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Abstract
Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as
DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of
biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the
same biological processes as PARPs raising the question whether PARP and SIRT enzymes may
interact with each other in physiological and pathophysiological conditions. Hereby we review the
current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the
interaction (competition for the common NAD+ substrate, mutual posttranslational modifications
and direct transcriptional effects) and the physiological, or pathophysiological consequences of the
interactions (metabolic events, oxidative stress response, genomic stability and ageing). Finally,
we give an overview of the possibilities of pharmacological intervention to modulate PARP and
SIRT enzymes either directly, or through modulating NAD+ homeostasis.
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1. Introduction
Adaptative responses are the product of critical balances integrating a myriad of molecular
changes. These molecular changes include covalent modifications of diverse protein and
changes in enzymatic substrate bioavailability, amongst others.

NAD+ (Figure 1) and its redox counterpart, NADH, are key metabolites influencing a large
constellation of metabolic reactions. The most largely studied poly(ADP-ribose) polymerase
(PARP) family members, PARP-1 and PARP-2, use NAD+ as a co-substrate in their
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catalytic activity. It has been observed that persistent PARP activation can deplete total
intracellular levels by 80% and elevates nicotinamide (NAM), its reaction product. This
depletion can have major metabolic impacts, due to the large spectrum of metabolic
activities depending on NAD+ bioavailability (Bai and Canto 2012.).

Sirtuins are a family of NAD+-dependent protein deacetylases with critical metabolic roles
(Houtkooper, et al. 2012.). Early observations indicated that the decline of NAD+ and the
rise of NAM promoted by enhanced PARP activity correlates with a downregulation of
sirtuin activity (Bai, et al. 2011b, Pillai, et al. 2005.). Similarly, the activation of the most
well-known mammalian sirtuin, SIRT1, led to reduced PARP activity (Kolthur-Seetharam,
et al. 2006.). These observations supported a hypothesis raised a decade ago, where it was
postulated that the activity of sirtuins and PARPs might compete for the availability of a
common NAD+ pool (Zhang 2003.). In this review we will dissect the possible linkage of
these two ancient pathways, PARPs and sirtuins, their possible competition for NAD+, and
the physiological, or pathophysiological impact of these interactions. Furthermore, we will
discuss how the vertexes of these interactions could be approached pharmacologically.

1.1. NAD+ metabolism
The metabolism of the pyridine dinucleotides is a long studied one with reports dating to the
early parts of the twentieth century (Harden and Young 1906.) wherein Harden coined the
term “co-zymase” to indicate NAD+. The redox activity of the dinucleotide compounds
(NAD+ and NADP+) were first described to be a consequence of the pyridine moiety by
Warburg in 1936 (Warburg and Christian 1936.). For most of the last century, the chemistry
that converted the dinucleotides to their reduced counterparts (NADH and NADPH)
constituted nearly the entire focus of interest on these important players in metabolism. In
fact, cell metabolism has a plentitude of redox transformations that interconvert NAD+ and
NADH (or NADP+ and NADPH), ranging from catabolism to biosynthesis (Pfleiderer
1970.).

In the latter part of the twentieth century, the non-redox reactivity of NAD+ was recognized
as a second major function of NAD+, wherein ADP-ribose (ADPR) is transferred to cellular
nucleophiles, such as proteins, in chemistry called ADP-ribosyl transfer (Honjo, et al. 1968,
Nishizuka, et al. 1968.). This “newer” chemistry of NAD+ is diversified and has been
expanded in mammalian organisms, where seven sirtuins (Sauve, et al. 2006.) and 17 PARP
enzymes (Ame, et al. 2004.) harness this chemistry for signaling and cell adaptation.

The central role of NAD+ in metabolic transformations, as well as its incorporation into
signaling pathways has made the study of NAD+ and how it is made in cells a rejuvenated
topic of interest (Houtkooper, et al. 2010, Koch-Nolte, et al. 2009.). The manner in which
NAD+ is made and utilized constitutes “NAD+ metabolism” and is a modern subject, with
open ended questions on how it is biosynthesized, maintained in cells, incorporated into
signaling, etc. This introduction surveys these topics in brief, but also provides an
opportunity to highlight the variety of ways in which the study of NAD+ has blossomed over
the years.

1. 1. 1. Redox properties of NAD+—The role of NAD+ as a direct player in catabolic
metabolism is well known. NAD+ participates as a co-substrate in several steps of
glycolysis, lactate pyruvate interconversion, pyruvate oxidation to acetyl-CoA catalyzed by
pyruvate dehydrogenase complex, TCA cycle and is the donor of electron equivalents to
Complex I in the electron transport chain (Ramakrishna, et al. 2001.). NAD+ is integrated
centrally into energy metabolism. Consequently, NAD+ level is crucial for the proper
maintenance of metabolic functions in cells. NAD+ level is normally maintained at a relative
abundance to NADH level in cells (Williamson, et al. 1967.), and the NAD+/NADH ratio
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regulates numerous metabolic pathways, including glycolysis (Sun, et al. 2012.). NADH
accumulation generally leads to feedback inhibition of metabolic processes upstream of the
electron transport chain, except lactate production. Lactate production provides means to
mitigate unbalanced NAD+/NADH ratio (Sun, et al. 2012.) and basis for the Cori cycle, in
which lactate is released into the bloodstream and delivered to the liver for gluconeogenesis
(Katz and Tayek 1998.). Not surprisingly, when excess NADH accumulates, lactate also
accumulates and typically, high lactate is associated with hypoxia (Rimachi, et al. 2012.) or
other mitochondrial deficiencies (Yamada, et al. 2012.). Lactate pyruvate ratio is a clinical
surrogate for NAD+/NADH ratio in physiology.

The redox properties of NAD+ originate from the deficiency in electron density in the NAM
ring. When conjugated to ribose, this electron deficiency becomes further accentuated by the
quaternization of the pyridine nitrogen in the heterocycle (Figure. 1B). This quaternary
pyridine group is made even more electron deficient by the carboxamide, which is a good
electron withdrawing group. The positive charge on the nicotinamide group in NAD+ has
been calculated to be 0.541 charge units (Cen and Sauve 2010.). The electron deficiency of
the pyridine ring provides a driving force for acceptance of hydride ion at C4 (Figure 1B).
Hydride ion acceptance breaks the aromaticity in the pyridine ring, but the energy expense is
compensated by increased negative charge into the ring. The removal of the hydride ion in
the reverse direction is driven by restoration of aromaticity. This redox chemistry reflects
fine balancing of acceptance and removal of hydride, and evolution has centrally
incorporated NAD+ into many metabolic processes requiring hydride ion transfer.

1. 1. 2. Non-redox properties of NAD+—The ribose ring is conjugated to nicotinamide
in NAD+ via the anomeric carbon. The construction of this bond can occur via several
pathways, as discussed in the next section; however, the decomposition of this bond is
crucial to the action of ADPR transfer (ART) enzymes (Figure 1C). NAD+ is the
electrophile, and the ADPR moiety is transferred to a variety of cellular nucleophiles,
including proteins (Figure. 1C). This ADPR transfer chemistry is facilitated by the property
of NAM as a good leaving group, with a pKa value of near 3.5 (Jackson, et al. 2003.).
PARPs and sirtuins harness this general reactivity in addition to the NAD+ glycohydrolase/
ADP-ribosyl cyclases CD38 (Sauve and Schramm 2004.) and CD157 (Ortolan, et al. 2002.).
In addition there are a number of other putative ART enzymes encoded by the human
genome with possible effects in modulating protein activities by ADP-ribosylation (Hottiger,
et al. 2010.). The diverse ADP-ribosylation enzymes encoded by the mammalian genome
suggest that ADP-ribosyl modifications are of fundamental importance for shaping
mammalian physiology.

1. 1. 2. 1. NAD+ biosynthesis: NAD+ is biosynthesized by a number of different pathways
in humans (Bogan and Brenner 2008, Sauve 2008, Xu and Sauve 2010.). In broader terms,
these can be broken down into de novo and salvage pathways. The de novo pathway in
humans derives from the essential amino acid tryptophan, which is catabolized through the
kynurenic pathway to quinolinic acid (Figure. 2) (Satyanarayana and Rao 1980.). Quinolinic
acid is the universal metabolite in biology that generates the aromatic pyridine ring of NAD+

(Colabroy and Begley 2005, Kurnasov, et al. 2003.). This metabolite is coupled to the
activated sugar metabolite 5-phospho-ribosyl-1-pyrophosphate (PRPP) to produce nicotinic
acid mononucleotide (NaMN) with decarboxylation (Gholson, et al. 1964.). NaMN
intersects the salvage pathway of nicotinic acid (niacin, NA), which was first characterized
by Preiss and Handler in human erythrocytes (Preiss and Handler 1958a, Preiss and Handler
1958b.). NA is coupled to PRPP via a separate enzyme nicotinic acid
phosphoribosyltransferase which has interesting biochemical properties, in that it appears to
couple NA and PRPP in a coupled reaction with ATP hydrolysis (Galassi, et al. 2012,
Vinitsky and Grubmeyer 1993.). This ATPase activity assists forward progress of the
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reaction via energy coupling (Vinitsky and Grubmeyer 1993.). NaMN is subsequently
adenylated to nicotinic acid adenine dinucleotide by one of three mammalian
adenylyltransferases (Lau, et al. 2009, Schweiger, et al. 2001.) (NMNAT1, NMNAT2 or
NMNAT3) and then the acid is converted to an amide via a glutamine dependent NAD+

synthetase (Bembenek, et al. 2005, Bieganowski and Brenner 2003.). These reactions
complete the biosynthetic process that culminates in NAD+ synthesis from de novo NA
synthesis and NA salvage.

A separate salvage pathway is known, although only recently characterized, wherein NAM
is coupled to PRPP to form NMN, via an enzyme called nicotinamide
phosphoribosyltransferase (Revollo, et al. 2004, Rongvaux, et al. 2002.) (Nampt). This latter
enzyme has a weakly coupled ATPase activity, thereby having some similarity to the
corresponding nicotinate coupling enzyme (Burgos and Schramm 2008.). This enzyme has a
very low Km for NAM, ranging from 1 μM to 5 nM (Burgos and Schramm 2008.) and is key
to setting NAD+ levels in cells (Revollo, et al. 2004, Yang, et al. 2007a.). NAM recycling is
of singular importance, because of the abundance of ART activities in cells, which generate
continuous flux of NAM, which sustain in vivo tissue concentrations of NAM well above 20
μM (Qin, et al. 2006.). The importance of NAM recycling activity in regulating NAD+

biosynthesis is discussed in the following section. Importantly, the Nampt activity is not
found in lower metazoans, suggesting that this enzyme is a mammalian adaptation (although
the last common ancestor is unidentified) (Yang, et al. 2007a.).

In addition there has been an identification of two kinases encoded in mammalian cells
called nicotinamide riboside kinase 1 and 2 (Nrk1 and 2) (Bieganowski and Brenner 2004,
Tempel, et al. 2007.). These enzymes catalyze the efficient phosphorylation of nicotinamide
riboside (NR) and nicotinic acid riboside (NaR) in vitro (Tempel, et al. 2007.). The Km and
kcat parameters are as follows: human Nrk1 NR: kcat=0.6 s-1, Km =88 μM, NaR: kcat=0.21
s-1, Km=51 μM; human Nrk2 NR kcat=0.34 s-1 Km =190 μM; NaR: kcat=0.34 s-1, Km =63
μM (Tempel, et al. 2007.). A structural study of the human Nrk1 enzyme complexed with
NR and a non-hydrolyzable ATP analogue has confirmed that the enzyme accommodates
NR into a geometry that places the 5-OH of the ribose into close proximity to the terminal
phosphate position of the ATP for efficient phosphorylation (Tempel, et al. 2007.). Studies
of the Nrk1 and Nrk2 roles in mammalian NAD+ biosynthesis are very limited, although
studies of the human enzymes in yeast establish that they can complement loss of the
corresponding Nrk1 in yeast (Bieganowski and Brenner 2004.). Moreover, yeast can grow
on NR if NAD+ synthetase is deleted (Δqns1), indicating that NR is metabolized differently
from nicotinamide or nicotinic acid (Bieganowski and Brenner 2004.). The putative role of
NR as a mammalian metabolite is supported by detection of NR in milk (Bieganowski and
Brenner 2004.), although quantitative information on its abundance in milk is currently
unavailable. Detection of NR in liver tissues has been reported by the Imai laboratory
although quantitation was not provided (Yoshino, et al. 2011.).

The relative contributions of the different pathways of NAD+ synthesis in mammals is only
generally understood, and is subject to many factors including diet (Rodgers and Puigserver
2007, Yang, et al. 2007a.). Humans do not encode efficient pathways for nicotinic acid
synthesis, suggesting that nicotinic acid is not an abundant cellular metabolite. On the other
hand, plant and fermented food sources are likely fortified with NA, since plants, yeast and
bacteria encode nicotinamidases (French, et al. 2010.). Meats are enriched in NAM and have
less NA.

1. 1. 2. 2. Regulation of NAD+ biosynthesis: The ability of cells to regulate NAD+

synthesis was only recently appreciated. Consistent with the centrality of NAM recycling as
the ultimate regulator of NAD+ levels in cells and tissues, it has been determined that the
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enzyme Nampt is subject to dynamic regulation (Fulco, et al. 2008, Yang, et al. 2007a.), and
that it is also subject to circadian influences (Nakahata, et al. 2009, Ramsey, et al. 2009.).
The NAM salvage pathway is thought to be central to mammalian NAD+ homeostasis, since
NAD+ has a limited lifetime in tissues. For example NAD+ has a reported half-life of 5-10
hours in liver (Ijichi, et al. 1966.). Sauve laboratory experiments in cell culture measure
NAD+ half-lives in the timeframe of 3-5 hours in unstressed cells. Several laboratories have
examined the responsiveness of NAD+ metabolism to level of Nampt expression, and have
determined that Nampt level determines cellular NAD+ level (Yang, et al. 2007a.). Nampt
appears to be induced by different stresses, such as reduced nutrient availability and exercise
(Costford, et al. 2010.). Fulco et al. established a link with Nampt transcription linked to
AMP-activated protein kinase (AMPK) activation (Fulco, et al. 2008.). Recent work by the
Chang laboratory has also established that cAMP production can activate NAD+

biosynthesis, presumably also through AMPK activation (Park, et al. 2012.). Some other
enzymes that may be dynamically regulated include NMNAT-2. This adenylyltransferase is
limiting in injured axons, and its targeted degradation may lead to rapid NAD+ depletion and
may stimulate axon degeneration (Gilley and Coleman 2010.).

Key questions of interest include why NAD+ metabolism should be regulated in the first
place? One possible explanation is that NAD+ levels are important for optimizing metabolic
performance during different nutritional situations; in light of the key involvement of NAD+

in key metabolic pathways (glycolysis, fermentation, pyruvate dehydrogenase, TCA cycle
and oxidative phosphorylation). In fact, dynamic regulation of NAD+ metabolism by
nutritional stress, while not preserved in specific details, is phylogenetically conserved from
yeast to humans. The downstream coupling of powerful signaling enzymes called sirtuins,
which are sensitive to NAD+ concentrations, establishes a second set of effectors that are
cued by these NAD+ biosynthetic changes.

