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Abstract
Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still
poses a considerable challenge to attempts to unravel its heterogeneity, and the complex
biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology,
accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome
(22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with
22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1–
2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode
for proteins and enzymes involved in regulating neurotransmission, neuronal development,
myelination, micro RNA processing, and posttranslational protein modifications. As a
consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and
functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the
phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant
genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders,
we provide here an overview of the cellular, network, and systems-level anomalies found in
22qDS, and review the intriguing evidence for this disorder’s association with schizophrenia.
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1. Introduction
Although schizophrenia is a highly heritable neurodevelopmental disorder, the precise
biochemical pathways by which it wreaks its devastating effects remains elusive. The
complexity and heterogeneity of this illness poses enormous challenges to biomedical
discovery. While the majority of cases are of unknown etiology (idiopathic), there is
increasing evidence that rare genetic mutations may account for a larger proportion of cases
than was previously believed (Sebat et al., 2009; Tam et al., 2009; Walsh et al., 2008).
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While these findings have fundamentally changed our understanding of the genetic
architecture of schizophrenia, they do not address the mechanisms by which structural
mutations of genes may contribute to the disease. As such, in-depth investigation of a known
genetic cause of psychosis offers a unique window into specific biological pathways leading
to its development. 22q11.2 Deletion Syndrome (Velocardiofacial/DiGeorge syndrome;
22qDS) affecting about 1/4000 live births, is one such genetic disorder. This genetic
microdeletion syndrome is estimated to account for 1–2% of schizophrenia cases, and
currently represents the only known recurrent copy number mutation responsible for
introducing new cases of schizophrenia into the population (Karayiorgou and Gogos, 2004).
About thirty percent of individuals afflicted by 22qDS are estimated to meet criteria for a
psychotic disorder and up to 25% of these individuals are diagnosed with schizophrenia by
adulthood (Murphy et al.,1999; Bassett and Chow, 1999). The phenotypic consequences of
this deletion event are complex and varied, ranging from facial dysmorphology, congenital
heart defects, hypocalcaemia and cleft palate, to cognitive deficits and neurodevelopmental
delays (Drew et al., 2011; McDonald-McGinn et al., 2001). Several of the genes within this
region are highly expressed in the brain, and known to affect early neuronal migration and
cortical development (Maynard et al., 2003). As such, this syndrome provides a unique
window into gene-brain-behavior relationships.

While the majority of individuals diagnosed with this syndrome have a similar 3 Megabase
(Mb) deletion, encompassing ≈60 identified genes, an estimated 8–10% of cases have
smaller (approximately 1.5 Mb) deletions, a region that includes up to 35 identified genes
(Drew et al., 2011; Edelmann et al., 1999) (see Fig. 1). Importantly, the smaller and less
common deletion seems to contain all of the genes necessary for development of the
syndrome (Carlson et al., 1997), and the increased risk of psychosis (Drew et al., 2011;
Karayiorgou et al., 1995). Accordingly, this review will focus on the genes implicated in this
1.5 Mb Critical Region, in the context of a unifying theoretical framework from which to
understand the biological mechanisms underlying psychotic symptom development in this
syndrome. We first review the developmental trajectory of psychopathology in 22qDS,
findings on neurocognitive dysfunction and its ostensible similarities to the cognitive
phenotype of schizophrenia, and then discuss the structural and functional neuroanatomic
alterations that are characteristic of the disorder. Finally, we highlight recent findings from
animal models of the 22q11.2 deletion, which inform our understanding of specific genetic
mechanisms relevant to the development of psychosis, via their structural and functional
consequences and their overall impact on brain systems involved in motivation, attentional
and memory processes.

2. Developmental trajectory of 22qDS-associated psychopathology
While psychotic symptoms usually evolve during adolescence or early adulthood, non-
psychotic psychiatric disorders and behavioral abnormalities are present from early
childhood in 22qDS, some of which may be premorbid indicators of psychosis susceptibility
(Gothelf et al., 2007a). In particular, 14–50% meet autistic spectrum criteria (Antshel et al.,
2007; Fine et al., 2005; Niklasson et al., 2001; Vorstman et al., 2006), and attention deficit
hyperactivity disorder (ADHD) is diagnosed in 35–55% of children and adolescents with the
deletion (Antshel et al., 2005b; Gothelf et al., 2007b; Niklasson et al., 2001). In addition,
afflicted individuals exhibit an elevated rate of mood and anxiety disorders (Gothelf et al.,
2008; Green et al., 2009). Indeed, in two large cohorts from Israel and Western Europe,
Green et al. (2009) found that psychopathology in 22qDS patients appeared to follow a
developmental pattern, with high rates of ADHD in early childhood, and substantially
increasing rates of mood and psychotic disorder in adolescence and young adulthood. The
spectrum of psychopathology associated with this syndrome, spanning a range of DSM-IV
diagnostic categories, suggest a model of genetic pleiotropy, in which the same genetic
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variant can influence multiple phenotypes. Such findings also suggest that schizophrenia and
other neuropsychiatric disorders may share overlapping biological pathways (Sebat et al.,
2009).

