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Abstract
A growing number of reports indicate the frequent presence of DNA sequences and gene products
of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain
tumors being studied most intensely. The mechanisms underlying the tropism of human
cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host’s
genetic background in virus-associated oncogenesis are not well understood. It is also not clear
why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico
prediction results indicate that microRNA-34a may be involved in replication of some human
DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins,
such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes
simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these
surface molecules have one feature in common: they serve as cellular entry receptors for human
DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses
1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies.
MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53,
and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We
hypothesize that p53 – microRNA-34a axis may alter susceptibility of cells to infection with some
viruses that are detected in tumors and either proven or suspected to be associated with tumor
initiation and progression.

INTRODUCTION
Herpesviruses are a large family of DNA viruses that can cause latent or lytic infections in
animals and humans, notably – often in immunocompromised patients. Epstein-Barr virus
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(EBV) and Kaposi’s sarcoma-associated herpes virus (KSHV) are proven to play an
important role in the development of various cancers (1, 2). Though the direct role of other
human herpesviruses in oncogenesis has not been proven yet, their proteins and/or DNA
sequences are frequently detected in tumors but not in adjacent normal tissues. Human
cytomegalovirus (HCMV) has been found in tumor cells of patients with malignant brain
tumors (gliomas), breast cancer, colon cancer, cervical cancer, prostate carcinoma, and
EBV-negative Hodgkin’s lymphoma (3). The finding of HSV-1 and-2 DNA in thyroid
tumors (4) may be linked to the antiapoptotic activity of herpes simplex viruses (HSV) 1 and
2 and their ability to downregulate human telomerase reverse transcriptase (5–7). Human
herpes virus 6 (HHV-6) has been connected with hematological malignancies (8, 9). It had
been suggested that herpesviruses could initiate subtle changes, the so-called
oncomodulation (10), which was defined as the ability of viral proteins and non-coding
RNAs to promote oncogenic processes without direct oncotransformation but through
disturbances in various intracellular signaling pathways. However, despite growing
experimental evidence (11), the roles of HCMV, HHV-6 and HSV-1 and -2 as active
participants in the tumorigenic processes continue to be debated. Additionally, it is not clear
why the above-mentioned viruses can be detected in many but not in all tumor specimens.

Here we present a hypothesis that highlights a potential link between the major tumor
suppressor p53, its transcriptional target microRNA-34a, and susceptibility of cells to
infection with viruses that are either proven or actively studied for their possible role in the
initiation or progression of cancers.

BACKGROUND
HCMV and human malignancies

HCMV is currently one of the most actively studied prooncogenic/oncomodulatory
infectious agents (12). Its DNA sequences and proteins are detected in more than 90% of
human gliomas, brain tumors with high morbidity and mortality. Many HCMV activities
contribute to established hallmarks of cancer such as proliferative signaling, evasion of
growth suppressors and resistance to cell death, genomic instability, activation of invasion,
metastasis, angiogenesis, avoidance of immune destruction, and inflammation. However,
HCMV is not characterized by the sustained expression of oncogenes or genomic
integration, the features that are attributed to known oncogenic viruses (13). Hence, some
additional factors, for example, genetic polymorphisms that render susceptibility to the
oncomodulatory effects of HCMV, are proposed to play a role in the possible contribution of
HCMV to oncogenesis. It has been hypothesized that, analogously to HSV-1, some
haplotypes of HCMV-encoded Fc-like receptors may vary in their ability to bind to
antibodies due to steric variations. The low-affinity binding interferes with the effector
functions of antibodies, thus allowing HCMV-infected cells to avoid or to mitigate antibody-
dependent cellular cytotoxicity, complement-dependent neutralization, and phagocytosis
(14).

Another hypothesis is based on the fact that PDGFRA is an obligatory cellular entry
receptor for HCMV. Viral attachment to PDGFRA elicits a potent cellular interferon-like
response, which, in turn, activates downstream growth-factor-like receptor tyrosine kinase
and integrin signaling pathways (13). Phosphorylation of PDGFRA upon its binding with
HCMV glycoprotein B, and HCMV-mediated activation of human epidermal growth factor
receptor trigger downstream signaling molecules PI3K/Akt and focal adhesion kinase, which
are the components of the pro-oncogenic signaling network. PDGFRA deletion or blocking
by antibodies, or targeted inhibition of its kinase activity abrogates HCMV internalization
and gene expression, as well as the above-mentioned signaling cascade (13, 15). PDGFRA
is essential for neural development, self-renewal of neural stem/progenitor cells and
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gliomagenesis (16–19). The extent of PDGFRA signaling apparently corresponds to tumor
malignancy: PDGFRA amplification is detected in about 13% of brain tumors (20), and
PDGFRA overexpression can be observed in all phenotypes of glioblastoma (21, 22),
though it is rather associated with secondary than with primary glioblastomas (23). The
PDGFRA promoter region contains a total of 10 polymorphic sites that give rise to five
distinct haplotypes. As these haplotypes are characterized by varying levels of PDGFRA
promoter activity, the second hypothesis suggests that PDGFRA haplotype differences
confer differential susceptibility to HCMV infection as well as predisposition to
gliomagenesis or progression of gliomas in humans (13, 18).