1.2. Sirtuins as NAD+ consuming enzymes
Sirtuins have emerged in the last decade as an essential family of enzymes in the regulation
of eukaryotic metabolism. In mammalians, sirtuins control whole body metabolic
homeostasis and are postulated as promising targets for multiple pathophysiological states,
including insulin resistance, cardiovascular disease, neurodegeneration and cancer
(Houtkooper, et al. 2012, Nakagawa and Guarente 2011.).

The first sirtuin, Sir2 (silent information regulator 2) was identified almost three decades
ago as a protein contributing to gene silencing (Ivy, et al. 1986, Shore, et al. 1984.).
However, Sir2 remained as a largely overseen protein until Kaeberlein and collaborators
demonstrated in 1999 how Sir2 could influence yeast replicative lifespan (Kaeberlein, et al.
1999.). Additional copies of Sir2 increased yeast replicative lifespan by 30%, while ablation
of the Sir2 gene had the opposite effects, reducing life span by 50% (Kaeberlein, et al.
1999.). A critical breakthrough in the sirtuin world came immediately after, when Sir2 was
demonstrated to be an NAD+-dependent deacetylase enzyme (Imai, et al. 2000.). Unlike all
previously described deacetylases (HDACs Type I and II), Sir2 coupled the removal of
acetyl modifications on lysine residues to the consumption of NAD+, providing NAM and
O-acetyl-ADP ribose as side products (Figure 3). The coupling of the deacetylase reaction to
NAD+ at a Km around the intracellular concentration of NAD+ immediately suggested a
potential link between Sir2 activity and the metabolic/redox status of the cell (Guarente
2000, Imai, et al. 2000.). This notion was further supported by a possible implication of Sir2
and its invertebrate orthologs as effectors of the metabolic adaptations triggered by caloric
restriction (see (Canto and Auwerx 2009.) for review). However, the consistency and
amplitude of the effects of Sir2 orthologs in organismal lifespan and their role as key
mediators by which calorie restriction enhances lifespan in lower eukaryotes are still a
matter of debate (Burnett, et al. 2011, Kaeberlein and Powers 2007, Lombard, et al. 2011,
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Viswanathan and Guarente 2011.). While there are also some caveats on the mammalian
translation of the link between Sir2 and lifespan, it is nevertheless true that the mammalian
sirtuins have key role in metabolic regulation, as will be discussed below.

Sir2 unfolded into 7 mammalian homolog family members (SIRT1-7). The 7 mammalian
sirtuins share a conserved catalytic domain of 275 aminoacids and their expression is quite
ubiquitous (Michan and Sinclair 2007.). The different members of the sirtuin family,
however, show distinct features that might endow them with specific functions. An initial
difference can be found in their subcellular localization: SIRT1 can shuttle between the
nucleus and the cytosol, and its predominant localization varies depending on the cell type
and environmental cues (Michishita, et al. 2005, Tanno, et al. 2007.). SIRT2 is
predominantly cytosolic (Michishita, et al. 2005.). In contrast, SIRT3, SIRT4 and SIRT5 are
considered mitochondrial proteins (Hallows, et al. 2008, Michishita, et al. 2005.), whereas
SIRT6 and SIRT7 are nuclear. However, while SIRT6 is located in the heterochromatin,
SIRT7 is mostly found in the nucleolus (Michishita, et al. 2005.).

A second key difference between sirtuins can be found at the level of their catalytic activity.
Originally, Sir2 was characterized as a deacetylase enzyme (Imai, et al. 2000.). However, its
spectrum of functions has largely expanded in mammals. SIRT1, SIRT2 and SIRT3
maintain a strong (North, et al. 2003, Schwer, et al. 2002, Vaziri, et al. 2001.), while,
SIRT4-6 display weak deacetylase activity. Instead, SIRT4 and SIRT6 might rather act as
NAD+-dependent mono-ADP-ribosyltransferases (Haigis, et al. 2006, Liszt, et al. 2005.).
SIRT5 has recently been reported to amplify the spectrum or sirtuin functions, being able to
act as a demalonylase and desuccinylase enzyme (Du, et al. 2011.). In this sense, it wouldn’t
be surprising if new de-acylation activites are identified within the sirtuin family in the near
future. SIRT7 seems to predominantly act as a deacetylase, but only a few substrates have
been identified, such as p53 (Vakhrusheva, et al. 2008b.) and H3K18 (Barber, et al. 2012.).

The activity of sirtuins is characterized by its NAD+ dependence. Kinetic studies have
determined that the Km of most sirtuins for NAD+ are in the range of 100-300 μM (see
(Houtkooper, et al. 2010.) for review). Intracellular concentrations of bioavailable NAD+ are
still to this date not easy to determine. While most papers report fluctuations of NAD+

concentrations between 200 and 500 μM (Houtkooper, et al. 2010.), these estimations do not
take into account cellular compartmentalization or whether the measured NAD+ is freely
available or protein-bound. Considering that freely available NAD+ is only a fraction of the
total NAD+ content of the cell, it is likely that the activity of sirtuins could truly be rate-
limited by NAD+ in certain scenarios.

A number of interventions aimed to increase NAD+ bioavailability have been shown to
impact on sirtuin activity. For example, dietary supplementation with NAD+ precursors,
such as NMN or NR enhances sirtuin, at least SIRT1 and SIRT3, activation in rodent tissues
(Canto, et al. 2012, Yoshino, et al. 2011.). Physiologically, NAD+ levels generally fluctuate
within a 2-fold range (Chen, et al. 2008, Houtkooper, et al. 2010, Rodgers, et al. 2005.),
which is a fine range to affect sirtuin activity. In general, it has been observed that sirtuins
are activated in situations of energy stress, including exercise (Canto, et al. 2009, Canto, et
al. 2010.), and nutrient deprivation (fasting or caloric restriction) (Canto, et al. 2010,
Rodgers, et al. 2005.). All these situations are also characterized by increases in NAD+

levels (Canto, et al. 2009, Canto, et al. 2010, Chen, et al. 2008, Costford, et al. 2010,
Rodgers, et al. 2005.). In addition, NAD+ fluctuates in a circadian fashion according to
feeding/fasting cycles (Nakahata, et al. 2009, Ramsey, et al. 2009.). While a causal link has
not been demonstrated to date, the fact that SIRT1 activity also changes in a circadian
fashion (Asher, et al. 2008, Nakahata, et al. 2008.) strongly suggest that NAD+ levels could
act as a determinant for these shifts.
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It is important to note that sirtuins are also tightly regulated by NAM, a product of their
catalytic activity. Actually, NAM is also a reaction product of other NAD+ consuming
enzymes, such as PARPs or cADP-ribose synthases (CD38 and CD157) (Houtkooper, et al.
2010.). This way, enhanced activity of non-sirtuin NAD+ consuming enzymes might not
only influence sirtuin activity by reducing the availability for NAD+, but also by increasing
NAM levels. In this sense, it is important to note that NAD+ can be generated from NAM
via salvage pathways, initiated and rate-limited in mammals by Nampt (Revollo, et al.
2004.). The overexpression of Nampt favours NAD+ synthesis while lowering NAM levels
in virtually any mammalian cell tested (Fulco, et al. 2008, Pittelli, et al. 2010, Rongvaux, et
al. 2008, van der Veer, et al. 2005.). Consequently, overexpression, or knock-down of
Nampt were associated with increases or reductions, respectively, of, at least, SIRT1 activity
(Fulco, et al. 2008, Revollo, et al. 2007, van der Veer, et al. 2007, van der Veer, et al.
2005.).

Amongst the whole family of mammalian sirtuins, SIRT1 is the one more deeply studied.
SIRT1 might play a crucial role in metabolic homeostasis by regulating the activity of a
number of transcriptional regulators (Canto and Auwerx 2012.). The deacetylation by SIRT1
can lead to direct activation or inhibition of the target transcriptional regulator, as well as the
modification of their interaction profiles. The spectrum of transcriptional targets for SIRT1
includes key controllers of mitochondrial biogenesis (peroxisome proliferator activated
receptor γ coactivator (PGC)-1α), lipid and carbohydrate metabolism (peroxisome
proliferator activated receptors (PPARs), sterol regulatory element binding protein
(SREBP)-1, liver X receptor (LRX), FOXOs, cAMP response element binding protein
(CREB), CREB regulated transcription coactivator 2 (CRTC2), etc.) and cellular
proliferation (p53). Given the dual localization of SIRT1 in both the cytoplasmatic and
nuclear compartment, it is not surprising that SIRT1 also deacetylates a constellation of
cytosolic proteins, including acetyl-coA synthase 1, endothelial nitrogen monoxide synthase
(eNOS) and components of the authophagy machinery, including the Atg family of proteins.
For an extensive overview on SIRT1 targets, we refer the reader to other recent reviews
(Canto and Auwerx 2012.). Broadly, the activation of SIRT1 leads to changes in the
acetylation status of these targets, which co-ordinately orchestrate cellular and whole-body
metabolism to extract energy from non-carbohydrate sources and using respiration based-
routes. This perfectly matches the fact that SIRT1 is activated in situations of nutrient
scarcity. Further pinpointing the interaction between SIRT1 and the metabolic status, SIRT1
expression is triggered by nutrient scarcity and other energy stresses, while blocked by
nutrient abundance. A number of transcription factors can regulate the expression of SIRT1
under fasting conditions, such as CREB, PPARs, FOXOs or p53 (see Canto and Auwerx
2012). Conversely, transcription factors activated by high glucose availability, such as
ChREBP, downregulate SIRT1 levels (Noriega, et al. 2011).

SIRT2 is the only sirtuin residing primarily in the cytoplasm (Michishita, et al. 2005.). An
initial functional clue was provided by the finding that SIRT2 acts as a tubulin deacetylase
(North, et al. 2003.). At the same time, SIRT2 was demonstrated to be downregulated in
human gliomas (Hiratsuka, et al. 2003.), the most frequent malignant brain tumors, which
suggested a tumor suppression role. The interest on SIRT2 has re-emerged recently as the
identification of SIRT2 targets unfolds. SIRT2 has been shown to target also key metabolic
regulators, such as FOXOs (Jing, et al. 2007.), the p65 subunit of NF-kB (Rothgiesser, et al.
2010.) and phosphoenolpyruvate carboxykinase (PEPCK) (Jiang, et al. 2011.), suggesting a
role in the regulation of inflammation, gluconeogenesis and the responses to caloric
restriction. In addition, SIRT2 has been linked to Hungtinton disease (HD), by acting as a
key regulator of sterol biosynthesis (Luthi-Carter, et al. 2010.). Surprisingly, experiments in
SIRT2 knock-out mice do not support a major role of SIRT2 in tubulin acetylation,
cholesterol biosynthesis or the progression of HD (Bobrowska, et al. 2012.), indicating that
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either it is dispensable or that compensatory activities might exist. In all, the role of SIRT2
in mammalian biology is still far from established. Transgenic models currently arising will
help uncovering the roles of SIRT2.

Probably SIRT3 is the sirtuin that has attracted most attention in the last few years. SIRT3,
together with SIRT4 and SIRT5, was identified as a mitochondrial sirtuin. Interestingly,
only the deletion of SIRT3, but not other mitochondrial sirtuins, led to mitochondrial protein
hyperacetylation (Lombard, et al. 2007.). The target proteins of SIRT3 include
mitochondrial respiratory complexes, TCA cycle proteins and enzymes related to lipid
metabolism and reactive oxygen intermediates (ROI) detoxification (for review, see (Giralt
and Villarroya 2012.)). While no robust phenotype is found on SIRT3−/− mice in normal
conditions, they show many layers of defects when nutritionally challenged. For example,
fasted SIRT3−/− mice show defects in fatty acid oxidation (Hirschey, et al. 2010.) and
ketogenesis (Shimazu, et al. 2010.). Upon caloric restriction, SIRT3 also determines
isocitrate dehydrogenase (IDH)2 (Someya, et al. 2010.) and superoxide dysmutase (SOD)2
(Qiu, et al. 2010.) acetylation, which act as key controllers of ROI levels. The impact of
SIRT3 in the function of these proteins also provides a possible explanation on why SIRT3
seems protective against cancer development (Bell, et al. 2011, Kim, et al. 2010a.). In
general, the activation of SIRT3 procures optimal mitochondrial function and energy
synthesis. In agreement with this notion, SIRT3 is positively regulated at the transcriptional
level by PGC-1α, a master orchestrator of mitochondrial biogenesis, and in response to
fasting and other energy stresses (Hirschey, et al. 2010; Kong, et al. 2010; Palacios, et al.
2009). Fully confirming the critical role of SIRT3 in energy homeostasis, SIRT3−/− mice
were more prone to obesity and metabolic disease upon a fat regime (Hirschey, et al. 2011.).
Of note, the defects of the SIRT3 null mice do not seem to be explained by a single tissue
deficiency (i.e: liver-specific or muscle-specific defects) (Fernandez-Marcos, et al. 2012.),
suggesting that the coordinated defect of SIRT3 in multiple tissues might be required to
prompt these metabolic phenotypes.

The role of another mitochondrial sirtuin, SIRT4, is far less known. Initial studies identified
SIRT4 as a mono-ADP-ribosylase for the glutamate dehydrogenase (GDH) enzyme. Mono-
ADP ribosylation by SIRT4 impaired GDH activity, compromising amino-acid induced
insulin secretion (Haigis, et al. 2006.). SIRT4 deficient mice display no gross phenotyping
abnormalities, but have increased plasma insulin levels in fed, fasted and aminoacid-
stimulated situations (Haigis, et al. 2006.). Recently, SIRT4 has also been shown to act as a
modulator of fat metabolism in hepatocytes and myocytes. In an opposed fashion to SIRT3,
the downregulation of SIRT4 potentiates fatty acid oxidation (Nasrin, et al. 2010.). Given
that SIRT4 promotes opposite effects to those of SIRT1 on insulin secretion (Bordone, et al.
2006, Moynihan, et al. 2005.), or SIRT3 on fat oxidation (Hirschey, et al. 2010.), it will be
crucial to understand how the activation of these enzymes is regulated and physiologically
integrated. In addition, it suggests that mitochondrial sirtuin activation might not just depend
on NAD+ availability, and that multiple other regulatory layers might exist.

As SIRT4, SIRT5 is a mitochondrial sirtuin with weak deacetylase activity (Du, et al.
2011.). Still, SIRT5 has been shown to regulate the activity of the carbamoyl phosphate
synthase 1 (CPS-1) enzyme through direct deacetylation (Nakagawa, et al. 2009.). CPS-1
plays a crucial role in ammonia detoxification, as it is a critical step in the urea cycle. The
deacetylation of CPS-1 by SIRT5 enhances CPS-1 catalytic activity in situations of fasting,
allowing to handle ammonia detoxification during this higher amino acid catabolism state
(Nakagawa, et al. 2009.). A major breakthrough in the sirtuin field came recently with the
finding that the primary function of SIRT5 might not be to act as a deacetylase, but rather as
a demalonylase and desuccinylase (Du, et al. 2011.). The relevance of malonylation and
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succinylation events in the mitochondria will be fertile ground for research in the upcoming
years.