3. Neurocognition
22qDS is characterized by a diverse assortment of neurocognitive deficits, ranging from
overall reduced IQ, to abnormal results on assays of more specific endophenotypes such as
prepulse inhibition (Kiley-Brabeck and Sobin, 2006; Sobin et al., 2005a, 2005b; Vorstman
et al., 2009a; Vorstman et al., 2009b) tasks of spatial and attention-switching (Simon et al.,
2005a; Sobin et al., 2006), and time perception (Drew et al., 2011). Although 22qDS
patients have lower Full Scale IQ relative to typically developing children, verbal skills tend
to be better preserved than non-verbal skills on both IQ and academic achievement measures
in children with 22qDS (Bearden et al., 2001b; Moss et al., 1999; Swillen et al., 1999).
22qDS patients show a characteristic neurocognitive profile involving marked deficit in
visuo-spatial cognition and memory, with corresponding difficulties with arithmetic
(Bearden et al., 2001b; Simon et al., 2005b). A key question is whether intermediate
cognitive traits characteristic of idiopathic schizophrenia are also characteristic of 22qDS.
While few studies have directly compared these patient groups, two studies to date have
directly compared neurocognition in adults with 22qDS with and without psychosis. The
most pronounced differences were seen on tests of abstraction, social cognition, spatial
working memory, motor skills and verbal learning, with poorer performance in the 22qDS-
schizophrenia subjects, supporting the view that the 22qDS subtype of schizophrenia shares
general characteristics of cognitive expression with idiopathic schizophrenia (Chow et al.,
2006; van Amelsvoort et al., 2004). Moreover, Lajiness-O’Neil (2006) found Wisconsin
Card Sort Test performance was significantly inversely correlated with the Thought
Problems subscale of the Child Behavior Checklist (CBCL) in 22qDS children, suggesting
that executive dysfunction may be an indicator of risk for later-onset psychopathology. This
notion is consistent with the literature on youth with a family history of psychosis, which
indicates that executive function deficits may be a vulnerability marker for psychosis (Byrne
et al., 2003; Davalos et al., 2004; Whyte et al., 2006).

The study of social cognition is also considered to be a high-priority target in current
research in schizophrenia (Green et al., 2008). Social cognition refers to the ability to make
accurate judgments about the emotional states of others, infer others’ intentions, and
understand assumptions about relationships between people. Patients with idiopathic
schizophrenia show marked deficits in all of these domains (Bora et al., 2009; Fakra et al.,
2008; Kohler et al., 2010) and several studies have shown that social cognition mediates the
relationship between neurocognition and real world functioning (Brekke et al., 2005; Sergi
et al., 2007). Although social impairment has been consistently identified via parental report
in 22qDS individuals (Kiley-Brabeck and Sobin, 2006; Swillen et al., 1997; Woodin et al.,
2001), the literature on 22qDS and social cognition currently offers only preliminary
findings. On an emotion identification task, adolescents with 22qDS displayed significant
impairment in detecting anger, fear, and disgust in comparison to healthy controls, but their
ability to recognize happy, neutral, and surprised facial expressions was preserved
(Campbell et al., 2010) Furthermore, a comparison of visual scan-path strategies in 22qDS
youth and healthy controls has shown that, in addition to impaired ability to interpret facial
cues, 22qDS individuals fail to alter scanning strategies when switching from a non-facial
identification task to a facial one (McCabe et al., 2011). This study provides further
evidence that a characteristic cognitive inflexibility may contribute to some degree to the
social cognition deficits observed in this population. Another study examining Theory of
Mind (ToM) –which refers to the ability to comprehend the intentions of others (Frith and
Corcoran, 1996) –found that 22qDS individuals exhibit ToM deficits when compared to
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individuals with another neurogenetic disorder, Williams syndrome, indicating that the
observed deficits were not attributable to non-specific effects of having a genetic syndrome
and/or lower IQ (Campbell et al., 2009). More recently, Campbell et al. (2011) found that, in
comparison to typically developing siblings, 22qDS youth (ages 6–16 years) exhibited
significant impairments on both emotion identification and cognitive ToM tasks.
Additionally, these authors found that in 22qDS, performance on ToM tasks corresponded to
increasing age, providing evidence that development is a crucial factor to consider when
conducting future studies. Furthermore, Campbell et al. (2011) also found that social
competence in 22qDS was significantly related to performance on cognitive ToM tasks,
suggesting that social cognitive deficits may be a useful target in developing future
interventions to remediate the social dysfunction seen in 22qDS. 22qDS adults with a
diagnosis of schizophrenia also show impairments in ToM, in comparison to non-psychotic
22qDS individuals (Chow et al., 2006), suggesting a similar pattern of social cognitive
deficit to that observed in idiopathic schizophrenia. Finally, considering that greater social
impairment has been shown to contribute uniquely to the prediction of psychosis in
clinically at-risk adolescents and young adults (Cannon et al., 2008), social cognitive
measures may account for observed variability in psychotic symptoms not captured by
traditional neurocognitive measures in both 22qDS and those with idiopathic schizophrenia.