Tumor suppressor protein p53 and viral replication
p53, a key tumor suppressor protein and a master transcriptional regulator, influences the
expression of a variety of genes that are involved in cell cycle progression, cell growth,
differentiation and death, cell motility and migration, cellular senescence, DNA repair,
energy metabolism, cell–cell communications, angiogenesis and immune response (24, 25),
in particular, innate antiviral immunity (26, 27)

During the process of evolution, viruses adopted different strategies to manipulate the host
cells to ensure that all the steps in the viral life cycle are complete (28). As cellular stress
responses and apoptosis are mediated in large part by p53, viruses utilize a variety of
mechanisms aimed to inactivate p53 in order to prevent cell death and abortion of viral
replication. Among them are interactions between p53 and viral proteins, p53
phosphorylation, ubiquitination of p53 by viral E3-ubiquitin ligases, prevention of p53
acetylation, downregulation of p53 by interferons, interaction with p53 regulatory proteins,
inhibition of p53 dependent transcription, and activation of Hdm2 (29–33). p53 is frequently
mutated in many cancers in the so-called hotspots of its DNA-binding domain. These gain-
of-function mutants act oppositely to their wild-type counterpart not only by failing to
transactivate its usual target genes but also by de-repressing or transactivating a plethora of
oncogenes (29, 34). Human immunodeficiency virus-1 replication (35–37), and the host
response to hepatitis C virus (38, 39), respiratory syncytial virus (40), influenza (41),
vesicular stomatitis virus (42), and Rift Valley fever virus (43) were reported to vary
depending on whether the cells harbored wild-type or mutant p53. Integration of adeno-
associated viral vectors was higher in p53-negative cells as compared to normal ones (44).
Loss of p53 confers enhanced susceptibility to reoviral and myxoma infectivity and
replication (45). The role of p53 status appears to be even more essential for the replication
of viruses that are implicated in tumorigenesis: human papillomaviruses (46–48), hepatitis B
virus (49–52), gallid herpesvirus 2, which causes T-cell lymphomas in chickens (53), human
adenoviruses (54, 55), and HSV-1 (56).

However, little is known about the mechanisms by which p53 abnormalities (either mutant
or nonfunctional “negative” p53) influence the susceptibility of cells to viral infection.

Though some HCMV effects are reported to be independent of p53 status (57), it has been
observed that the pre-existing genetic lesions, p53 mutations in particular, could explain the
differential response of glioma cell lines to HCMV infection or overexpression of HCMV
proteins (58–61). p53 is involved in regulation of HCMV replication (62, 63), and
specifically, the onset of a lytic cycle (64). It influences expression of 22 HCMV genes (65),
inhibits cell division and DNA synthesis upon overexpression of HCMV IE86 protein (61,
66) and regulates HCMV UL94 gene, which is activated during productive HCMV infection
(67). It has been suggested that p53 mutations might represent one of the mechanisms by
which HCMV contributes to the transformation of primary baby rat kidney cells in
cooperation with the adenovirus E1A protein (3, 68). Wild-type p53 has been shown to
inhibit HCMV major immediate-early promoter-enhancer as well as several other viral
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promoters, including the HSV-1 UL9 promoter, and the long terminal repeat promoters of
Rous sarcoma virus, human immunodeficiency virus-1, and human T-cell lymphotropic
virus type 1. Conversely, mutations at any of the five “hotspot” amino acid positions 143,
175, 248, 273, and 281 release the repression of viral promoters to a variable extent (69–71).
Altogether, p53 appears to provide wide-ranging impacts on the virus-host interaction from
regulating expression of viral genes to maintaining the balance between latency and lytic
infection.