SIRT6 is another sirtuin that is gaining a lot of attention recently, due to its crucial roles in
genomic DNA stability, metabolism and ageing. Initially, SIRT6 was described as a mono-
ADP-ribosylation enzyme (Liszt, et al. 2005.). Later studies, however, indicated that SIRT6
had also critical actions as a histone deacetylase (Michishita, et al. 2008.). SIRT6 null mice
die prematurely, displaying severe defects, such as lymphopenia, loss of subcutaneous fat,
decreased bone mineral density, hypoglycemia and reduced levels of insulin-like growth
factor (IGF)-1 (Mostoslavsky, et al. 2006.). At least some of these effects might be
explained by the overactivation of the hypoxia-inducible factor 1α (HIF-1α), which leads to
abnormally high glycolytic rates (Zhong, et al. 2010.). In this scenario, SIRT6 was found to
act as a co-repressor of HIF-1α function (Zhong, et al. 2010.). In line with the above results,
liver-specific deletion of SIRT6 led to increased glycolysis, triglyceride synthesis, reduced
beta oxidation, and fatty liver formation (Kim, et al. 2010b.). Strikingly, mice with a neuron-
specific defect of SIRT6 are also smaller at birth, but recover normal body weight later and
even develop obesity in late life stages (Schwer, et al. 2010.). The mechanisms regulating
these phenotypes are not clear yet. Additional knowledge on SIRT6 has been provided by
gain-of-function strategies. Overexpression of SIRT6 renders protection against high-fat diet
obesity (Kanfi, et al. 2010.) and has been recently shown to increase lifespan in mice (Kanfi,
et al. 2012.). SIRT6, therefore, becomes the first sirtuin with genetic evidence for a direct
effect on mammalian lifespan.

Finally, SIRT7 might still be the less known sirtuin. SIRT7 is localized in the nucleolus and
was described as a component o the RNA polymerase I (Pol I) transcriptional machinery
(Ford, et al. 2006.). However, the specific enzymatic activity of SIRT7 and its targets in
these complexes remain unclear. Initial hints of a likely deacetylase activity of SIRT7 were
confirmed when SIRT7 was reported to be a p53 deacetylase in cardiomyocytes
(Vakhrusheva, et al. 2008b.). This way, mice lacking SIRT7 display cardiac hypertrophy,
linked to p53 hyperacetylaion. The defects in cardiac morphology dampen the mean and
maximum lifespan of SIRT7 null mice (Vakhrusheva, et al. 2008b.). In addition, a role for
SIRT7 in cancer, while hypothesized a few years ago (Vakhrusheva, et al. 2008a.), has been
recently confirmed by elegant studies showing how the deacetylation of H3K18Ac by
SIRT7 is necessary for maintaining essential features of human cancer cells (Barber, et al.
2012.). The possible roles of SIRT7 in chromatin regulation, cellular transformation
programs and tumour formation in vivo warrants future research and might also unveil
further links between metabolic sensing and tumor development.

When viewed as a whole, it is clear that sirtuins play a key role in metabolic adaptation and
in all the processes in the cell that are governed or require changes in energy substrate
utilization: from caloric restriction to cell growth and proliferation control. Still, the many
ways by which sirtuins might be regulated are still unclear. Their catalytic reaction is
NAD+-dependent, but to this date it is still difficult to unequivocally demonstrate that sirtuin
activity is determined by physiological fluctuations in NAD+. This does not rule out,
however, than in extreme toxicity situations, where NAD+ levels sharply drop by 50-70%
(Goodwin, et al. 1978, Pillai, et al. 2005, Skidmore, et al. 1979.), NAD+ might truly become
rate-limiting for the sirtuin reaction. The Km of most sirtuins for NAD+ is still not well-
determined (Houtkooper, et al. 2010.), however seems different for the members of the
sirtuin family suggesting that all sirtuins are not activated at the same time that seems logical
given the often opposing biological effect of these proteins. Compartmentalization of NAD+

bioavailability may also refine sirtuin activation, as it might allow sirtuin activation in a
compartment specific fashion. Additionally, there are a few examples of proteins whose
deacetylation in vivo is primed or impeded by other post-translational marks (for examples,
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see (Canto, et al. 2009, Murray-Zmijewski, et al. 2008.)) which could help refining subsets
of targets to be deacetylated. A canonical example of how sirtuin activity specification must
be required is the one constituted by SIRT3 and SIRT4, both of which share cellular
compartment and NAD+-dependence, but drive apparently opposite metabolic adaptations.
Altogether, logic dictates that sirtuins activity might be influenced by NAD+, but that many
additional regulatory layers must exist in order to achieve specific substrate deacetylation
and fine-tune their activity to the cellular metabolic needs.

1.3. Enzymology, function and biological significance of poly(ADP-ribose) polymerases
Poly(ADP-ribosyl)ation (PARylation) was identified by Pierre Chambon and colleagues
(Chambon, et al. 1963.) initiating a half century long quest of understanding PARP enzyme
action. PARP-1, the main enzyme responsible for that biochemical activity, was recognized
in 1967 (Shimizu, et al. 1967.). Recently several other PARP enzymes, possessing a
catalytic domain similar to that of PARP-1, were identified (PARP-1 to -17 in humans,
PARP-1 to -16 in mice) (Ame, et al. 2004.). Besides the PARP domain, responsible for
catalytic activity, PARPs are equipped with numerous other domains enabling the execution
of a plethora of molecular functions (reviewed in (Ame, et al. 2004, Hottiger, et al. 2010.)).
Among others, there are domains for DNA binding (e.g the zinc fingers in PARP-1
(Langelier, et al. 2008, Mazen, et al. 1989, Menissier-de Murcia, et al. 1989.), or SAP
domain in PARP-2 (Huber, et al. 2004.)), protein-protein interaction (e.g. BRCT domain in
PARP-1 (de Murcia, et al. 1994.), or ankyrin repeats in tankyrases (Smith, et al. 1998.)), or
the macro domain in the macro-PARPs for PAR binding (Karras, et al. 2005.). In certain
PARP enzymes nuclear, or nucleolar localization signals guide protein transport between
organelles (Meder, et al. 2005, Schreiber, et al. 1992.).

Poly(ADP-ribosyl)ation (PARylation) is considered to be an ancient and evolutionarily
conserved biochemical reaction. In line with that PARP catalytic domain is highly conserved
throughout evolution as shown in sequence analysis studies (Otto, et al. 2005.) and by the
discovery of PARP enzymes in plants (Doucet-Chabeaud, et al. 2001, Lepiniec, et al. 1995.),
in lower animals (Tewari, et al. 1995.), or certain eubacteria, arhaebacteria and double-
stranded DNA viruses (Hassa, et al. 2006, Otto, et al. 2005.). The catalytic domain of the
chicken PARP-1 enzyme had been crystallized first (Ruf, et al. 1996.) giving insight into
PARP action. The structure of the known catalytic domains of other members of the PARP
superfamily displayed high sequence and structural homology with each other (Hottiger, et
al. 2010.). Moreover, despite the poor sequence homology, considerable structural
homology was observed with the catalytic domain of bacterial ARTs (Hottiger, et al. 2010,
Ruf, et al. 1996.).

PARP-1, considered as the prototypical PARP enzyme, cleaves NAD+ and forms large,
negatively charged poly(ADP-ribose) (PAR) polymers on a large set of target proteins. The
poly(ADP-ribosyl)ation reaction (PARylation) can be divided into three steps: initiation,
elongation and branching (Figure 3) (Alvarez-Gonzalez and Mendoza-Alvarez 1995.). In the
initiation phase, reaction the glycosidic bond between nicotinamide and ribose is cleaved
due to the nucleophylic attack of glutamate, aspartate residues, or the carboxy terminal of
acceptor proteins (Bellocchi, et al. 2006.) (positively charged lysine residues were also
shown to be PAR acceptors (Altmeyer, et al. 2009.)). Then the mono-ADPR units are
bonded via an ester bond (Altmeyer, et al. 2009, Burzio, et al. 1979, Ogata, et al. 1980.). The
ADPR moiety remains bound to the acceptor protein, while NAM is released in the reaction.
Subsequently, the enzymes catalyze elongation and branching reactions using additional
ADPR units from NAD+ leading to formation of branched polymers up to 200 ADPR units
(Hayashi, et al. 1983.). The half-life of the polymer is estimated to be less than 1 min, it is
rapidly degraded by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosyl protein
lyase (Kawaichi, et al. 1983, Ueda, et al. 1972.).
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How are PARPs activated? The first known activator of PARP-1 was DNA strand breaks
(Benjamin and Gill 1980.) and irregular DNA structures (Kun, et al. 2002.). PARP-1 binds
to these structures through its zinc fingers that subsequently leads to its activation. To date
PARP-1, -2 and -3 had been shown to be induced by DNA damage (Ame, et al. 1999,
Boehler, et al. 2011, Menissier-de Murcia, et al. 1989, Rulten, et al. 2011.). The majority of
DNA-induced PARP activity is covered by PARP-1 (85-90%), while PARP-2 is considered
to be responsible for the rest (Schreiber, et al. 2002, Szanto, et al. 2011.). It seems that not
all PARPs are active, or build polymers: PARP-13 is inactive, PARP-7, PARP-10 and
PARP-16 perform only mono-ADP-ribosylation (Di Paola, et al. 2012, Kleine, et al. 2008,
Leung, et al. 2012, Ma, et al. 2001.), while PARP activity of PARP-9 and PARP-13 is under
debate.

PAR molecules may be introduced onto PARP-1 itself (autoPARylation), or onto other
proteins (transPARylation). PARP-1 autoPARylation efficiently inhibits PARP-1 activity
(Kawaichi, et al. 1981, Zahradka and Ebisuzaki 1982.) due to strong electrostatic repulsion
between DNA and PAR. PARP-2 has also been reported to perform autoPARylation (Ame,
et al. 1999.) suggesting the existence of a similar autoPARylation cycle as PARP-1.
Inhibition of PARP-1 by autoPARylation seems an exquisite mechanism to avoid
uncontrolled and excessive PARP-1 activity. The inhibitory effect of autoPARylation can be
reverted by PARG that removes PAR polymers creating a reversible PARylation cycle for
PARP-1 (Erdelyi, et al. 2009, Ying and Swanson 2000.). Indeed, inhibition, or deletion of
PARG blocks PARP-1 in a PARylated state and therefore protect against PARP-1 mediated
NAD+ and ATP depletion and the consequent cell death (Bakondi, et al. 2004, Erdelyi, et al.
2009, Ying and Swanson 2000.).

There are numerous posttranslational pathways through which the activity of PARP
enzymes can be regulated. Reversible phosphorylation regulates PARP-1 (for a proteomic
approach see (Gagne, et al. 2009.), for review, see Virág and Bürkle in this series) and
tankyrases (Ha, et al. 2012, Li, et al. 2012, Yeh, et al. 2006.). PARP-1 is acetylated and
activated by p300/CBP-association factor (PCAF) and p300 (Hassa, et al. 2005, Rajamohan,
et al. 2009.), while deacyetylation by SIRT1 leads to radical decrease in PARP activity
(Rajamohan, et al. 2009.). PARP-2 is acetylated by PCAF and GCN5L (Haenni, et al.
2008.). PIASy, a SUMO ligase physically interact and modify PARP-1 upon heat shock
(Martin, et al. 2009.). PARP-1 can be mono-ADP-ribosylated and activated by PARP-3, or
SIRT6 (Loseva, et al. 2010, Mao, et al. 2011.). PARP-1 activity seems to be linked to
cellular calcium homeostasis (Bakondi, et al. 2003, Wyrsch, et al. 2012.).

PARP enzymes were related to numerous biological processes. The first function to be
discovered for PARP-1 (and later PARP-2 and -3) was its involvement in DNA repair
(Durkacz, et al. 1980, Purnell and Whish 1980.). Later, the involvement of these PARP
enzymes and tankyrases in the maintenance of genomic integrity was evidenced (reviewed
in this series by Valérie Schreiber and Francoise Dantzer). In our current understanding,
under non-stress conditions the action of PARP-1 and -2 are not essential for efficient DNA
repair (Allinson, et al. 2003, Bai, et al. 2011a, Bai, et al. 2011b, De Vos, et al. 2012.).
However, deletion of PARP-1, PARP-2, or the application of PARP inhibitors leads to
sensitization against DNA damaging agents (MNNG, ionizing radiation, etc.) (Menissier-de
Murcia, et al. 1997, Menissier-de Murcia, et al. 2003, Wang, et al. 1995.). It seems that PAR
polymers act as a scaffold matrix around DNA damage sites that other DNA repair enzymes
bind to (Karras, et al. 2005, Mortusewicz, et al. 2007, Tartier, et al. 2003.). PARP-1 and -2
participate in the resolution of single strand breaks, base excision repair (Dantzer, et al.
2000, Schreiber, et al. 2002.) and double strand break repair (Langelier, et al. 2012, Szanto,
et al. 2012.). PARP-1 has antirecombinogenic activity (Morrison, et al. 1997.) that
consequently protects against retroviral infections (Ha, et al. 2001.).
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Insufficient DNA repair on a longer timeline leads to either cell death, or to the
accumulation of mutations, genomic instability that ultimately induce tumorigenic
transformation. Indeed, the lack of PARP-1 enhanced the number of sister chromatid
exchange events when challenged by DNA damaging agents (Menissier-de Murcia, et al.
1997, Schreiber, et al. 1995, Wang, et al. 1995.), however, to date, it seems that the lack of
PARP-1, or -2 alone, under non-stress conditions, does not lead to tumorigenic
transformation (Menissier-de Murcia, et al. 2003, Wang, et al. 1995.). It suggests that other
parallel DNA repair pathways cope with DNA damage in the absence of PARPs. However,
the simultaneous removal of PARP-1 and -2, or other DNA repair enzymes, such as ataxia-
telangiectasia mutated (ATM) leads to embryonic lethality (Huber, et al. 2004, Menissier-de
Murcia, et al. 2003.), or tumorigenic transformation as in the case of p53−/− PARP-1−/−, or
p53−/− PARP-2−/− mice (Nicolas, et al. 2010, Tong, et al. 2001.).

The extent of PARP activation has major influence on the fate of the cell (reviewed in this
series by László Virág, Agnieska Robaszkievicz, Jose Vargas and Javier Oliver). Obviously,
if DNA damage is repairable, PARP activation contributes to the survival of the cell as
discussed above. Unrepairable DNA damage induces apoptosis that is an energy intensive
process that disposes of cells in a safe manner. Extensive PARP activation – as suggested by
Berger and colleagues (Berger 1985.) – may markedly reduce cellular NAD+ content. NAD+

resynthesis through NMNAT and phosphoribosyl pyrophosphate synthetase (PPS) is energy
consuming therefore reducing cellular ATP content. Further metabolic rearrangements
encumber the replenishment of ATP: slowdown of glycolytic flow due to NAD+ loss (Ying,
et al. 2002.), the reversal of the activity of F1/F0 ATPase (synthase activity shifts to ATPase
activity) (Ha and Snyder 1999.) and the opening of mitochondrial transition pores (Virag, et
al. 1998.). The lack of energy prevents the progression of the apoptotic program and turns
cell death into necrosis (Leist, et al. 1997, Leist, et al. 1999.). The fact that PARP activation
affect cell survival, moreover switches apoptosis into necrosis suggested that the application
of PARP inhibitors may have beneficial effects in pathological states associated with
oxidative stress (e.g. reperfusion injuries, or inflammatory pathologies) (Virag and Szabo
2002.).

