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Abstract
Pharmacological management of attention-deficit hyperactivity disorder (ADHD) has expanded
beyond stimulant medications to include alpha 2 adrenergic agonists. These agents exert their
actions through presynaptic stimulation and likely involve facilitation of both dopamine and
noradrenaline neurotransmission, which are both thought to play critical roles in the
pathophysiology of ADHD. Further, frontostratial dysfunction giving rise to neuropsychological
weaknesses has been well-established in patients with ADHD and may explain how alpha 2 agents
exert their beneficial effects. In the following review, we consider relevant neurobiological
underpinnings of ADHD with respect to why alpha 2 agents may be effective in treating this
condition. We also review new formulations of alpha 2 agonists, emerging data on their use in
ADHD, and implications for clinical practice. Integrating knowledge of pathphysiological
mechanisms and mechanisms of drug action may inform our medication choices and facilitate
treatment of ADHD and related disorders.
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Introduction
Attention Deficit Hyperactivity Disorder (ADHD) affects 8.7% of children [1] and 4.4% of
adults [2] in the United States. This disorder conveys chronic impairment affecting
individuals, families, and society at large, through lost work days[3], treatment costs [4],
academic failure [5] and other complications. Pharmacological management of ADHD is the
most widely used approach to treatment, and psychostimulant medications, such as
methylphenidate and amphetamine-based products are the most commonly used and studied
class of agents. Despite a vast literature documenting the efficacy and relative safety of this
class of drugs, the psychostimulants are not recommended or sufficient for a proportion of
patients. Due to side effects that range in severity from insomnia or loss of appetite to
significant growth suppression, some clinicians and parents may be reluctant to use
stimulant medication [6*]. Stimulant medications are also abused, diverted, and misused,
particularly among adolescents and young adults, raising additional concern about their
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widespread use [7]. Finally, some patients may not respond adequately to stimulants,
requiring alternative or adjunctive medications [8]. Given the chronic, debilitating, and
prevalent nature of ADHD, and the limitations of front-line psychostimulant treatment,
continuous development and evaluation of alternative treatments for this group is
imperative.

One alternative class of medications used over the last 25 years in treatment of ADHD is the
alpha 2 adrenergic agonists – particularly clonidine and guanfacine. These drugs activate
pre-synaptic autoreceptors that dampen adrenergic tone [8]. This property accounts for their
usefulness in severe hypertension, opiate withdrawal, and pain syndromes. The precise
mechanism of action for treating ADHD is not clear, but is likely to involve facilitation of
both dopamine and noradrenaline neurotransmission, which are both thought to play critical
roles in the pathophysiology of ADHD [9*]. Further, frontostratial dysfunction giving rise to
neuropsychological weaknesses has been well-established in patients with ADHD and may
explain how alpha 2 agents exert their beneficial effects [9*].

In the current review we consider relevant neurobiological underpinnings of ADHD with
respect to why alpha 2 agents may be helpful in this condition. We then review new
formulations of alpha 2 agonists, emerging data on their use in ADHD, and implications for
clinical practice.

Neurobiology of Alpha-2 system and Relevance to ADHD
Neurobiology of adrenergic system

Basic properties of Alpha 2 Adrenoceptors—The noradrenergic system uses
norepinephrine (NE) as its main chemical messenger and serves multiple brain functions,
including arousal, attention, mood, learning, memory and stress response [10].
Noradrenergic neurons are localized in brainstem nuclei such as the locus ceruleus(LC), and
noradrenergic axons project diffusely to almost every part of the brain [11]. NE’s effects are
mediated by three families of adrenergic receptors: α1, α2 and β [12]. In this review we
focus on the α2 receptors, which are presynaptic and inhibitory, and consist of three
subtypes: A, B and C. The three receptor subtypes are encoded by distinct intron-less genes,
located in humans on chromosomes 10, 2, and 4 respectively [13]. The A subtype is the
predominant subtype in the brain and is concentrated in the prefrontal cortex (PFC), but also
found in the locus ceruleus, amygdala, hippocampus, and septum [14]. The B subtype is
expressed primarily in the thalamus [15]. The C subtype is widely distributed in the
striatum, hippocampus, and PFC [15], but has little cell surface localization [16]. Therefore,
the A subtype is likely to mediate most of the central effects of alpha 2 agonists that are
relevant to the pathophysiology and treatment of ADHD [13].