MicroRNA-34a
MicroRNAs are short noncoding RNAs that regulate gene expression by targeting the 3’-
untranslated region of mRNAs and inducing mRNA degradation or inhibiting its translation
(72). microRNA-34a is a part of the p53-network (73), and a potent tumor suppressor, which
is frequently downregulated in various cancers (74–78). microRNA-34a has previously been
shown to control the same groups of genes that are regulated by p53 (79). It is encoded
within the chromosome region 1p36, whose loss is shown to be associated with gliomas,
neuroblastomas, pancreatic cancer, and chronic myeloid leukemia (80). According to the
database TargetScan, microRNA-34a has a total of 512 conserved sites. In turn, p53 is
believed to regulate between 1500 and 3000 genes (25). Either the loss of microRNA-34a or
mutations within the p53-DNA binding domain that render p53 unable to transactivate its
usual targets (including microRNA-34a) may result in significant changes of expression
profiles across the whole genome.

In silico analysis of microRNA-34a target sites
By analyzing the databases TargetScan and MicroCosm, we have found that microRNA-34a
targets a group of genes with one common trait: they encode cellular entry receptors for
human herpesviruses that are actively studied for their possible role in the initiation or
progression of cancers. The target sites for microRNA-34a have been identified on the
following genes: platelet-derived growth factor receptor-alpha (PDGFRA) – HCMV cellular
entry receptor; complement component receptor 2 (CCR2) – EBV cellular entry receptor;
herpes simplex virus entry mediators A, B, and C (HVEM-A, -B, -C); and CD46 protein,
which is a cellular entry receptor for HHV-6 (Figure 1). The matching positions for
microRNA-34a within 3’-UTR and the corresponding NCBI Reference Sequence numbers
of the targeted mRNAs are shown in Table 1. It is noteworthy that analogously to
herpesviruses human adenoviruses are also investigated for their possible contribution to
oncogenic processes through oncomodulation. According to TargetScan and MicroCosm
databases CXADR mRNA has no predicted target sites for microRNA-34a. However,
microRNA-34a has a highly conserved target site on phosphoprotein enriched in
astrocytes-15 (PEA15), which has been reported to upregulate the expression of
coxsackievirus adenovirus receptor (CXADR) (81), the cellular entry receptor for all other
serological groups of human adenoviruses. Of interest, is also the presence of a conserved
miR-34a target site on CXADR pseudogene 2 (http://www.microrna.org).

HYPOTHESIS
We propose that tumor suppressor protein p53 regulates cellular entry receptors for HCMV
as well as EBV, HSV-1 and -2, HHV-6 and adenoviruses. The effect of p53 on cellular entry
receptors is mediated by its transcriptional target microRNA-34a. Thus, the status of the p53
– microRNA-34a axis may be considered as a pre-existing host condition that influences cell
susceptibility to viral infections and accounts for the variable presence of HCMV and other
herpesviruses in human tumors.
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EVALUATION AND IMPLICATIONS
It is interesting to mention that HCMV immediate early 1 protein has been detected in nearly
all glioblastomas and 82% of low-grade (less malignant) gliomas, while HCMV DNA could
be identified in about 94% of clinical glioma specimens (13). These numbers are close to the
frequency of altered p53 signaling in brain tumors – about 87% (19). As recently has been
reported, repression of microRNA-34a upregulates PDGFRA (82). Overexpression of
PDGFRA due to p53 or microRNA-34a abnormalities may increase the probability of
HCMV infection of the tumor cells, as well as the potential cells of tumor origin.
Furthermore, p53 inactivation or p53 mutations may significantly enhance HCMV
replication due to de-repression of its promoter and thus create favorable conditions for
HCMV to unfold its pro-oncogenic potential, which may further aggravate the already
formed malignant glioma phenotype (11).

The microRNA-34a promoter has a bona fide binding site for wild-type p53, and
microRNA-34a is recognized as a p53 downstream effector (73, 79, 83–85). In some cases,
however, microRNA-34a levels can be elevated without functional p53. Inactivation of p53
by siRNAs was shown to lower basal levels of microRNA-34a transcript, but did not block
microRNA-34a upregulation in response to oncogene-induced senescence (86). In p53-null
K562 cells phorbol-esters could transactivate an alternative microRNA-34a promoter, which
was located about 20 kb upstream of the classical microRNA-34a transcription start site, and
produced a longer pri-microRNA-34a transcript (80). Recently it has been reported that
CCAAT enhancer binding protein alpha (C/EBPα) and nuclear factor-kappa B (NF-κB) also
bind to their appropriate sites and activate microRNA-34a, the NF-κB-mediated effect on
microRNA-34a being p53-dependent (87, 88). Still, the overwhelming number of reports
evidences microRNA-34a as a part of p53 network, thus allowing us to consider these two
important tumor suppressor factors as the “p53-microRNA-34a axis.