PARP-1 is involved in transcriptional regulation at numerous levels (reviewed in this series
by Lee Kraus and Michael Hottiger): it may modulate chromatin structure (de Murcia, et al.
1986, Quenet, et al. 2009.), bind to enhancer sequences, or promoters (Krishnakumar, et al.
2008.), act as a transcriptional cofactor (Oliver, et al. 1999.), or may promote chromatin
insulation (Yu, et al. 2004.) leading to complex gene expression rearrangements (Frizzell, et
al. 2009, Simbulan-Rosenthal, et al. 2000.). It is under debate whether the catalytic
activation of PARP-1 is necessary in every transcriptional event (e.g. in the case of NFkB
activation (Hassa, et al. 2001.)), however it seems that global and local NAD+ levels affect
PARP action at transcription foci (Kraus 2008, Zhang, et al. 2012.). Besides, PARP-1, other
PARP enzymes influence transcription (e.g PARP-2 (Szanto, et al. 2012.), or PARP-14
(Mehrotra, et al. 2011.)).

The above detailed biological functions of PARPs act jointly in complex physiological, or
pathophysiological scenarios. PARP enzymes have major impact on inflammatory diseases
(Bai and Virag 2012, Levaot, et al. 2011, Mehrotra, et al. 2012, Yelamos, et al. 2006.).
PARPs influence the maturation and function of immune cells (Bai and Virag 2012.).
PARP-1 is necessary for the appropriate activation of numerous proinflammatory
transcription factors (e.g. NFAT, NFκB, AP-1, YY1, or sp1) that have key role in producing
chemokines (Bai and Virag 2012, Oliver, et al. 1999.), cytokines, adhesion factors and other
inflammatory mediators (matrix metalloproteinases, cyclooxyganse-2, or inducible NO
synthase) (Virag and Szabo 2002.). Under inflammatory conditions oxidative stress is
largely enhanced that leads to cell death that is diverged towards necrosis by PARP
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activation that further enhance the inflammatory response (Virag and Szabo 2002.). Vast
amount of data had been assembled suggesting that inflammatory processes can be
quenched by the application of PARP inhibitors (reviewed in (Bai and Virag 2012.)).

Recent data suggests the involvement of PARPs in metabolic regulation (Bai and Canto
2012.) that – similarly to the inflammatory role of PARPs – stem from multiple roots. As
discussed above, prolonged PARP activation through depleting cellular NAD+ pools hamper
cellular energy metabolism: glycolytic slowdown (Ying, et al. 2002.) and a rapid shutdown
of mitochondrial function (Bai, et al. 2001, Bai, et al. 2007a, Cipriani, et al. 2005, Virag, et
al. 1998.). Inversely, upon the lack, or inhibition of PARP-1, or -2 mitochondrial activity is
not only preserved, but are further enhanced due to the activation SIRT1 (Bai, et al. 2011a,
Bai, et al. 2011b.). It seems therefore that the level and activity of PARP-1, or -2 activity is
in strong correlation with mitochondrial activity (Bai and Canto 2012.). PARPs are related
to other metabolic processes by interacting with several metabotropic receptors (Bai and
Canto 2012.) and by influencing energy intake (Asher, et al. 2010, Bai, et al. 2011b.). These
metabolic changes together influence insulin and glucose sensitivity, adipogenesis and body
weight (Bai, et al. 2011a, Bai, et al. 2011b, Bai, et al. 2007b, Erener, et al. 2012a, Erener, et
al. 2012b, Mangerich, et al. 2010.). PARP-5a, -5b, -7 and -14 also seems to influence
metabolism, however their action is yet blurry (Bai and Canto 2012.).

2. Levels of SIRT - PARP interaction
2.1. Interaction of PARPs and SIRTs through the common NAD+ substrate

As discussed in sections 1.2 and 1.3 both PARPs and SIRTs are NAD+ dependent enzymes
that makes it likely that they may compete for the limiting NAD+ substrate. Most studies
report 200-500 μM intracellular NAD+ concentrations, however the NAD+ levels in
different compartments (mitochondria, nucleus, or cytosol) are still debated (Houtkooper, et
al. 2010.). As discussed in detail in section 1.2, SIRT1 activity (and probably the activity of
further members of the sirtuin family) is linked to fluctuations in NAD+ levels (Asher, et al.
2008, Canto, et al. 2012, Imai, et al. 2000, Nakahata, et al. 2008.) as the Km of SIRT1 falls
in the range of physiological cellular NAD+ changes (Houtkooper, et al. 2010.).

The Km of PARP-1 towards NAD+ falls in the low micromolar range (20-60 μM) (Ame, et
al. 1999, Mendoza-Alvarez and Alvarez-Gonzalez 1993.) suggesting that physiological
fluctuations in NAD+ levels are unlikely to affect PARP-1 activity. In contrast, the Km of
PARP-2 towards NAD+ is higher (around 130 μM) (Ame, et al. 1999.) that is comparable to
the one of SIRT1 (Houtkooper, et al. 2010.). Also, PARP-1 had been described as an
effective enzyme in NAD+ degradation (Ame, et al. 1999.) displaying high catalytic
turnover when compared to SIRT1 (Bai and Canto 2012, Bai, et al. 2011b.). This is further
highlighted by the fact that the maintenance of local NAD+ levels seems important upon
PARP-1 activation. NMNAT-1 has been shown to recruit to sites of PARP-1 activation upon
oxidative stress (Berger, et al. 2007.), or in transcriptional events (Zhang, et al. 2012.). It
seems that NMNAT-1 recruitment does not only enhance local NAD+ availability, but
activate PARP-1 in an NAD+-independent manner (Zhang, et al. 2012.). PARP-1 is
responsible for the majority of PARP activity (section 1.3, (Schreiber, et al. 2002, Szanto, et
al. 2011.)), while the rest is mostly covered by PARP-2.

The drop in NAD+ levels upon excessive DNA damage due to PARP activation is a long-
known fact (Berger 1985.). Under such conditions NAD+ levels may drop to 20-30% of the
original that is likely to rate limit sirtuin enzymes (Houtkooper, et al. 2010.). SIRT1 activity
is largely reduced under these conditions (Pillai, et al. 2006, Qin, et al. 2012, Rajamohan, et
al. 2009.) that might be followed by decreased SIRT1 expression (Qin, et al. 2012.). It is
logical to assume that the activity of other nuclear sirtuins will drop under these conditions,
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however it is not known whether extranuclear sirtuins would respond to these insults, or
would remain intact.

When the biochemical changes upon deletion, or inhibition of PARP-1 were analyzed we
found that NAD+ leveles were induced (20-100% as a function of cell model, or tissue) in
animal and cellular models (Bai, et al. 2011b.). It is likely that PARP-1 activity is a major
activity in NAD+ degradation and consequently in NAD+ turnover (Houtkooper, et al.
2010.), therefore the lack of PARP-1 activity elevates NAD+ levels. That induction is
translated into higher SIRT1 activity and better metabolic performance (Bai, et al. 2011b.).

As previously mentioned, the affinity of PARP-2 to NAD+ and the rate of NAD+

degradation is similar to SIRT1, therefore it is unlikely that these enzymes could limit
NAD+ for one another. In line that we were unable to detect differences NAD+ levels of
PARP-2+/+ and −/− cells and tissues under non-stress and oxidative stress conditions (Bai, et
al. 2011a, Szanto, et al. 2011.)

A particularity on the interaction between PARP-1 and PARP-2 with sirtuins is that these
two models seem to specifically target SIRT1: neither cytoplasmic SIRT2, nor
mitochondrial SIRT3 activities were increased by the absence of PARP-1 or PARP-2 (Bai,
et al. 2011a, Bai, et al. 2011b.). In the case of PARP-2, the nature of this selectivity is
clearer, as it roots on the direct regulation of the SIRT1 promoter (discussed in the following
section). The case of PARP-1 is a bit more complicated, as the modulation of NAD+ levels
could potentially impact on all sirtuins. The reasons for the specificity might be that the
changes in NAD+ levels promoted the reduction of PARP-1 activity could be restricted to
the nucleus (Bai, et al. 2011b.). This is logical, as PARP-1 is predominantly a nuclear
protein. Another possible explanation is that different sirtuins might have different windows
of sensitivity for NAD+. Confirming this, recent efforts from the Denu lab have
demonstrated that SIRT6 binds to NAD+, even in the absence of acetylated substrate, at a Kd
around 27 μM, which is a concentration far lower than that of intracellular NAD+ content
(Pan, et al. 2011.). This means that NAD+ might rarely be rate-limiting. Hence, SIRT6
activity might not act as an NAD+ sensor and, rather, other regulatory mechanisms, such as
specific protein binding or post-translational modifications, determine SIRT6 activity. In
fact, it is conceivable that NAD+ could just be permissive for certain sirtuins, and that the
true switch for their activity is found in changes in their protein interactions or post-
translational modifications. This might explain why only a subset of sirtuins (such as SIRT1
in the PARP-1 KO mice) is responsive to fluctuations in NAD+. Of note, also recent studies
have highlighted how post-translational modifications might change the affinity of sirtuins
for NAD+, therefore enhancing or blocking their sensing capabilities. This is the case
actually for SIRT1, as phosphorylation by PKA during fasting enhances the sensitivity of
SIRT1 for NAD+ (Gerhart-Hines, et al. 2011.).

2.2. Post-translational modifications
While SIRT1 and PARP activities might influence each other through the competition for a
limited NAD+ pool, other events, such as their interaction with different proteins and the
impact of diverse post-translational modifications, act also as key determinants.

A first crucial possibility would be the cross-action of both activities, i.e: that PARPs could
PARylate SIRT1 and, conversely that SIRT1 could deacetylate PARPs. Very little
information exists on whether SIRT1 could be a substrate for PARylation. However, SIRT1
is not PARylated in C2C12 myotubes when PARP activity is triggered by exposure to
genotoxic hydrogen peroxide concentrations (Bai, et al. 2011b.). This suggests that
endogenous SIRT1 might not be a direct PARylation target, even though additional
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scenarios of enhanced PARP activity will have to be tested in order to solidify this
conclusion.

Conversely, it could be hypothesized that PARP-1 might be targeted by SIRT1 deacetylase
activity. In line with this hypothesis, reduction of PARP activity is observed upon SIRT1
activation (Kolthur-Seetharam, et al. 2006.). Given the relatively high Km and low Vmax of
sirtuins, it is unlikely that sirtuin activity ever rate-limits NAD+ availability for PARP-1,
characterized by a 5-fold lower Km and much stronger Vmax of PARP-1 then the one of
SIRT1 (Houtkooper, et al. 2010.) and section 2.1. Clues to our understanding on how SIRT1
might impact on PARP activity were given when PARP-1 was identified to be an acetylated
protein (Hassa, et al. 2005, Rajamohan, et al. 2009.) and section 1.3. In cardiomyocytes,
PARP-1 acetylation was increased by mechanical stress, phenylephrine or angiotensin-II
(Rajamohan, et al. 2009.). This increase in PARP-1 acetylation was coupled to enhanced
catalytic activity and was enough to trigger PARP-1 activation in the absence of DNA
damage (Rajamohan, et al. 2009.).

Following the discovery that PARP-1 activity is influenced by its acetylation status,
Rajamohan and colleagues demonstrated that SIRT1 could directly deacetylate PARP-1.
Overexpression of SIRT1 or treatment with resveratrol, as a SIRT1 agonist, both led to the
deacetylation of PARP-1 in cell cultured models (Rajamohan, et al. 2009.). Finally, the
authors also demonstrated that SIRT1-mediated deacetylation blocks PARP-1 catalytic
activity (Rajamohan, et al. 2009.). Altogether, these observations set a scenario in which
enhanced SIRT1 activity would reduce PARP-1 activity via direct deacetylation. However,
if PARP-1 activity is prompted through DNA damage, this will reduce NAD+ availability,
hence blocking the ability of SIRT1 to retain PARP-1 in a deacetylated (low activity) state.

The direct influence of sirtuins on PARP activity was further reinforced when trying to
elucidate why SIRT6 deficient mice display genomic instability. Remarkably, it was found
that SIRT6, but not other nuclear sirtuins, is directly recruited to the sites of DNA double-
strand breaks and enhances the efficiency of non-homologous end joining and homologous
recombination after paraquat treatment (Mao, et al. 2011.). In these experiments, PARP-1
was found to be a mono-ADP-ribosylation substrate for SIRT6 (Mao, et al. 2011.). Both
proteins bind to each other, and the binding is somehow potentiated by DNA damage.
SIRT6 overexpression did not stimulate DNA repair in PARP-1 knock-out cells, indicating
that PARP-1 is required to mediate the effects of SIRT6 (Mao, et al. 2011.). Key
experiments demonstrated that while PARP-1 can be mono-ADP-ribosylated in at least 6
sites, only K521 is the only one affected by SIRT6. Of note, SIRT6 did not seem to affect
the acetylation status of PARP-1 (Mao, et al. 2011.).

As mentioned in previous chapters, it will be of crucial interest to understand in which
scenarios sirtuins might be selectively activated and how this is molecularly channelled.
Illustrating this point, the cases above show how SIRT1 and SIRT6 exert theoretically
opposite effects on PARP-1 activity (inhibition and activation, respectively). Hence, it
should be expected that the docking of specific sirtuins to DNA locations or differential
protein interaction might crucially determine sirtuin activity. An example of the latter case
can be found in Deleted in Breast Cancer-1 (DBC-1), a protein that can selectively bind the
catalytic domain of SIRT1, negatively regulating its activity (Kim, et al. 2008, Zhao, et al.
2008.). Upon genotoxic stress, a condition that triggers PARP-1 activation, DBC-1 is
phosphorylated by ATM at Thr454, creating a second binding site for SIRT1 (Yuan, et al.
2012, Zannini, et al. 2012.). This leads to enhanced binding between SIRT1 and DBC-1,
hence abolishing SIRT1 activity (Yuan, et al. 2012, Zannini, et al. 2012.). This would
provide a very elegant mechanism for shutting down SIRT1 and relieve the inhibition of
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PARP-1 exerted via deacetylation, while promoting simultaneously PARP-1 activation via
SIRT6 mediated mono-ADP-ribosylation.

Acetylated residues have also been identified in other PARP enzymes, such as PARP-2
(Haenni, et al. 2008.). However, whether the acetylation status of these residues is
modulated by sirtuins is not currently clear. Similarly, the identification of mitochondrial
PARP activity (Du, et al. 2003, Lai, et al. 2008, Pankotai, et al. 2009.), opens a whole new
world for possible direct cross-regulation between PARP enzymes with mitochondrial
sirtuins (SIRT3-5).

2.3. SIRT - PARP interaction through the regulation of gene expression
Marked changes in SIRT1 expression is capable of influencing metabolic and energetic
balance. In humans, SIRT1 mRNA levels and certain SNPs in the SIRT1 gene correlated
well with enhanced energy expenditure, insulin sensitivity (Rutanen, et al. 2010.), insulin
secretion (Dong, et al. 2011.), or predisposition to obesity (Clark, et al. 2012, Zillikens, et al.
2009a.).

The activity of the SIRT1 promoter had been shown to be controlled by several transcription
factors, such as CREB (cAMP response element-binding protein), ChREBP (carbohydrate
response element binding protein) (Noriega, et al. 2011.), FOXOs (forkhead box
transcription factor O), p53 (Nemoto, et al. 2004.), HIC1 (hypermethylated in cancer 1)
(Chen, et al. 2005, Zhang, et al. 2007.), PPARs (peroxisome proliferator-activated receptors)
(Han, et al. 2010.) and c-Myc (Yuan, et al. 2009.). Most of these transcription factors
integrate nutritional signal (Nemoto, et al. 2004, Noriega, et al. 2011.). We have described
the presence of PARP-2 on the SIRT1 promoter and provided evidence that PARP-2 acts as
a suppressor of SIRT1 transcription (Bai, et al. 2011a, Szanto, et al. 2011.).