Alpha 2 system and Prefrontal Cortex—Noradrenaline-containing neurons of the
locus LC, arising from the brainstem, form one of the ascending modulatory systems
innervating the forebrain [17]. When LC neurons fire, NE is released into the PFC and
works presynaptically to decrease cell firing and NE release. NE, as with dopamine, exhibits
an inverted U influence on PFC cognitive functions. Moderate levels of alpha 2A receptor
stimulation improve PFC regulation of attention, behavior and emotion by strengthening
network connections between neurons with shared inputs [18]. However, too little or too
much stimulation impairs PFC function [18].

The alpha 2 agonists clonidine and guanfacine mimic NE actions in the PFC through the
stimulation of alpha 2A receptors on PFC neurons [19]. Clonidine has high affinity for all
three subtypes of alpha 2 receptors (A, B, and C), as well as for imidazole I1 receptors [20,
21], which mediate many of the hypotensive effects of clonidine in the brainstem [22]. The
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sedative effects are probably mediated via all three subtypes, including potent actions at
presynatic receptions and actions in the thalamus [18]. Guanfacine acts more preferentially
at postsynaptic NE alpha 2A receptors strengthening PFC network connectivity [18].

Alpha 2 system and ADHD—The PFC uses representational knowledge (i.e., working
memory) to guide overt responses (movement) as well as covert responses (attention),
allowing inhibition of inappropriate behaviors and attenuation to irrelevant stimuli [23].
Deficits in PFC function lead to poor impulse control, distractibility, hyperactivity,
forgetfulness, and poor organization and planning [24]. There is general agreement that
ADHD involves weakened PFC function and medications that treat ADHD ameliorate PFC
deficits [25]. Although initial causal theories focused on dopaminergic dysfunction in
frontal-striatal circuits, more recent work demonstrates that noradrenergic dysfunction
underlies many of the cognitive and behavioral manifestations of ADHD. The work of
Arnsten and colleagues has been instrumental in exploring the role of noradrenergic PFC
circuitry in ADHD[9*]. For example, blockade of α2- receptors in monkey PFC with
yohimbine induces a profile similar to that of ADHD: inducing locomotor hyperactivity and
impulsivity, and impairing working memory [26]. Electrophysiological studies from this
group have demonstrated that guanfacine enhances delay-related firing of PFC neurons,
which is important for overcoming distraction and behavioral inhibition [18]. Further
substantiating NE’s influence on prefrontal network activity, guanfacine improved sustained
attention and reduced hyperactivity in a rat model of ADHD in a dose dependent manner
[27]. Below we review the current animal and human studies examining the role of the alpha
2 adrenergic system in prefrontal cognitive functions important in ADHD.

Alpha 2 agonists and cognitive function
Animal studies—Electrophysiological studies have demonstrated that the LC
noradrenergic system plays an important role in arousal, vigilance, and responses to novel,
salient stimuli [e.g. 28]. Studies in rodents have investigated the effects of noradrenaline
lesions and administration of α2-adrenoceptor agonists on performance on a test of
sustained attention and vigilance [e.g. 29]. A noradrenaline lesion in rats reduced accuracy
of responding under distracting conditions, suggesting that lesion impairs information
processing occurring in situations where there is a high load on attention processing
resources [30]. In the same task, administration of an α2-adrenoceptor agonist,
dexmedetomidine, increased omissions and decreased responding during the intertrial
interval, indicative of decreased vigilance [31]. Further, low tonic levels of cortical
noradrenaline are associated with increased response variability in rats [32]

The α2-adrenoceptor agonists, guanfacine and clonidine, have been shown to improve
attention and working memory in rats and monkeys [19, 27, 33]. In monkeys, guanfacine
improved working memory and attentional functions in a dose-dependent manner;
facilitatory effects were more prominent in elderly monkeys with presumed noradrenaline
deficiency [34, 35]. Working memory improvement was accompanied by reduced
distractibility [36] and enhanced regional cerebral blood flow in the dorsolateral prefrontal
cortex [37]. Blockade of alpha 2A-adrenoceptors in monkey PFC with yohimbine
profoundly impaired spatial working memory [38] and eroded delay-related firing of PFC
neurons [39]. Other research suggests that the alpha 2A-receptor subtype likely underlies
guanfacine’s beneficial effects on PFC function [40], as α2 agonists lose efficacy in mice
with a functional knockout of the alpha 2a-adrenoreceptor subtype, but remain effective in
alpha 2C-adrenoreceptor knockout mice [41, 42]. Further, the cognitive and hypotensive
effects of guanfacine were reversed by idazoxan, an α2A-adrenergic antagonist [43, 44].

