule sliding/neurite outgrowth
and organelle transport are two independent functions of kinesin-1.

Discussion
The identity of mechanical forces underlying axon growth has been studied for decades, yet
the precise contribution of each cytoskeletal component remains unclear. Microtubules have
been shown to play a critical role in axon growth, and it has been assumed that microtubule
assembly is essential for axons to extend during development. Surprisingly, we have now
shown that a new process, sliding of microtubules against each other by kinesin-1, is both
necessary and sufficient for initial neurite growth in Drosophila neurons.

We performed live imaging of Drosophila neurons expressing fluorescence-tagged tubulin
to show that kinesin-1 slides microtubules and that sliding drives neurite extension in young
neurons. Furthermore, our data show that destabilization of actin filaments by CytoD or
LatB was unable to prevent neurite extension, demonstrating that actin filaments are not
essential for this process. Importantly, we confirmed previous observations in other neuronal
systems suggesting that growth cone activity is dispensable for axonal outgrowth [14–17].
Instead, neurites grow faster after actin depolymerization. These results are in agreement
with a recent study from the Bradke group demonstrating that the actin destabilization by
ADF/Cofilin is required for neurite formation in hippocampal neurons [18]. Specifically,
they found that ADF/Cofilin sever actin filaments and organize the space in the growth cone
to allow microtubule protrusion. Consistently with our data, ADF/Cofilin knockout effect on
neurite outgrowth can be rescued by actin depolymerization. Thus, like in Drosophila
neurons, the driving force for initial neurite formation in the mouse system is provided by
microtubules and facilitated by F-actin destabilization.

Our results demonstrate that inhibition of tubulin polymerization by substoichiometric
concentrations of Vinblastine does not abolish initial outgrowth, consistent with the idea that
axon growth is not dependent on microtubule assembly at the distal tips [19, 20]. However,
vinblastine treatment somewhat reduces the rate of growth. There are two potential
interpretations of this fact. First, in the absence of new polymerization the cell can “run out”
of microtubules that slide and drive elongation. Alternatively, it is possible that, together
with microtubule sliding, microtubule assembly directly contributes to the neurite extension.

We further used Jupiter-GFP to label microtubules and DeepRed dye to mark cell
membrane, and demonstrated that in the absence of actin filaments microtubules always
reach the membrane at the tips of growing neurites and membrane protrusion and
microtubule extensions go hand-in-hand. We propose that sliding microtubules provide
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mechanical forces for neurite extension. In principle, we cannot exclude the possibility that
membrane protrusion is generated by a different mechanism, and microtubules just fill the
gap at the neurite tips. However, we think that this possibility is highly unlikely for two
reasons. First, this putative mechanism cannot use any other cytoskeletal element (actin
depolymerization does not inhibit membrane extension, and by definition this potential
mechanism would be microtubule-independent). Second, our data show that microtubule
sliding by kinesin-1 is required for generation of processes, and therefore the simplest
explanation is that force generated by kinesin-1 is transduced by microtubules to generate
membrane extension.

In addition to identifying a new mechanism for process formation, our data help to resolve a
long-standing controversy concerning microtubule cytoskeleton: whether tubulin in neurons
is transported as a polymer or as subunits [30, 31]. Similar to what has been shown
previously [19, 32, 33], we found that in young neurons tubulin is moved as a polymer.
However, as neurons mature, microtubule transport is dramatically downregulated, at which
point tubulin subunit transport could become predominant. Importantly, developmental
inhibition of sliding cannot be explained by global shutdown of kinesin-1, as kinesin-1
actively transport membrane organelles in mature neurons (Movie S1) [9], suggesting that a
dedicated mechanism regulates microtubule sliding activity of kinesin-1.