PARP-2 binds to DNA in the proximal region of the SIRT1 promoter (−1 to −91 region of
the mouse SIRT1 promoter) (Bai, et al. 2011a.). This region is on one hand directly adjacent
to the region where FOXOs bind (−91 to −202 region of the mouse SIRT1 promoter)
(Nemoto, et al. 2004.), while on the other it’s sequence is highly conserved among mammals
and shows conservation when compared to the distantly related sequence of the promoter of
SIRT1 in Xenopus (Bai, et al. 2011a.). Depletion of PARP-2 enhanced the activity of the
SIRT1 promoter that translated into higher SIRT1 mRNA and protein levels in skeletal and
smooth muscle, liver, brown adipose tissue and pancreas as shown in murine and cellular
models (Bai, et al. 2011a, Szanto, et al. 2011.). Interestingly, although in brown adipose
tissue SIRT1 protein levels are enhanced the induction of mitochondrial activity was not
detected (Bai, et al. 2011a.) suggesting yet unknown tissue-specific mechanisms that limit
the phenotypical manifestation of PARP-2, or SIRT1 action. Likewise, tissue specific gene
expression changes alter the effects of SIRT1 induction in PARP-2−/− mice, wherein in
contrast to pancreatic SIRT1 overxpression that ameliorates β cell function (Moynihan, et al.
2005.) PARP-2 deficiency hampers β cell expansion leading to pancreatic dysfunction (Bai,
et al. 2011a.) (discussed in detail in section 3.1.4).

Alterations in NAD+ levels upon the depletion of PARP-2 were minor or negligible in
cellular models and inconsistent in in vivo experiments (Bai, et al. 2011a, Schreiber, et al.
2002, Szanto, et al. 2011.). That suggest that activation of SIRT1 upon PARP-2 depletion
seems to rely primarily on transcriptional effects and unlikely on activation through
enhanced NAD+ availability. PARP-2 seems specific for the SIRT1 promoter, as the
depletion of PARP-1 did not alter promoter activity (Bai, et al. 2011a.). To date, no further
direct regulation of other sirtuin genes by PARPs has been clearly evaluated.
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3. Physiological processes influenced by SIRT - PARP interaction
3.1. Metabolism

Experiments in cell lines and animal models have shown that sirtuins act as key regulators of
oxidative metabolism and global metabolic homeostasis. The multiple levels of interaction
between PARP enzymes and sirtuins (see section 2), predict, therefore, that the modulation
of PARP activity could also have a strong impact on energy metabolism.

While many of the original studies showed a negative correlation of PARP activity and
sirtuin activity in situations of supraphysiological oxidative stress or DNA damage, it is
worth mentioning that this relation has recently been found also in physiological scenarios.
For example, PARP activity is largely increased upon high-fat feeding, when SIRT1 activity
is lower (Bai, et al. 2011b.). Oppositely, PARP activity is lower in muscle after an overnight
fast, where enhanced SIRT1 activity is observed (Bai, et al. 2011b.). A recent report has also
highlighted how higher PARP activity is observed in aged rodent tissues, leading to
decreased NAD+ content and limiting SIRT1 activity, even though SIRT1 protein content is
higher (Braidy, et al. 2011.). All these observations indicate how genetical and physiological
variations in PARP activity might have a large impact on sirtuin activity, and, consequently,
on global metabolism.

3.1.1. PARP - SIRT1 interactions in food intake behavior—PARP-1 null C57Bl/6
mice display a clear metabolic phenotype, characterized by lower body weight gain upon
ageing and high-fat feeding. Strikingly, this happens despite the increased food intake
observed in PARP-1 knockout mice (Bai, et al. 2011b, Devalaraja-Narashimha and
Padanilam 2010.). Moreover, recent data indicates that PARP-1 plays role in the regulation
of the circadian entrainment of feeding behavior and body temperature cycles (Asher, et al.
2010.). Interestingly, also SIRT1 is a key regulator of the core circadian clock molecular
machinery (Asher, et al. 2008, Nakahata, et al. 2008.). The regulation of NAD+

bioavailability might constitute an attractive mechanism tying the circadian fluctuations of
PARP-1 and SIRT1 activities. Essentially, the expression levels of Nampt, the critical rate
limiting enzyme in the mammalian NAD+ salvaging pathway, display a robust diurnal
oscillation, with a peak around the beginning of the dark period in mice, in line with the
maximal peak for the circadian fluctuation of SIRT1 activity (Nakahata, et al. 2009,
Ramsey, et al. 2009.). SIRT1 negatively regulates CLOCK:BMAL-1 transcriptional activity,
which is a key positive controller of Nampt expression (Nakahata, et al. 2009, Ramsey, et al.
2009.). Hence, the activation of SIRT1 shuts down Nampt expression. This will likely
promote a decrease in NAD+ levels low enough to limit SIRT1. It is likely that PARP-1
activity could also rise simultaneously, as the decrease in SIRT1 activity should lead to
increased PARP-1 acetylation and activity. This would further limit NAD+ availability for
SIRT1, completely shutting down its activity. Once SIRT1 activity is low enough,
CLOCK:BMAL-1 activity will be increased, and Nampt expression will be slowly
recovered, reaching full circle.

3.1.2. PARP - SIRT1 interaction in the regulation of energy expenditure—A key
element driving the metabolic phenotype of the PARP-1 knock-out mice is their enhanced
energy expenditure (Bai, et al. 2011b.). This effect likely derives, at least in part, from a
potentiation in SIRT1 activity and the activation of key transcriptional metabolic regulators,
such as the transcriptional coactivator PGC-1α (Rodgers, et al. 2005.). It has been shown
that PGC-1α activation is linked to enhanced mitochondrial biogenesis and a more oxidative
profile of skeletal muscle fibers (Lin, et al. 2002.). Another key downstream effector of
SIRT1 contributing to the regulation of oxidative metabolism is the FOXO family of
transcription factors. FOXOs are deacetylated by SIRT1 (Brunet, et al. 2004.), prompting
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their activation and the transcriptional activation of genes linked to lipid oxidation and stress
resistance (Banks, et al. 2011, Gross, et al. 2008.). It was therefore reassuring to see that,
consistent with SIRT1 activation, mice where PARP activity is impaired, either by genetic
or pharmacological means, show a marked deacetylation of PGC-1α and FOXO1 in a key
metabolic tissue such as skeletal muscle (Bai, et al. 2011b.). Consistent with the activation
of gene programs related to mitochondrial biogenesis, the muscles from PARP-1 deficient
mice displayed a large increase in mitochondrial content and an enhanced oxidative profile
of their muscle fibers (Bai, et al. 2011b.).

Another key tissue influencing whole body energy expenditure is the brown adipose tissue
(BAT), which has a key role in thermogenesis. As seen in muscle, the BAT from PARP-1
deficient mice is characterized by increased NAD+ content and SIRT1 activity, as
manifested in the deacetylation and activation of PGC-1α (Bai, et al. 2011b.). This leads to a
marked increase in mitochondrial content in the BAT of PARP-1 deficient mice (Bai, et al.
2011b.). Physiologically, this renders the PARP-1−/− mice with a stronger ability to maintain
body temperature when exposed to cold compared to their wild-type littermates.

In agreement with the observations in mice, the knock-down of PARP-1 in cultured
HEK293 or inhibition of PARP activity, using PJ34 (a pan-PARP inhibitor), in C2C12
myotubes is enough to drive an increase in mitochondrial gene expression and O2
consumption (Bai, et al. 2011b.). Noteworthy, the simultaneous knock-down of SIRT1
largely prevented the increase in cellular respiration triggered by the reduction of PARP
activity (Bai, et al. 2011b.). Importantly, when analyzing the expression of a panel of genes
related to oxidative metabolism in response to PARP inhibition, it was clear that SIRT1 only
participated in the regulation of certain subsets, but not all (Bai, et al. 2011b.). This indicates
that reductions in PARP activity leads to a plethora of effects, and that SIRT1 solely
controls a few contributing to enhanced mitochondrial respiration and energy expenditure.

The evaluation of PARP-2 deficient mice further consolidated the link between sirtuins and
PARP enzymes on energy expenditure. PARP-2 mice also display resistance against high-fat
diet-induced obesity, linked to increased energy expenditure and an enhanced oxidative
profile of skeletal muscle (Bai, et al. 2011a.). As mentioned in section 2.3, defects in
PARP-2 expression also enhance SIRT1 activity through enhancing SIRT1 expression. As
PARP-2 is a repressor of the SIRT1 promoter, PARP-2 deletion relieves the repression on
the SIRT1 promoter and enhances SIRT1 mRNA and protein levels (Bai, et al. 2011a,
Szanto, et al. 2011.). Experiments in C2C12 myotubes demonstrated that the knock-down of
PARP-2 triggered mitochondrial gene expression in a SIRT1 dependent fashion.

3.1.3. PARP - SIRT1 interaction in the regulation of fat deposition—This leaner
phenotype of PARP-1−/− and PARP-2−/− mice can be explained, at least in part, due to their
enhanced energy expenditure when compared to wild-type littermates. However, another
attractive mechanism by which PARP deficiency might impact on body weight relies on the
direct regulation of fat deposition in white adipose tissues (WAT). Indeed, PARP-1 and -2
deficient mice present a largely reduced size of their WAT depots (Bai, et al. 2011a, Bai, et
al. 2011b, Bai, et al. 2007b.). PPARγ is a nuclear receptor that is mainly expressed in white
adipose tissue and plays key roles in adipocyte differentiation, lipid synthesis and storage
(Heikkinen, et al. 2007.). The lower fat deposition in the PARP-1 and PARP-2 knock-out
mice, therefore, might be explained by affecting the activity of PPARγ. PARP-1 and -2 had
been shown to physically interact with PPARγ (Bai, et al. 2007b, Miyamoto, et al. 1999.)
and were already correlated with WAT tissue mass (Bai, et al. 2007b, Erener, et al. 2012a.).
PARylation can be observed in differentiating 3T3-L1 preadipocyte cells and in
subcutaneous adipose tissue (Gehl, et al. 2012, Janssen and Hilz 1989.), likely consequent to
PARP-1 activation (Erener, et al. 2012a, Janssen and Hilz 1989, Simbulan-Rosenthal, et al.
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1996, Smulson, et al. 1995.). Indeed, PARP-1 is recruited to PPARγ target genes in a PAR-
dependent manner, allowing a sustained expression of PPARγ and its target genes (Erener,
et al. 2012a.). Also PARP-2 can contribute to the adipogenic program, as the lack of
PARP-2 hampers the adipocytic differentiation of embryonic fibroblasts and 3T3-L1 cells
(Bai, et al. 2007b.). PARP-2 binds to the same sites on promoters as PPARγ and apparently
acts as positive cofactor (Bai, et al. 2007b.). Interestingly, the expression of some
adipokines, such as leptin or adiponectin, is regulated by PARP-1 and -2 (Bai, et al. 2007b,
Erener, et al. 2012a.),

Besides regulation through direct physical interaction the higher SIRT1 activity in PARP-1
and PARP-2 deficient models might have a key role. SIRT1 is known to decrease PPARγ
transcriptional activity through direct interaction and docking of transcriptional co-
repressors, such as NCoR and SMART (Picard, et al. 2004.) and more recently, PPARγ has
been identified as a deacetylation target for SIRT1 (Qiang, et al. 2012.). Activation of
PPARγ through TZD decreased PPARγ acetylation levels on K268 and K293 by prompting
the binding of SIRT1 (Qiang, et al. 2012.). The deacetylation of PPARγ at these two
residues allows the recruitment of the transcriptional coactivator PRDM16 and promotes
adipokine production and an upregulation of BAT-like gene expression (Qiang, et al. 2012.).
Physiologically, the deacetylation of PPARγ is also triggered by cold exposure and blunted
when mice are fed a high-fat diet (Qiang, et al. 2012.). This way, SIRT1-induced
deacetylation of PPARγ will promote a brown-like phenotype of the WAT, enhancing
energy expenditure, lowering fat deposition and favoring insulin sensitivity. Of note, PARP
activity is enhanced upon high-fat feeding, which could limit SIRT1 activity and
compromise PPARγ deacetylation that is in line with the enhanced insulin sensitivity and
lower fat storage of PARP-1 and PARP-2 null mice, even if browning effects have never
been closely examined. Of note, the regulation of SIRT1 alone might not be enough to
directly impact on PPARγ activity, as the binding of both proteins seems to be ligand-
dependent. This is in line with previous observations suggesting that SIRT1 in vivo does not
deacetylate its substrates in an undiscriminated manner. Rather, substrates might be primed
for deacetylation via different means, such as conformational changes upon ligand binding
or through the modulation of other post-translational modifications. Altogether, it seems
clear that both SIRT1-dependent and -independent mechanisms might contribute to the
lower PPARγ activity and the blunted fat deposition in PARP-1 and PARP-2 knock-out
mice (Bai, et al. 2011a, Bai, et al. 2011b.).

An interesting question is whether reduced WAT depots could potentially lead to ectopic
lipid deposition. A recent report identified increased fat deposition in the livers of
PARP-1−/− mice when fed a HFD (Erener, et al. 2012b.). PARP-1 is poorly expressed in the
liver and global deletion of PARP-1 does not seem to have a major influence on hepatic
expression of mitochondrial and lipid oxidation genes (Bai, et al. 2011b.), which might
create a permissive scenario for lipid deposition. However, it is difficult to match this
observation with the notion that PARP-1 deficiency dampens PPARγ activity and with the
lower body weight of PARP-1−/− mice. Similarly, the possible activation of sirtuins would
be theoretically at odds with a predisposition for lipid accumulation. Further evaluation of
these models or the generation of tissue-specific deletions will be required to clarify this
apparent discrepancy.

Another apparent discrepancy lies in the fact that PARP-1 deletion on an SV129 background
renders the mice susceptible to obesity (Devalaraja-Narashimha and Padanilam 2010.). It is
to be noted that the SV129 background is less suited for metabolic studies than C57Bl/6J
mice (Champy, et al. 2008.) that may provide a plausible explanation for the misalignment
of observations. Illustrating this latter point, the pharmacological inhibition of PARP activity
in diverse human and murine cell types prompts an increase in oxygen consumption and
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mitochondrial biogenesis, very much in line with the results obtained in C57Bl/6J mice (Bai,
et al. 2011b, Modis, et al. 2012.). Furthermore, the expression of an additional copy of
PARP-1 in mice leads to enhanced adiposity, perfectly mirroring once more the data
obtained in the C57Bl6/J mice (Mangerich, et al. 2010.). The convergent results of these
genetic, physiological, pharmacological and in vitro studies clearly support that a reduction
in PARP activity would result in the enhancement of energy expenditure and prevention
against HFD-induced body weight gain. The particular reasons by which the deletion of
PARP-1 in the SV129 rendered an opposite phenotype are still elusive. Analyses on
disturbances on NAD+ and sirtuin activity might bring some light into this question and will
warrant further investigation.