Bidwell et al. Page 3

Curr Psychiatry Rep. Author manuscript; available in PMC 2013 June 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Human studies—There is evidence for a role for the α2-system in the modulation of
attentional functions in humans: 1) In a sustained attention task clonidine impairs
performance and broadens the focus of attention [45]; 2) the α2-adrenoceptor antagonist,
atipamezole, improves focused attention and impairs behavioral and electrophysiological
measures of divided attention [46]; and 3) another α2-adrenoceptor antagonist, idazoxan,
can reverse the impairment resulting from clonidine on a focused attention task [47].

Jakala et al. [48–50] examined the effects of clonidine and guanfacine during visual
memory, spatial working memory, and planning tasks in human and demonstrated that
guanfacine and clonidine both improved visual memory performance, but did not affect
performance when there was a delay. However, only guanfacine improved planning and
working memory performance in a dose dependent fashion, and clonidine disrupted
performance on these tasks. Further, only clonidine disrupted performance in an attentional
task with distracters. The lower α2A- vs. α2C-adrenoceptor selectivity ratio of clonidine
and the affinity for α1-adrenoceptors of clonidine may have been responsible for the
different action of these drugs on attention, planning, and working memory. Indeed, α2C
adrenoceptors are also found in the LC [51] and clonidine may more effectively modulate
activity of these receptors than guanfacine. Therefore, it is possible that clonidine may be
more effective than guanfacine in inhibiting LC firing and therefore impair function of the
ascending noradrenergic fibers in the modulation of attention.

A recent fMRI study tested the role that postsynaptic α2A adrenoceptors play in the
activation of dorsolateral prefrontal cortex (DLPFC) evoked by warning cues using a
placebo-controlled challenge with guanfacine and found that guanfacine selectively
increased the cue-evoked activation of the left DLPFC and right anterior cerebellum. These
results provide supporting evidence that guanfacine selectively potentiates activation to
preparatory cues in DLPFC and anterior cerebellar regions as part of a broader
thalamofrontal-striatal network specialized for response preparation [52].

Other studies in healthy volunteers found no effects of alpha 2 agents on attention. One
study examine the effects of guanfacine on performance and task-related brain activation as
measured by fMRI during a task of visuospatial attention with variably cued choice
reactions and found no changes in cognitive function [53]. Similarly, clonidine had no effect
on cognitive performance in a planning task [54] and Muller et al [55] found no effects on
tests of memory, planning, motor inhibition, and executive attention after guanfacine
administration.

In this way, stimulation of postsynaptic α2-receptors has been shown in some studies to
strengthen PFC functions in healthy humans. However these findings have not been entirely
consistent across human studies and further research is needed. In addition, research
comparing the classes of α2 receptors is needed to draw strong conclusions regarding
potential differences among the receptors’ functions.

Studies in clinical populations—Alpha 2 agents have been used to improve attention in
various disorders, including schizophrenia, epilepsy, and ADHD [56–58]. Only one study
has directly examined the effects of alpha 2 agents on cognitive performance in individuals
with ADHD [57]. In this placebo-controlled clinical trial, children who were comorbid for
DSM-IV ADHD Combined Type and a tic disorder were treated with guanfacine, which not
only improved total ADHD symptoms and tic severity, but also improved their performance
on measures of sustained attention and response inhibition on a Continuous Performance
Task. However, additional research supports the notion that noradrenergic dysfunction may
underlie many of the cognitive deficits of ADHD. In a study of children who met criteria for
any DSM-IV ADHD subtype, sustained attention, response inhibition, and reaction time
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variability were each correlated with noradrenergic, and not dopaminergic, metabolite
measures [59]. In addition, studies have shown that selective norepinephrine transporter
blockers improve cognitive deficits in ADHD. For example, in children with ADHD,
deficient stop signal reaction time (SSRT) was improved by desipramine, a noradrenaline re-
uptake inhibitor [60]. Similarly, Chamberlain et al. [61] showed that atomoxetine, a
selective noradrenaline reupkate inhibitor, improves response inhibition and working
memory deficits in adults with ADHD.