Despite the in silico prediction data, the abilities of microRNAs to downregulate their
transcriptional targets may vary significantly between tissues and depend on many factors
including the accessibility of target sites, which is influenced by the complexity of RNA
secondary structure and protein binding, on the levels of transcripts and other factors. (89).
Contrary to the case with PDGFRA, the only route for HCMV, other herpesviruses may
utilize alternative receptors that are not identified yet and are not controlled by
microRNA-34a. Finally, expression of viral cellular entry receptors may vary in infected and
non-infected cells, and even be downregulated upon their binding with viral proteins (90),
probably in order to prevent superinfection followed by cell death. Notwithstanding the
complexity of the issue, it should be acknowledged that the relatively slow evolution of
DNA viruses and their long-term co-divergence with human hosts resulted in the
development of mechanisms for controlling viral infectivity, replication and latency in host
cells (91). It is recognized that though the known oncogenic viruses or other infectious
agents are widely present in humans, only a small fraction of infected individuals develop
cancer, apparently because of yet unidentified additional risk factors.

The ability of the viruses to enter non-infected cells in the first place is defined by the
expression levels of their cellular entry receptors, which, in turn, may depend on the
variations of the host’s genetic backgrounds. We suggest that p53 and microRNA-34a are
important biomarkers that reflect genetic predisposition to HCMV infection and influence
replication of HCMV and probably other human herpesviruses, such as EBV, HHV-6,
HSV-1 and -2, and adenoviruses. Remarkably, all these viruses have been reported to have
pro-oncogenic properties, although to a variable extent. Our speculations bring in another
possible explanation of the inconstant detection of human herpesviruses, and specifically
HCMV, in various tumors. Impaired p53 status, deletion of microRNA-34a, C/EBPα
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mutations, mutations within p53-binding sites, or aberrant CpG methylation in the
microRNA-34a promoter (87, 88, 92) could probably expedite viral entry via upregulation
of the appropriate cellular entry receptors. Consequently, herpesviruses, which cause lytic or
latent infections, may further contribute on a circumstantial basis to oncotransformation,
formation of malignant phenotypes and tumor progression. The relevance of our hypothesis
needs to be validated on the appropriate cell models and clinical tumor samples.

In the case of HCMV and its debatable role in the development of malignant brain tumors it
has been stressed that studies addressing possible environmental and/or genetic factors,
which increase the risk and elucidate the mechanisms underlying the input of HCMV into
glioma pathology, need to be conducted (13). The present hypothesis may stimulate further
studies in order to address the questions of whether the p53-microRNA-34a status may
account for the development of glioma in only a small percentage of the population with
latent HCMV, and if matching between miR-34a and several viral receptors simply reflects
an evolutionary juxtaposition of herpesviruses or substantially diminishes their pro-
oncogenic potential.
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Figure 1. Predicted microRNA-34a seed matches to viral entry receptors mRNAs
Results of in silico analysis suggesting the presence of microRNA-34a (miR-34a) target
sites on the genes encoding cellular entry receptors for the following viruses: platelet-
derived growth factor receptor-alpha (PDGFRA) – cellular entry receptor for human
cytomegalovirus; complement component receptor 2 (CCR2) – for Epstein-Barr virus;
CD46 – for human herpes virus 6 and human adenoviruses group B; and herpes simplex
virus entry mediators A, B, and C (HVEM-A, -B, -C). Phosphoprotein enriched in
astrocytes-15 (PEA15) is a positive regulator for coxsackievirus adenovirus receptor, the
cellular entry receptor for all other than group B serological groups of human adenoviruses.
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Table 1

MicroRNA-34a matching positions and NCBI reference numbers of the targeted mRNAs.

Virus Cellular receptor Reference
number

Matching
positions

HCMV Platelet-derived growth factor receptor-alpha NM_006206.4 6269–6278; 6292–6306

EBV Complement component receptor 2 M26004.1 3364–3370

HSV-1 and-2 Herpes simplex virus entry mediator A NM_003820.2 1531–1537

HSV-1 and-2 Herpes simplex virus entry mediator B NG_029149.1 47320–47341

HSV-1 and-2 Herpes simplex virus entry mediator C NM_002855 2585–2591; 3900–3910

HHV-6, Human adenoviruses
group B

CD46 NM_172361.2 2463–2469

Human adenoviruses Coxsackievirus adenovirus receptor, upregulated by
phosphoprotein enriched in astrocytes-15 (81)

NM_003768.3 1729–1736
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