3.1.4. PARP - sirtuin interaction in whole body glucose metabolism—The large
influence of PARP enzymes on highly metabolic tissues, such as muscle and brown adipose
tissue, predicts that PARP enzymes should have a major impact on whole body glucose
homeostasis. PARP-1 and PARP-2 deficient mice displayed increased glucose clearance in
response to an insulin tolerance test compared to their wild-type littermates (Bai, et al.
2011a, Bai, et al. 2011b.). This is likely to be consequent to increased insulin-stimulated
muscle glucose uptake, as skeletal muscle accounts for ~80% of the whole body glucose
disposal in insulin-stimulated conditions (DeFronzo, et al. 1985.) involving many different
factors. For example, oxidative muscle fibers are generally more insulin sensitive than
glycolytic fibers (Hom and Goodner 1984.), and, as described above, PARP-1, or -2
deficiency is linked to a higher oxidative profile of muscle fibers. A second key factor is that
PARP-1 and -2 deficient mice are leaner due to enhanced energy expenditure and have an
impaired ability to accumulate fat (Bai, et al. 2011a, Bai, et al. 2011b.). This grants the
muscle protection against the chronic deposition of lipid species that could be detrimental
for an efficient insulin signaling (Petersen and Shulman 2006.). Finally, the higher
mitochondrial content in oxidative fibers gives the organism a greater potential to obtain
energy from fatty acids, also contributing to the prevention of fat deposition. While no
causality links can yet be established between these observations and sirtuin activation, there
are a number of interesting correlations. Notably, most transgenic and pharmacological
approaches aimed to increase SIRT1 activity also lead to enhanced insulin sensitivity
(Banks, et al. 2008, Canto, et al. 2012, Feige, et al. 2008, Lagouge, et al. 2006, Pfluger, et al.
2008.). The link between other sirtuins and insulin sensitivity is not so well established.
While SIRT3 might be protective against insulin resistance and obesity upon high-fat
feeding (Hirschey, et al. 2011.), most evidences do not support the activation of SIRT3 or
any other non-nuclear sirtuin upon PARP inhibition (Bai, et al. 2011a, Bai, et al. 2011b.).
However, we cannot rule out that other nuclear sirtuins could contribute to the insulin-
sensitizing effect of reducing PARP activity. In this sense, it should be pointed out that mice
overexpressing SIRT6 are not more insulin sensitive (Kanfi, et al. 2010.). These
observations points towards SIRT1 as a very likely mediator of the insulin sensitizing effects
of PARP deficiency. It will be important in the future to evaluate whether PARP inhibition
can render insulin-sensitization in SIRT1-deficient tissues.

The enhanced insulin sensitivity of PARP-1 and PARP-2 deficient mice should theoretically
be aligned with a better glucose tolerance. While this is certainly the case in PARP-1−/−

mice (Bai, et al. 2011b.), it was surprising to observe that PARP-2−/− mice became markedly
glucose intolerant upon high fat feeding (Bai, et al. 2011a.). This glucose intolerance was
rooted in pancreatic β-cell dysfunction. Upon high-fat feeding, the pancreatic β-cell mass
increases in order to compensate for peripheral insulin resistance (Buteau and Accili 2007.).
In the PARP-2−/− mice, however, this hyperplasic response is largely impaired, resulting in a
blunted ability to release insulin upon a glucose load. This way, PARP-2−/− mice have a
lower average β-cell islet size and pancreatic insulin content (Bai, et al. 2011a.). The
molecular mechanism by which PARP-2 deletion impairs β-cell proliferation might be
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consequent to a constitutive SIRT1 activation, which leads to FOXO1 deacetylation and
activation. FOXO1 is a well-known repressor of Pdx-1, a key regulator for β-cell
proliferation and development (Bai, et al. 2011a, Buteau and Accili 2007.). An interesting
question, yet unresolved, is why this is not observed in the PARP-1−/− mice. PARP-1 is also
expressed in the β-cell and might have also have a critical role on its functionality. A role for
PARP-1 in β-cells was first unravelled by studies showing how PARP inhibitors improved
diabetes mellitus in partially depancreatized rats (Yonemura, et al. 1988, Yonemura, et al.
1984.). These studies revealed that PARP inhibitors allowed more efficient β-cell
regeneration after pancreatectomy and a faster normalization of blood glucose. Posterior
studies reinforced such concept by demonstrating that mice lacking PARP-1 are completely
resistant to the development of diabetes upon streptozocin (Burkart, et al. 1999b.). When
compared to their wild-type littermates, PARP-1−/− mice remained normoglycemic and
maintained normal pancreatic insulin content and islet morphology (Bai, et al. 2011a,
Burkart, et al. 1999b.). Parallel research demonstrated that PARP-1 is actually a master
controller of β-cell death upon exposure to nitric oxide or oxygen radical generating
compounds and that the inhibition of PARP-1 allows to retain β-cell survival in such
circumstances (Burkart, et al. 1999a.). Also important for pancreatic β-cell function, PARP
inhibition prevents the detrimental effects of glucotoxicity on insulin promoter activity and
biosynthesis (Ye, et al. 2006.). Despite the major effects of PARP-1 in situations of toxicity
for β-cells, PARP-1 ablation does not seem to have a major impact on the endocrine
pancreas β-cell function in the basal state (Bai, et al. 2011a.) suggesting that the protective
phenotype of PARP-1 inhibition is only effective under β cell stress. Given the above
observations on the PARP deficient mice models, would the inhibition of PARP activity be
beneficial or detrimental for β-cell function? A priori one would argue that in the absence of
β-cell toxicity PARP activity would be detrimental, as supported by the marked β-cell
dysfunction in PARP-2−/− mice and the lack of phenotype in the PARP-1−/− mice. However,
in situations of β-cell toxicity, PARP inhibitors might prevent β-cell death and allow a better
regeneration of the tissue.

Overall, the ability of PARP enzymes to modulate SIRT1 activity and the fact that human
studies have provided evidence on the connection between SIRT1 gene expression and
insulin sensitivity (Rutanen, et al. 2010, Zillikens, et al. 2009b.), further strengthens the
promising possibility of modulating PARP activity in the management of metabolic disease.
In this sense, preliminary evidence indicates that short term pharmacological inhibition of
PARP activity is able to decrease plasma glucose, triglyceride and free fatty acid levels (Bai,
et al. 2011b.). However, more protracted treatments will be required to evaluate the
feasibility of engaging long-term inhibition of PARP activity and whether this might have a
negative impact on DNA damage and chromosome maintenance. Furthermore, while the
regulation of SIRT1 activity might help granting insulin sensitivity in the PARP deficient
models, this does not exclude that other mechanism yet to be found might be equally
important in explaining this phenotype. Amongst them, it will be important to evaluate
possible direct PARylation targets that could influence glucose homeostasis.

3.2. Interplay between PARPs and SIRTs in oxidative stress response
Reactive species are partially reduced, highly reactive molecules (radicals and non-radicals).
Most reactive species can be classified as reactive oxygen intermediates (ROI), or reactive
nitrogen intermediates (RNI) depending on the central atom. The major source of ROIs in
unstimulated cells is the leakage of mitochondrial electron transport chain that creates
superoxide anion that serves as a parent molecule of downstream ROIs, such as hydrogen
peroxide, or hydroxyl radical. Besides the mitochondrial origin, ROIs can stem from the
oxidation of certain xenobiotics, activated neutrophils and macrophages, or from xanthine
oxidase (Ray, et al. 2012, Virag and Szabo 2002.).
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The parent molecule of RNIs is nitrogen monoxide (NO) that is formed by nitrogen
monoxide synthase enzymes termed neuronal (nNOS), endothelial (eNOS) and inducible
(iNOS) (Forstermann and Sessa 2012, Nathan 1992.). While NO is an important signaling
molecule and considered cytoprotective (Pacher, et al. 2007.), its downstream derivatives
such as peroxynitrite (formed in reaction with superoxide (Pacher, et al. 2007.)), or nitroxyl
radical (formed by NO reduction (Bai, et al. 2001.)) are cytotoxic. In oxidative stress-related
diseases the balance between free radical species and antioxidant defence systems is
hampered. Free radicals, in abundance, damage lipids, DNA and proteins, or may react with
protein-bound metals affecting all vital components of cells and tissues (Pacher, et al.
2007.). Various enzyme systems are on duty to cope with free radical-induced damage and
hence to protect against free radical-provoked diseases, among them PARPs and SIRTs play
prominent roles.

As reactive species cause DNA damage and consequently induce PARP activation in the
effort to restore DNA integrity (Virag and Szabo 2002.). As discussed previously (section
1.3), PARP activation has pleiotropic effects (induction of necrosis, mitochondrial damage,
proinflammatory actions, reprogramming of gene expression) that worsen free radical-
mediated pathologies (Modis, et al. 2012, Szanto, et al. 2012, Virag and Szabo 2002.). The
idea that PARP inactivation may provide protection against free radical production-mediated
PARP activation and the consequent cell, or tissue stress is almost 15 years old (Szabo, et al.
1998.) and it had been successfully tested in a plethora of animal and cellular models
(reviewed in (Virag and Szabo 2002.)).

In contrast to PARP activation the induction of SIRT1 protects against oxidative stress. The
protective effects of SIRT induction involve numerous mechanisms.

1. SIRT1 modify numerous components of the cell cycle coordination machinery (e.g.
p53 and FOXO) upon oxidative injury that leads to cell cycle arrest and
suppression of apoptosis (Brunet, et al. 2004, Han, et al. 2008, Luo, et al. 2001.);

2. SIRT1 activation induces antioxidant defence systems, such as manganese
superoxide dismutase (MnSOD) (Danz, et al. 2009.), or catalase (Hasegawa, et al.
2008.).;

3. Mitochondrial biogenesis is hampered upon oxidative stress that is restored upon
SIRT1 induction (Danz, et al. 2009, Szanto, et al. 2011.);

4. In oxidative stress SIRT1 induction induces autophagy (Alcendor, et al. 2007.);

SIRT1 itself is redox sensitive, its protective actions can be hampered under oxidative stress
conditions by carbonylation of SIRT1 (Caito, et al. 2010a.) and the disregulation of thiol
redox balance (Caito, et al. 2010b.) both impairing SIRT1 activity. Recent data by Caito and
colleagues (Caito, et al. 2010b.) have shown the redox-dependent phosphorylation of SIRT1
that may have a role in the oxidant-mediated reduction of SIRT1 activity.

Apparently SIRT1 and PARP activation have opposing characteristics under oxidative stress
conditions. As PARP activation seems to be a key factor of cellular and tissue damage under
oxidative stress (Pacher and Szabo 2008.) these observations prompted research to
understand PARP – SIRT interaction under pathological scenarios. The interaction of SIRT1
and PARPs had been associated with pathologies of the cardiovascular system, the central
nervous system and the liver in the gastrointestinal tract (summarized in Table 1).

The pathological states listed are characterized by increased production of reactive species
either from an internal source like angiotensin II (AngII), N-Methyl-D-aspartic acid
(NMDA) receptor activation, high glucose levels, pressure overload in the heart, shear stress
on endothelial cells and from an external noxa such as oxidants, or doxorubicin treatment
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(Moncada and Bolanos 2006, Pacher, et al. 2003, Pacher, et al. 2002b, Qin, et al. 2012,
Soriano, et al. 2001, Wilson 1990.) that lead to PARP activation contributing to cellular and
organ dysfunction (Moncada and Bolanos 2006, Pacher, et al. 2002a, Pillai, et al. 2006,
Soriano, et al. 2001, Szabo, et al. 2004.). In the case of trophic deprivation, heart failure,
AngII, NMDA and glucose toxicity extensive PARP activation decreased SIRT1 activity
(Liu, et al. 2009, Pang, et al. 2011, Pillai, et al. 2006, Pillai, et al. 2005, Qin, et al. 2012,
Sheline, et al. 2010.) through reducing NAD+ levels that compromised SIRT1 activation and
hence the protective effects of SIRT1 activation (Figure 4). This hypothesis is further
underlind by the fact that preventing NAD+ depletion was protective in most of these
pathologies (Houtkooper, et al. 2010, Liu, et al. 2008.). As discussed in section 1.3 and 2.1,
enhanced PARP activation depletes cellular NAD+ (Berger 1985.) that limits substrate
availability for SIRT1 (Kolthur-Seetharam, et al. 2006.). On the other hand SIRT1 induction
limits PARP-1 through deacetylating and hence inactivating it (Rajamohan, et al. 2009.)
(Figure 4).

Alternative, non-NAD+ dependent pathways may also exist between SIRT1 and PARP-1. It
would be easy to speculate that PARP-1 could inhibit SIRT1 activity through direct
PARylation of SIRT1, although we were unable to show SIRT1 PARylation under oxidative
stress ((Bai, et al. 2011b.) and section 2.2). It is also plausible that other transcription factors
are PARylated (e.g. c-fos/c-jun PARylation upon angiotensin II treatment (Huang, et al.
2009.)) that modify oxidative stress sensitivity of cells, however that field is largely
unexplored.

Kolthur-Seetharam and colleagues (Kolthur-Seetharam, et al. 2006.) have identified a
possible alternative connection between SIRT1 and PARP-1 that may influence oxidative
stress-induced cell death. PARylation has been shown to induce the nuclear translocation of
apoptosis inducing factor (AIF) in certain cell lines contributing to cell death (Yu, et al.
2002.). In the absence of SIRT1 enhanced PARylation was observed that is further
accentuated upon oxidative damage (Kolthur-Seetharam, et al. 2006.) (Figure 4). In line
with that observation in SIRT1−/− cells nuclear translocation of AIF is induced that may
contribute to cell death.

The depletion of PARP-2 protected partially the vasculature against doxorubicin toxicity
(Szanto, et al. 2011.). The protective enhancement of SIRT1 activity upon PARP-2
depletion relies on the induction of the SIRT1 promoter (Szanto, et al. 2011.) (Figure 4).
Importantly, PARP-2 depletion and the consequent enhancement of SIRT1 activity did not
reduce PARP-1 activation under oxidative stress conditions (Szanto, et al. 2011.).

Apparently PARP-1 and SIRT1 under oxidative conditions regulate the activity of each
other through various mechanisms. SIRT1 induction leads to protection against oxidative
damage, while PARP-1 activation is a detrimental consequence of oxidative stress. There is
a large overlap between the oxidative stress-mediated pathologies that are corrected by
SIRT1 induction (Chong, et al. 2012, Chung, et al. 2010.), or PARP inhibition (Virag and
Szabo 2002.) due to joint regulation of key enzymes involved in these pathologies (e.g.
matrix metalloproteinase activation in cardiovascular and dermatological diseases (Bai, et al.
2009, Bai, et al. 2004, Brunyanszki, et al. 2010, Choi, et al. 2005, Lee, et al. 2010,
Nakamaru, et al. 2009, Ohguchi, et al. 2010, Pacher, et al. 2002a.) suggesting that there are
way more pathologies (e.g. diabetic complications, stroke, multiple sclerosis, inflammation)
where PARPs and SIRTs collaborate on the outcome.

3.3. PARP – SIRT interaction in the maintenance of genomic stability
PARP-1, -2, -3 and tankyrases are involved in DNA repair and the maintenance of genomic
integrity, as discussed in section 1.3, SIRT1 and SIRT6 had been shown to be involved in
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DNA repair (Mostoslavsky, et al. 2006, Oberdoerffer, et al. 2008.). The interaction between
PARylation and SIRT1 in DNA repair events were first suggested by Zhang in 2003 (Zhang
2003.). First experimental evidence for that interaction in chromatin remodelling was
presented by Tulin and co-workers (Tulin, et al. 2006.) showing that PARG and SIR2 co-
localized in cell nuclei of Drosophyla larvae and localization of SIR2 was dependent on
PARG expression suggestive of the involvement of PAR levels (Tulin, et al. 2006.).