Genetic underpinnings
The α2A-receptor gene (ADRA2A) and the dopamine β-hydroxylase (the enzyme needed
for the synthesis of NE) gene (DBH) have both been associated with ADHD, although these
associations are not entirely consistent across studies [62]. However, results of a recent
meta-analysis showed significant heterogeneity in associations between ADHD and both
ADRA2A and DBH genes, indicating that there may be important variables (e.g. ADHD
subtype, gender, cognitive or environmental risk factors) moderating the relationship
between noradrenergic genetic variants and ADHD. Studies have begun to examine the
association with genotype to putative cognitive endophentypes of ADHD. The ADRA2A
gene has been associated with working memory and arousal on executive function tasks in
individuals with ADHD [63]. Similarly, variation in the DBH gene has been related to
deficits in executive function and the ability to sustain attention [64, 65]. These studies
suggest that weaker NE production may impair the PFC circuits mediating the regulation of
attention and behavior.

Clinical Use of Alpha 2 Agonists in ADHD
Alpha 2 agonists have held a place among standard ADHD treatments for over twenty-five
years, primarily useful as adjunctive or alternative agents to stimulant drugs. Providers have
tended to consider this class in patients with pre-existing tic disorders, with tics emerging
during stimulant therapy, or those who for other reasons are unable to tolerate
psychostimulants. Until recently, however, use of alpha 2 agents represented “off-label”
therapy in that no drug in this class had received FDA approval for treatment of ADHD.
This has changed with the 2009 FDA approval of Intuniv® (guanfacine XR) for treatment of
ADHD in children and adolescents. In addition, a long-acting form of clonidine, a frequently
used alpha 2 agonist, is being developed for use in ADHD.

Older Alpha 2 Agents
The first alpha 2 agonist widely used in ADHD was clonidine hydrocloride, an imidizoline
derivative originally developed, and still used as, an anti-hypertensive agent [66]. Through
down-regulation of norepinephrine release from the locus ceruleus, the drug has been found
helpful in management of ADHD symptoms, as well as other neuropsychiatric symptoms
such as motor and vocal tics, aggression, opiate withdrawal, and insomnia. A 1999 meta-
analysis including 11 clinical trials of clonidine in ADHD found it beneficial with a
moderate effect size of 0.58, confirming the clinical usefulness of the drug but also its
inferiority to stimulant medication in providing symptomatic relief [67]. Drawbacks to
treatment include multiple daily dosing, and the occurrence of sedation, irritability, low
blood pressure, and rebound hypertension.

Guanfacine hydrocloride was developed in the late 1970s as another centrally-acting
antihypertensive; it is a phenylacetylguanidine derivative and more selective for alpha 2
adrenoceptors than is clonidine. Other advantages of guanfacine include a longer half-life
enabling less frequent dosing, as well as evidence of less sedative and hypotensive side
effects [68]. Its use in ADHD is supported by two small double-blind randomized trials and
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several open label studies. In one randomized controlled trial in children and adolescents,
guanfacine showed superiority to placebo in reducing teacher-rated, but not parent-rated,
ADHD symptoms [69]. A double-blind crossover study in 17 adults with ADHD found
superiority to placebo and did not find a difference in efficacy of guanfacine versus
dexamphetamine [70].

New Alpha 2 Agents for ADHD
Guanfacine Extended Release—Although evidence for efficacy of immediate-release
guanfacine in ADHD is sparse, an extended-release form of this drug has been more
extensively studied. This drug, marketed as Intuniv®, has recently received FDA approval
for treatment of children and adolescents aged 6–17 with ADHD. Guanfacine extended
release (GXR) offers the advantage of once-daily dosing. Phase I studies indicated linear
pharmacokinetic properties, and failed to demonstrate either rebound hypertension following
abrupt discontinuation or significant adverse cardiovascular effects [71–73]. In three double-
blind placebo controlled trials, involving a combined 884 child and adolescent subjects,
guanfacine XR showed superiority to placebo in reducing symptoms measured by the
ADHD Rating Scale—IV, the Clinical Global Impression--Improvement scale, and other
measures of ADHD symptomatology [6*, 74*, 75]. These three trials evaluated doses of 1–4
mg, dosed daily. Somnolence, headaches, and fatigue were common side effects seen in the
active drug groups. In none of the three studies were clinically meaningful changes in vital
signs or serious treatment-emergent adverse events observed.