As the two microtubule-binding sites on kinesin heavy chain (one in the motor domain [34]
and the other at the C-terminus [35, 36]) are well conserved from Drosophila to humans, it is
likely that KHC-mediated microtubule-microtubule sliding provides the force for initial
neurite extension not only in Drosophila but also in other organisms. Indeed, these data are
consistent with the original observation by Ferreira et al. [37], who demonstrated that
kinesin depletion from cultured hippocampal neurons results in partial inhibition of axon
outgrowth. We therefore suggest, that the mechanism of neurite extension revealed in this
work for Drosophila neurons in likely function in vertebrates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of cultured Drosophila neurons
(A–B) A neuron expressing UAS-mCD8-GFP under control of elav-Gal4.
(C–D) Wild-type neurons fixed and stained with TRITC-conjugated Phalloidin, anti-tubulin
antibody and anti-Elav antibody (C), or anti-Futsch (22C10) and anti-Elav antibodies (D).
(E) A neuron expressing UAS-Mito-GFP under control of D42-Gal4, and mCherry-Jupiter
under ubi promoter.
(F) A neurons expressing UAS-Tau-GFP and UAS-DenMark under control of D42-Gal4.
Scale bars, 5 µm.
See also Movie S1.
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Figure 2. Neither actin filaments nor tubulin polymerization is essential for initial axon extension
in cultured Drosophila neurons
(A) Growth kinetics of live individual control (N=4) and CytoD-treated (N=5) neurons over
12 hours after neuron preparation. Each individual neuron was from an independent neuron
preparation, and imaged under DIC every hour for the 12-hour period. Control neurons and
CytoD-treated neurons were selected for similar cell body size and morphology to compare
the neurite growth rates. The longest neurite of each neuron is assumed to be the axon.
Average maximum growth rates of overnight control and CytoD-treated neurons are 0.23
µm/min, and 0.81 µm/min, respectively.
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(B) Distribution of axon lengths of control (N=23) and CytoD-treated (N=36) neurons after
24 hrs in culture.
(C) Kymograph of EB1-GFP comets in control and Vinblastine-treated neurons.
(D) Initial growth kinetics of live individual control (N=10) and Vinblastine-treated (N=10)
neurons. Each individual neuron was from an independent neuron preparation, and imaged
under DIC every 5 minutes over the first 40–80 minutes after neuron preparation. Control
neurons and Vinblastine-treated neurons were selected for similar cell body size and
morphology to compare the initial neurite growth rates. At the initial stage average
maximum growth rates of control and Vinblastine-treated neurons are 1.1 µm/min, and 0.5
µm/min, respectively.
See also Figures S1 and S2.
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Figure 3. Microtubule sliding drives neurite outgrowth in young neurons
(A–L) Cultured neurons expressing photoconvertible tdEOS-αtub under maternal αtub-Gal4
and zygotic D42-Gal4. (A,E,I) tdEOS-αtub imaged in the green channel before
photoconversion. (B–D,F–H,J–L) tdEOS-atub imaged in the red channel after
photoconversion. Time after conversion (in min:sec) is shown in individual frames. Top two
rows, young neurons; the third row, mature neuron.
See Movies S2–S4.
(M) Quantifications of microtubule sliding. Fluorescent intensity outside the
photoconversion zone was measured in the red channel 10 min after conversion. 95%
confidence interval (CI) for the mean: young neuron=0.300±0.065 (n=23; SEM=0.031;
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SD=0.150); mature neuron= 0.006±0.006 (n=23; SEM=0.003; SD=0.015). Unpaired t-test
between young and mature neurons gives p<0.0001 (***).
(N–N”) A cultured young neuron expressing GFP-tagged endogenous Jupiter (labels
microtubules) was stained with DeepRed (cell membrane). The whole neuron (N), and a
fast-growing neurite (the dashed box in N): merged channel in top panels (N’) and DeepRed
channel in bottom panels (N”). See also Movie S5. Scale bars, 5 µm.
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Figure 4. Khc is required for microtubule sliding and axon outgrowth
(A–B) Sliding of Jupiter-mCherry labeled microtubules is dramatically reduced in Khc
mutant neurons. (A) control neuron; (B) Khc mutant neuron (maternal Khc23/Khc23 and
zygotic Khc23/Khc27).
(C–E) Immunolabeling of axons (anti-αtub antibody) and nuclei (anti-Elav antibody) in
mature neurons (>16 hrs after plating) from control embryos (C), Khc27 mutant embryos
injected with Khc 3’-UTR dsRNA (D), and Khc27 mutant embryos co-injected with Khc 3’-
UTR dsRNA and Khc cDNA covering the protein coding region (E)
(F) Measurement of axon length of the neurons from the three genotypes of (C–E) after 16
hrs in culture. The longest neurite in each examined neuron is assumed to be the axon. Axon
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lengths of the three genotypes are (95% CI for the mean): control neuron=58.8±4.4 µm
(N=34; SEM=2.2 µm; SD=12.7 µm); Khc 3’-UTR dsRNA injection neuron=16.2±3.3 µm
(N=26; SEM=1.6 µm; SD=8.2 µm); Khc 3’-UTR dsRNA and Khc CDS cDNA co-injection
neuron=56.4±4.8 µm (N=49; SEM=2.4 µm; SD=16.9 µm). Unpaired t-test between control
and Khc 3’-UTR dsRNA gives p<0.0001(***); unpaired t-test between Khc 3’-UTR dsRNA
and Khc 3’-UTR dsRNA+cDNA gives p<0.0001(***); unpaired t-test between control and
Khc 3’-UTR dsRNA+cDNA gives p= 0.4778 (not significantly different).
Scale bars, 5 µm.
See also Figure S2 and Movie S6.
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