The apparent functional convergence of SIRT1 and PARP activation in DNA repair and
genomic maintenance was assessed in detail by El-Ramy and colleagues (El Ramy, et al.
2009.) by studying the double deletion of PARP-1 and SIRT1 in mice. The deletion of
SIRT1 induced early postnatal lethality, chromosomal and DNA repair defects as expected
from previous studies (Cheng, et al. 2003, McBurney, et al. 2003, Oberdoerffer, et al.
2008.). Although, the concurrent deletion of PARP-1 did not prevent postnatal lethality, it
did influence DNA repair defects (El Ramy, et al. 2009.).

The absence of SIRT1 have led to telomere dysfunction, the spreading of heterochromatic
regions, rearranged nucleolar architecture by increasing the number of nucleoli and
hampered mitotic cell division by inducing the number of mitotic divisions, however also
enhanced the number of aberrant divisions, the incidence of unequal distribution of
chromosomes between daughter cells and the extent of DNA damage associated with
mitosis (occurrence of micronuclei) (El Ramy, et al. 2009.). PARP-1 had been shown to act
as an actor in maintaining genome stability under genotoxic stress and to protect against the
above features (De Vos, et al. 2012.), however unexpectedly it was the deletion of PARP-1
that was protective against the SIRT1-induced genome instability except for maintenance of
telomere integrity (El Ramy, et al. 2009.). Yet the exact molecular mechanism of the above
detailed phenomenon is unknown.

Among sirtuins, besides SIRT1, SIRT6 is involved in the regulation of DNA repair events
(Mostoslavsky, et al. 2006.). The absence of SIRT6 enhances the sensitivity of fibroblasts to
ionizing radiation and brings about genomic instability (increased number of chromosome
fragmentation, centromere default, abnormal metaphase, chromosome translocations)
(Mostoslavsky, et al. 2006.). SIRT6 translocate to the damage sites where it promotes DNA
repair (Mao, et al. 2011, Mostoslavsky, et al. 2006.). SIRT6 has pivotal role in the
appropriate function of base excision and double strand break repair (Mao, et al. 2011,
Mostoslavsky, et al. 2006.). SIRT6 mono-ADP-ribosylate PARP-1 on K521, whereby the
activity of PARP-1 is induced that contribute to successful resolution of double strand
breaks, however the deacetylase activity of SIRT6 has equal contribution to DNA repair as
its mono-ADP-ribosyl transferase activity (Mao, et al. 2011.) suggesting unknown parallel
DNA repair pathways influenced by SIRT6.

It remains a question whether other PARPs involved in genome maintenance (PARP-2, -3,
or tankyrases) would similarly interact with SIRT1 in DNA repair events, or whether the
interaction of SIRT1 and PARP-1 would take place also in the resolution of double and
single strand breaks. It is plausible that the interaction of SIRTs and PARPs in the
maintenance of genomic integrity has prominent role in senescence, apoptosis, cell cycle
regulation and tumorigenesis.

3.4. PARP - sirtuin interaction in ageing
Higher PARP activation capacity had been associated with successful ageing in mammals
(Burkle, et al. 1994.) and in humans (Muiras, et al. 1998.). It was postulated that the benefit
of the higher PARylation capacity is more reliable DNA repair that prevents the occurrence
of DNA damage-associated diseases (e.g. neoplasms). Although, as of yet the lack of
PARP-1 has not been associated with spontaneous tumorigenesis without tumorigenic
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challenge in vivo unless other DNA repair enzymes (e.g. p53) were removed too (Nicolas, et
al. 2010, Tong, et al. 2001.). Recent data, however validate that concept: the hPARP-1
mouse strain, that overexpresses an extra copy of PARP-1, are protected against neoplastic
diseases (Mangerich, et al. 2010.). However the incidence of other age-related pathologies
increase upon PARP-1 overexpression: obesity, glucose intolerance and certain
inflammatory pathologies (Mangerich, et al. 2010.) suggesting that the previous model
might need to be refined.

Aging is associated with the dysregulation of the oxidative balance enhancing oxidative
stress. Upon ageing PARylation capacity increases (Braidy, et al. 2011, Massudi, et al.
2012.) that upon stress puts heavy burden on NAD+ homeostasis. Indeed, lower NAD+

levels were detected in aged animals and humans that coincided with lower SIRT1 activity
despite the induction of SIRT1 expression (Braidy, et al. 2011, Massudi, et al. 2012.). As
decrease in SIRT1 activity leads to decrease in mitochondrial biogenesis it is tempting to
speculate that the crosstalk between PARP-1 and SIRT1 might be a cause of the age-
associated loss of mitochondrial function and vice versa, influencing that angle could be
exploited to combat age-associated loss of mitochondrial function. The dysregulation of the
PARP-1 – NAD+ - SIRT1 balance may stay behind some of the pathologies observed in the
hPARP-1 mice (Mangerich, et al. 2010.). As hampered mitochondrial biogenesis is a
hallmark of ageing and it is probably a major cause of several age-associated metabolic and
central nerve system diseases (Lopez-Lluch, et al. 2008.) fine tuning of the PARP-1 – SIRT1
interaction may prove to be a successful strategy to counteract these diseases and provide
longer healthspan (Canto and Auwerx 2011b.).

4. Pharmacology of NAD+, SIRT1 and PARPs
4.1. NAD+ modulating agents

The idea that PARPs and sirtuins may be affected by NAD+ metabolism, and that in turn,
activities of these enzymes modulate NAD+ levels is cells has indicated that NAD+

metabolism itself is an interesting target for pharmacological modulation. It is important to
bear in mind that NAD+ itself and associated metabolites (Figure 5) are active forms of
Vitamin B3, whose levels are sensitive to pharmacologic interventions featuring different
forms of Vitamin B3. Importantly, as was discussed in section 1.1, different vitamin forms
are metabolized through distinct pathways, indicating that each has unique pharmacologic
and metabolic properties. This has been noted particularly for nicotinic acid, which has
remarkable anti-lipogenic effects, as well as the ability to lower LDL cholesterol and raise
HDL cholesterol. These effects are not found for pharmacologic use of NAM. Thus,
different precursors to NAD+ have distinct therapeutic as well as nutritional significance.

4.1.1. Niacin—The distinctive effects of NA (niacin) supplementation are thought to
include systemic NAD+ increase, as revealed by supplementation studies of NAM or NA in
rats (Jackson, et al. 1995.). These authors supplemented each of the two Vitamin B3
compounds in 30, 100, 500, and 1000 mg/kg for three weeks and then tissue NAD+ was
analyzed by HPLC. Animals fed at the highest dose NA experienced 1.44 (packed RBC),
1.54 (liver), 1.62 (heart), 1.12 (lung), and 1.88 (kidney) increased NAD+ contents (measured
as fold over control), whereas NAM at the highest dose yielded 1.44 (packed RBC), 1.47
(liver), 1.20 (heart), 1.18 (lung), and 1.03 (kidney) increases in NAD+ contents (measured as
fold over control). It is apparent from these data that NA generally provides greater NAD+

enhancements than NAM in mammalian tissues. This observation has been rationalized by
observations that NAM and NA are metabolized to NAD+ differently, and that NA
production is typically low in mammalian tissues, enabling enhanced biosynthesis of NAD+

when NA is provided via a pharmacologic route. NA administration enhances NAD+
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availability, therefore is protective in PARP-mediated pathologies (Benavente, et al. 2009,
Hageman and Stierum 2001, Weidele, et al. 2010.).

NA is distinct versus NAM in its ability to bind a G-protein coupled receptor (GPR109A, or
HM74A) (Soga, et al. 2003, Tunaru, et al. 2003, Wise, et al. 2003.), which increases
vasodilation and leads to uncomfortable flushing (Benyo, et al. 2005.). This effect appears to
be mediated by release of prostaglandins D2 and E2 from epidermal Langerhans cells
(Benyo, et al. 2006.). In fact, three distinct receptors for NA have been identified in
mammalian cells. The high affinity receptor has a measured affinity to NA of 63-250 nM
(Soga, et al. 2003, Wise, et al. 2003.). The knockout of the murine homologue PUMA-G
appears to ablate many of the effects of NA in lipid lowering (Tunaru, et al. 2003.). Some
authors have argued that GPR109A activation is responsible for the entirety of the anti-
lipidemic effects of NA (Wanders and Judd 2011.). This view is in part supported by the
effects of a NA mimic acipomox, which has been used extensively in Europe for treatment
of hyperlipidemias. Acipomox does not have an apparent pathway for stimulation of
systemic NAD+ increase, suggesting it parces the non-NAD+ component in NAs effects.
However, acipomox has been reported to exhibit smaller effects than NA in lipid modulation
(Seed, et al. 1993.), and acipomox did not cause statistically significant increase of HDL in
one study (Seed, et al. 1993.).

The latter result suggests that some of NA effects could act through NAD+ metabolism, and
through NAD+ modulation of signal transducers (such as sirtuins and PARPs) that can
impinge on lipid metabolism. Even those who are strong advocates of GPR109A as
responsible for mediating NA’s effects acknowledge that some of NA effects are unclear,
such as how exactly NA causes the magnitudes of lipid modulations as well as how NA
causes increases in HDL levels (Wanders and Judd 2011.). It is important to bear in mind
that NAD+ metabolism could play key, but yet to be determined roles, in these effects.

Niacin’s lipid altering effects, were first reported in 1955 (Altschul, et al. 1955.) and niacin
has been widely used clinically since that time for modulating serum lipids. As such, niacin
supplementation therapy is the oldest known therapy for modulating cholesterol and lipids,
and predates the development of the statin drugs. High dose niacin is still widely prescribed
as a treatment for lipidemia, in the form of Niaspan (Abbott laboratories), for treating
elevated cholesterol and for raising HDL levels. Niacin increases HDL cholesterol, better
than any other known pharmacologic agent, and decreases LDL and VLDL cholesterol
(Capuzzi, et al. 2000.). It also can decrease serum fatty acids. Data on its effectiveness
indicate that niacin reduces long-term cardiac disease mortality compared with untreated
patients (Berge and Canner 1991.). Because, niacin can profoundly increase HDL
cholesterol, high dose niacin was evaluated as a supplement to statin therapy (simvistatin)
for possible benefit in a large 3414 patient study called AIM-HIGH (www.aimhigh.com).
This study was halted in 2011 after no benefit was found in the Niaspn treated arm of the
study as measured by rates of cardiovascular events. There was a slightly increased risk of
stroke in the Niaspan arm (28 events versus 12 events) which prompted the study to be
terminated.

4.1.2. Nicotinamide—Nicotinamide does not behave like NA as a serum cholesterol
modulation agent (Altschul, et al. 1955.). It also cannot activate the GPR109A receptor
(Wise, et al. 2003.). Not surprisingly, NAM does not activate flushing in people. However,
as already discussed, data suggests that NAM is not particularly effective for increasing
NAD+ levels in tissues, suggesting it has limited potential as an NAD+ enhancement agent.
Nevertheless, NAM can increase liver NAD+ contents substantially (Jackson, et al. 1995.).
NAM is a known inhibitor of several ADP-ribosyl transferase enzymes, including sirtuins
(Jackson, et al. 2003, Sauve and Schramm 2003.) and PARPs (Preiss, et al. 1971, Virag and
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Szabo 2002.), causing its effects on NAD+ metabolism to be in part due to decreasing rates
of NAD+ turnover.

The ability of NAM to attenuate rate of depletion of NAD+ by inhibition of PARP probably
accounts for some of the protective effects identified for NAM in models of disease (Virag
and Szabo 2002.). NAM has been shown to provide protection in stroke and hypoxic neural
injury (Feng, et al. 2006, Liu, et al. 2009.), fetal alcohol syndrome (Ieraci and Herrera 2006.)
and in acute neurotrauma (Hoane, et al. 2003, Hoane, et al. 2006a, Hoane, et al. 2006b,
Hoane, et al. 2006c.). NAM also provides protection against streptozotocin induced β cell
loss in the pancreas (Lazarus and Shapiro 1973.). A large clinical study using NAM to treat
prevent Type I diabetes in Europe failed to show a clinical benefit (Gale, et al. 2004.), but
reinforced the safety of longterm high dose NAM administration to healthy patients.

4.1.3. Tryptophan—Tryptophan is a precursor of NAD+ via degradation through the
oxidative kyurenine pathway. The value of tryptophan as an NAD+ precursor is limited. It
has been estimated that only 1 of 67 mg of tryptophan is shunted into NAD+ synthesis in
human females. This indicates that 1 mg of niacin is equivalent to 67 mg of tryptophan for
NAD+ biosynthesis (Fukuwatari, et al. 2004.). Nevertheless defects in tryptophan
metabolism to NAD+ have been suggested in some diseases, such as neurodegenerative
disorders, through accumulation of quinolinic acid (Schwarcz, et al. 1983.). Inhibition of a
key enzyme in this pathway, kynurenine 3-monooxygenase provides relief in a transgenic
model of Alzheimers disease (Zwilling, et al. 2011.).

4.1.4. Nicotinamide Riboside—Limited data exists for the use of NR as an NAD+

precursor in human or mammalian cell types. Sauve and co-workers were first to establish
that NR can be broadly useful for increasing NAD+ levels in a variety of mammalian cell
types (Yang, et al. 2007b.). NR was found to be protective in a model of optic neuritis by
direct injection into the eye (Shindler, et al. 2007.). More recently, NR was shown to
increase NAD+ levels in muscle and other tissues when administered to mice in food (Canto,
et al. 2012.). NR was able to stimulate mitochondrial biogenesis, increase insulin sensitivity,
lower cholesterol, and reduce weight gain in mice fed a high fat diet (Canto, et al. 2012.).
NR supplementation was able to provide in vivo activation of sirtuins SIRT1 and SIRT3
(Canto, et al. 2012.). The beneficial effects observed in vivo, in combination with high
levels of NAD+ enhancements on cells (Yang, et al. 2007b.) suggests this compound could
be of interest for nutritional supplements and for possible therapeutic formulations.