In addition to short-term efficacy, research has confirmed long-term benefits of GXR in
ADHD. A two-year open-label follow-up study of GXR in children and adolescents, with or
without co-administration of stimulants, demonstrated continued efficacy and similar side
effect profile seen in short term RCTs. However, over 75% of the subjects dropped out prior
to the end of the study [76]. A second two-year open study following an RCT found
monotherapy with GXR to be efficacious and well-tolerated, again in the context of >75%
drop-out. The most common side effects were somnolence and headache. Slight changes in
pulse, blood pressure, and QT interval were clinically insignificant. Syncope occurred in two
subjects [77].

Clonidine Modified Release—Currently being considered for FDA approval to treat
ADHD is a modified release (MR) from of clonidine, to be marketed as Clonicel® by
Addrenex Pharmaceuticals. At this time, two Phase III randomized, double blind, placebo-
controlled studies have been completed evaluating efficacy clonidine in children and
adolescents with ADHD. One of these assessed clonidine MR as monotherapy, while
another studied it as an add-on agent in subjects on a stable but non-optimal stimulant drug
regimen. In both trials, clonidine MR significantly reduced ADHD symptoms from baseline
and was well-tolerated. A long-term open-label study is currently underway to investigate
the efficacy and safety of this agent over one year; interim safety data showed that chronic
dosing was well tolerated [78, 79].

Conclusions and Summary
Relevance for clinical management of ADHD

Clonidine and guanfacine have been shown to be effective for the treatment of hyperactivity,
impulsiveness, and inattention across several studies. After nearly three decades of
experience with clonidine, its advantages and disadvanges are well known. While support
remains sparse for immediate release guanfacine as an efficacious treatment for ADHD,
substantial evidence demonstrates the efficacy of extended release guanfacine in the
treatment of children with ADHD. In 2009, Intuniv® (guanfacine XR) was the first among
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alpha 2 agents to be FDA approved for use for treatment of ADHD in children and
adolescents. In addition, a long-acting form of clonidine, a frequently used alpha 2 agonist,
is in the process of being developed for use in ADHD.

These developments will facilitate treatment of the substantial minority of ADHD patients
who cannot be managed with stimulants. Such patient groups may include those with tic
disorders, congenital heart defects, genetically mediated heightened risk for sudden cardiac
death, adults with unstable hypertension or coronary artery disease, or children at risk for
significant growth suppression.

Relevance for helping better understand pathophysiology of disorder
Although substantial evidence suggests ADHD is associated with low levels of striatal
dopamine [80], ADHD is not a unitary disorder. The behavioral and cognitive
manifestations of ADHD are not easily explained by the reduced dopamine hypothesis
alone. The role of NE in the pathophysiology of ADHD is supported by many converging
lines of research. Animal and human studies support the role of NE in many of cognitive
deficits found in ADHD, i.e. working memory, vigilance, response variability, and planning.
In addition, there is substantial support in animals that many of these deficits are ameliorated
by alpha 2 agonists used to treat ADHD. However, studies in humans are more mixed with
regard to the effects of alpha 2 agonists on cognitive function. Further evidence from genetic
studies suggests that variation in genes that responsible for NE production can disrupt the
PFC circuits mediating the regulation of attention and behavior. It is likely that a
combination of both dopaminergic and noradrenergic disruptions are critical in explaining
the heterogeneous cognitive deficits and behavioral symptoms of ADHD.

Future directions
With a broader armamentarium of medication options from which to choose, clinicians may
be able to more precisely match patients with favorable treatments. Such precision would
save health care costs by reducing the need for multiple drug trials and unwarranted
polypharmacy. Future work involving the alpha 2 agonists should seek to decipher which
symptoms and/or patient types are most responsive to these agents. Data indicate that
increasing NE levels in the PFC is effective in the treatment of ADHD. Further, NE
disruptions are important in the prefrontal deficits associated with ADHD. A better
understanding of the neurobiological circuitry underlying attention and impulse control and
their relationship to genetic and environmental insults will improve our ability to match
treatments with individual needs of patients.
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