4.2. Sirtuin modulating agents
The quest for sirtuin activators (Figure 6) began short after the finding that Sir2 could
modulate replicative lifespan in yeast. These efforts culminated when, in 2003, Howitz and
collaborators identified resveratrol and a few other polyphenols, including quercetin and
piceatannol, as natural compounds that could directly bind and enhance SIRT1 activity
(Howitz, et al. 2003.). A number of studies have subsequently shown that resveratrol
treatment leads to enhanced SIRT1 activity in diverse cells, tissues and organisms (Baur
2010.). In line with this, resveratrol has been shown to promote calorie-restriction like health
benefits in numerous organisms. Notably, resveratrol largely prevented the onset of diet-
induced obesity and metabolic disease upon high-feeding, ultimately protecting against the
lifespan curbing associated with high caloric intake (Baur, et al. 2006, Lagouge, et al.
2006.). The same study demonstrated that resveratrol also improved mitochondrial function
and fatty acid oxidation (Lagouge, et al. 2006.). In line with the possible inhibitory role of
SIRT1 on PARP activity, it has been reported that resveratrol-treatment can lead to
reductions in PARP activity (Kolthur-Seetharam, et al. 2006.).
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A major caveat in the identification of resveratrol as a direct SIRT1 activator relies in the
use of a fluorescently labelled substrate in the original screening. These results were
questioned by convincing evidence demonstrating that the nonphysiological fluorescent
“Fluor de Lys” substrate can lead to artifactual results (Borra, et al. 2005, Kaeberlein, et al.
2005.). This suggested that the actions of resveratrol on SIRT1 might be indirect, igniting a
new quest for the possible early drivers of resveratrol action. A likely candidate to initiate
the metabolic actions of resveratrol is the AMPK. Many works have reported how
resveratrol treatment leads to AMPK activation (see (Canto and Auwerx 2011a.) for
review). Elegant studies by the Hardie lab demonstrated that AMP-insensitive forms of
AMPK are resistant to activation by resveratrol, clearly indicating that AMPK activation in
response to resveratrol relies on an AMP/ATP imbalance. In line with this hypothesis,
resveratrol has been shown to interfere with the mitochondrial respiratory chain (Zini, et al.
1999.), providing a likely mechanism by which resveratrol might affect AMP/ATP balances
and activate AMPK. The link between AMPK and SIRT1 activation is provided at least by a
couple of different mechanisms. First, AMPK activation is followed by an increase in NAD+

levels. On an initial phase this increase is powered by increased fatty acid oxidation flux
(Canto, et al. 2009.), which is later sustained by enhanced Nampt expression (Canto, et al.
2009, Fulco, et al. 2008.). A second mechanism recently proposed relies on the direct
phosphorylation of SIRT1 by AMPK, which would disrupt the ability of DBC-1 to interact
and inhibit SIRT1 (Nin, et al. 2012.). Another layer of complexity is provided by the
possible impact of SIRT1 in AMPK activity. Indeed, some labs have shown that SIRT1
might also influence AMPK activity (Hou, et al. 2008, Lan, et al. 2008, Price, et al. 2012,
Suchankova, et al. 2009.). This would create a positive feedback loop between both
signaling events to amplify the signal. The fact that AMPK is activated by resveratrol in
SIRT1 defective cells and that defective AMPK activity compromises resveratrol-induced
SIRT1 activation (Canto, et al. 2010, Dasgupta and Milbrandt 2007, Um, et al. 2010.),
indicates that AMPK might be the initial trigger of this signal loop. This, however, might
largely depend on the dose of resveratrol used (Price, et al. 2012.). In any case, a clear
implication of this relationship is that AMPK activation should have similar silencing effects
on PARP activity as SIRT1 activation. Surprisingly, however, the only study directly
studying a possible relation between AMPK and PARPs described how AMPK could
phosphorylate PARP-1 in vitro and enhance its activity in certain scenarios (Walker, et al.
2006.). These observations are in apparent contradiction with the metabolic observations in
animal models, which indicate that AMPK rather mimics the transcriptional adaptations
promoted by decreased PARP activity (Bai, et al. 2011a, Bai, et al. 2011b, Canto and
Auwerx 2010.). These discrepancies might be explained by the very different contexts and
degrees of PARP and AMPK activation reached in the diverse experimental settings. In this
sense, it is common that the conditions used in cell culture-based experiments activate these
enzymes to supra-physiological levels. Therefore, the possible existence of interaction and
phosphorylation events between AMPK and PARP-1 requires further confirmation and
evaluation to validate its physiological relevance.

Following the footsteps of resveratrol, a more recent and ambitious screening for SIRT1
activators provided a new collection of compounds, amongst which N-[2-[3-(piperazin-1-
ylmethyl)imidazo[2,1-b][1,2]thiazol-6-yl]phenyl]quinoxaline-2-carboxamide (SRT1720,
Figure 6) has been the one receiving most attention. SRT1720 is structurally different from
resveratrol and acts as a more potent and efficient SIRT1 activator (Milne, et al. 2007.). As
expected from a SIRT1 activator, the treatment of mice with SRT1720 enhanced oxidative
metabolism and mitochondrial biogenesis, leading to protection against obesity and benefits
on glucose homeostasis (Feige, et al. 2008, Milne, et al. 2007.). However, it was recently
pointed out that the screen that identified SRT1720 as a direct SIRT1 agonist had similar
flaws as the one that identified resveratrol, namely: confusing results derived from the use of
the “Fluor de Lys” fluorescent moiety (Huber, et al. 2010, Pacholec, et al. 2010.). Therefore,
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a shadow of doubt stands on whether SRT1720 can be truly considered a direct SIRT1
agonist. Of note, the much higher potency of SRT1720 as a SIRT1 activator found in the in
vitro screen was not translated in vivo (Feige, et al. 2008.), suggesting a rather indirect
activation of SIRT1 or poor bioavailability. Whatever the case, no study to this data has
clearly evaluated any possible impact of SRT1720 on PARP activity.

4.3. Agents modulating poly(ADP-ribosyl)ation
Most PARP activity in cells is driven by PARP-1, while the rest is mostly covered by
PARP-2 both under non-stress conditions and upon oxidative injury (Bai, et al. 2011a,
Schreiber, et al. 2002, Szanto, et al. 2011.). PARP activation – as discussed in section 1.3 –
can be triggered by DNA damage. PARP activation is induced voluntarily mostly under
experimental conditions, by oxidants (e.g hydrogen peroxide, peroxynitrite, radical donor
compounds, certain cytostatic drugs), or by DNA alkylating agents (e.g. MNNG, or
streptozotocin), or ionizing radiation (Schreiber, et al. 2006.). Besides DNA damage,
PARP-1 can be activated by posttranslational modifications (see section 1.3 and (Gibson and
Kraus 2012.)), however it remains a question to be answered whether pharmacological
modulation of these signaling pathways can efficiently modulate cellular PARP activity.

The first compound identified as PARP inhibitor was benzamide (IC50 = 22 μM) (Shall
1975.) and its 3-substituted versions (3-amino-benzamide is used the most frequently (IC50
= 33 μM)) that are simple analogues of NAM (IC50 = 210 μM) that is a by-product of the
PARylation reaction. Benzamide and its analogues are applied in cellular assays in the
millimolar range that may lead to aspecific interactions (Milam and Cleaver 1984, Milam, et
al. 1986.). Interestingly, certain dietary compounds (theophylline, caffeine and certain
dietary flavonoids) that possess pleiotropic biological effects were also shown to inhibit
PARP activity in cellular models in the submillimolar range (>100 μM) (Geraets, et al.
2007, Geraets, et al. 2006, Moonen, et al. 2005.).

The careful modification of the backbone provided by nicotinamide and benzamide gave
rise to current cutting edge PARP inhibitors (elegantly reviewed in (Ferraris 2010.) and
(Curtin 2006.)) (Figure 7). These inhibitors bind to the NAM-binding pocket of PARP-1,
hence act as competitive inhibitors of NAD+-binding (Curtin 2006, Ferraris 2010, Jagtap
and Szabo 2005.) with IC50 values in the low nanomolar range (1-5 nM) (Javle and Curtin
2012.). Targeting NAD+ binding, to date, seems the only successful way to design specific
PARP inhibitors, as an alternative approach to inhibit PARP-1 via impeding DNA binding
through impairing the zinc fingers was not a viable strategy (Liu, et al. 2012.). PARG
inhibitors would provide another alternative indirect approach for PARP inhibition (Erdelyi,
et al. 2009, Ying and Swanson 2000.), however the specificity of tannin derivatives used as
PARG inhibitors had been questioned (Erdelyi, et al. 2005.).

Current PARP inhibitors are considered pan-PARP inhibitors, as they inhibit both PARP-1
and PARP-2 (Wahlberg, et al. 2012.). There is a current quest for the design of PARP-1/-2
specific inhibitors, however to date the best achieved specificity is 60-fold higher affinity
towards PARP-2 than PARP-1 (Moroni, et al. 2009.), or ~10 fold preference towards
PARP-1 than PARP-2 (Ferraris 2010.) in in vitro assays. These inhibitors are unlikely to act
as highly selective agents in an in vivo setting. It seems that due to the large structural
similarity between the PARP-1 and -2 catalytic domains (Oliver, et al. 2004.), the design of
a highly specific inhibitor is a difficult task to accomplish (reviewed in (Szanto, et al.
2012.)).

The application of PARP inhibitors seems a promising strategy in a large number of
physiological and pathophysiological states. Experimental evidence suggest the applicability
of these compounds provide means to combat oxidative stress related diseases such as
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reperfusion injuries (gut, eye, kidney, myocardium), stroke, neurotrauma, inflammatory
pathologies, shock, or diabetes and its consequent complications ((Bai and Canto 2012,
Virag and Szabo 2002.) and in the present series a review by Nicola Curtin and Csaba
Szabó). Several PARP inhibitors are currently making their ways through the different
phases of clinical trials for the treatment of different solid and lymphoblastoid neoplasias as
single agents or in combination (reviewed in (Javle and Curtin 2011.) and in the present
series a review by Nicola Curtin and Csaba Szabó). Importantly, in clinical studies PARP
inhibitors were reported to have good tolerability that further ensure the applicability of
these agents (Fong, et al. 2009.).

PARP inhibitors were protective as shown in multiple models of oxidative stress and ageing,
through guarding cellular NAD+ levels by preventing excessive PARP activation and
therefore inducing SIRT1 activity (Braidy, et al. 2011, Liu, et al. 2009, Massudi, et al. 2012,
Pang, et al. 2011, Pillai, et al. 2006, Pillai, et al. 2005, Qin, et al. 2012, Sheline, et al. 2010.).
PARP inhibitor treatment of C2C12 myotubes, or C57/Bl5J mice induced NAD+ levels and
SIRT1 activity (Bai, et al. 2011b.) that further consolidates the importance of the NAD+ link
between PARP-1 and SIRT1. PARP inhibitor treatment did not alter NAD+ levels and
sirtuin activity in other compartments such as cytosol, or mitochondria evidenced by the
lack of SIRT2 and SIRT3 activation (Bai, et al. 2011b.).

Yet the effects of longer PARP inhibitor treatment on NAD+ homeostasis and SIRT1
activity has not been studied, moreover the chronic applicability of PARP inhibitors raise
concerns, due to reduction of DNA repair capacity and consequently to enhanced genomic
instability that requires further studies.

5. Concluding remarks, perspectives
NAD+ is a cofactor, or substrate of numerous enzymes that suggest widespread influence for
NAD+ over a plethora of cellular functions (Houtkooper and Auwerx 2012, Houtkooper, et
al. 2010.). Out of these enzymes we focused the subject of our review on two major NAD+-
dependent enzyme families: PARPs and sirtuins.

The interaction of SIRT and PAPR enzymes has multiple layers. Both enzyme families
consist of multiple members that show different affinities towards NAD+. Obviously, as
both enzymes are NAD+-dependent in some occasions they may limit NAD+ availability for
one another. Furthermore, sirtuin and PARP enzymes interact through modifying acetylation
levels, or in some cases these enzymes may interact through mutual regulation of gene
expression. These interactions were described to modulate a series of biological processes
ranging from metabolism, oxidative stress-mediated diseases through DNA repair to ageing.
Apparently, the appropriate balance between sirtuin and PARP activity is crucial to
adequately regulate these processes. In some instances these balances are disturbed (e.g in
ageing (Braidy, et al. 2011, Massudi, et al. 2012.)) that presumably contributes to these
pathologies.

Both SIRT1 and PARPs can be modulated pharmacologically (Feige, et al. 2008, Fong, et al.
2009, Jagtap and Szabo 2005, Lagouge, et al. 2006.) enabling the modulation of both ends
of this molecular seesaw. Importantly, there is ample data that not only the genetical, but
pharmacological modulation of PARP, or SIRT1 activity affects the other partner (Bai, et al.
2011b, Liu, et al. 2009, Liu, et al. 2008, Pang, et al. 2011, Pillai, et al. 2006, Rajamohan, et
al. 2009.) suggesting that it is possible to appropriately arrange the SIRT-PARP balance by
applying pharmacological agents.

It should be noted that the activity of SIRTs and PARPs can be modulated through cellular
NAD+ levels (Chambon, et al. 1963, Imai, et al. 2000.) suggesting the applicability of NAD+
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precursors, such as NR, NA, or NAM. These agents impact profoundly on pathologies
involving SIRTs or PARPs (Canto, et al. 2012, Jackson, et al. 1995, Schwarcz, et al. 1983,
Virag and Szabo 2002.) making them likely tools to fine tune PARP and SIRT enzymes,
however their exact mode of action on both enzyme families had not been sufficiently
mapped. The physiological and pathophysiological processes that govern NAD+ levels are
summarized on Figure 8.

It is very likely that the occasions of sirtuin – PARP interaction is way more widespread
than demonstrated experimentally - as discussed in section 3.2 - suggesting that the circle of
pathological states, where PARP-SIRT disbalance takes place can be enlarged and better
defined. In fact, this notion raises the question whether other sirtuins, or PARPs may
interact. It will be also important to distinguish between the gene-specific effects and the
side effects of the available pharmacological agents (Antolin, et al. 2012, Nicolescu, et al.
2009, Pacholec, et al. 2010.) and to clearly define effects that are PARP, or SIRT
independent in these pathologies (Bai, et al. 2011b.). Our current knowledge on the SIRT –
PARP interaction represent only the tip of the iceberg and the field is expanding that will
warrant further research in that field.
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Figure 1. NAD and reactions of NAD+

(A) Depiction of the chemical structure of NAD+. (B) Transfer of hydride to nicotinamide of
NAD+ to form NADH. (C) ADP-ribosyltransfer reaction of NAD+ to a cellular nucleophile
(acetyllysine, aspartate, glutamate, protein, etc).
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Figure 2. NAD+ biosynthetic pathways in mammals
Naming derives from mammalian abbreviations. NA: nicotinic acid; NR: NAM riboside;
NAM: nicotinamide; NAM NMN: NAM mononucleotide; NaMN: nicotinic acid
mononucleotide; NaAD: nicotinic acid adenine dinucleotide; QPT: nicotinic acid
phosphoribosyl-transferase; NRK: NAM riboside kinase; ART: ADP-ribosyl transferase;
PARP: poly-ADP-polymerase; Nampt: NAM phosphoribosyltransferase; PNP: purine
nucleoside phosphorylase; NMNAT: NMN/NaMN adenylyltransferase.
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Figure 3. An overview of the deacetylation reactions catalyzed by SIRT1 and mono/poly(ADP-
ribosyl)ation reactions catalyzed by PARPs
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Figure 4. The molecular level interactions between SIRT1 PARP-1 and -2 under oxidative stress
conditions
The pathways enhancing oxidative stress-mediated tissue damage are in red, in turn,
protective pathways are in green.
Oxidative stress induces PARP-1 that through the depletion of NAD+ pools inhibits SIRT1.
That pathway seems to participate in the tissue damage inflicted by PARP activation.
On the contrary, SIRT1 activation by pharmacological agents (e.g. resveratrol, fistein) or by
induction of its expression (e.g. PARP-2 ablation) leads to SIRT1-mediated deacetylation
and inactivation of PARP-1 that seems a crucial pathway in the cytoprotective action of
SIRT1 activation.
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Figure 5. Compounds that modulate NAD+ concentrations or modulate GPR109A
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Figure 6. Examples of compounds that (A) activate and (B) inhibit SIRT1 or other sirtuins
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Figure 7. Compounds that inhibit PARPs as discussed in the text
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Figure 8. Physiological and pathophysiological processes modulating NAD+ levels
Physiolgical and pathological processes (in blue boxes) that enhance NAD+ content, or
availability are marked by green arrow, while those ones that lead to NAD+ degradation are
in red.
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