Although few studies have examined longitudinal changes in cognition over time in 22qDS,
results to date are surprisingly consistent. Gothelf et al. (2007a) first reported, in a small
longitudinal study, that lower verbal IQ (VIQ) at baseline –and decline in VIQ over a 5-year
follow-up period –was associated with psychotic symptom severity at follow-up. Kates et al.
(2011) also recently reported that verbal IQ decline, in conjunction with temporal lobe gray
matter loss, uniquely predicted the development of positive prodromal symptoms of
psychosis in adolescence, in a larger cohort of 72 22qDS youth. In line with these findings
within the 22qDS population, a study of non-22qDS but clinically-ascertained high-risk
youth identified verbal memory as a significant predictor of psychosis outcome (Seidman et
al., 2010). In summary, these findings suggest a characteristic neurocognitive profile of
22qDS patients overall, which only partially overlaps with that observed in idiopathic
schizophrenia. Importantly however, neurocognitive deficits in the same domains as those
observed in idiopathic schizophrenia (i.e., working memory/executive function, and social
cognition) appear to be relevant to the development of psychotic symptomatology within
22qDS patients. Additionally, longitudinal findings indicating cognitive decline over time in
specific domains suggest that measures of change over time may have greater predictive
accuracy than those obtained at a single time point. These findings are consistent with those
of epidemiologic studies of schizophrenia risk in the general population, which have
observed that a combination of static and dynamic cognitive deficits across childhood and
early adolescence is characteristic of individuals who subsequently develop schizophrenia
(Reichenberg et al., 2010).

3.1. Structural neuroanatomy and evidence for altered neurodevelopment
Several studies over the past decade have attempted to morphologically characterize
neuroanatomic alterations in 22qDS. Recently, a meta-analysis of 22 human structural
neuroimaging studies confirmed and consolidated reports of widespread decreases in brain
volume in 22qDS patients compared to healthy controls, from gross measures of total brain
volume and cortical regions within the frontal, parietal, occipital and temporal lobes, to
subcortical structures such as the hippocampus and cerebellum (Tan et al., 2009).
Interestingly, this meta-analysis also noted that the magnitude of effect sizes reported tended
to increase as one moved from the frontal toward occipital regions of the brain, lending
further credence to the theory of a “rostro-caudal gradient” of volume reduction in 22qDS
(Gothelf et al., 2008). Although these finding are intriguing, as they suggest a pattern of
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developmental disruption along the anterior–posterior axis, most of the studies included in
the meta-analysis focused on children, and so the extent to which this pattern continues to be
characteristic of adult 22qDS patients is not clear.

The literature describing the structural correlates of 22qDS reveals some important areas of
overlap with neuroanatomic anomalies observed in idiopathic schizophrenia, suggesting that
common cerebral alterations may lead to cognitive dysfunction and psychotic symptom
development in 22qDS patients. In particular, prior studies using both traditional volumetric
approaches and voxel-based morphometry show that developmental midline anomalies –
frequently reported to be presented at elevated rates in patients with schizophrenia (Kwon et
al., 1998; Nopoulos et al., 1997) –are also frequent in 22qDS, including callosal
dysmorphology (Antshel et al., 2005a; Machado et al., 2007; Shashi et al., 2004), cerebellar
volume reduction (Bish et al., 2006; Eliez et al., 2001b), and increased prevalence of cavum
septum pellucidum (Chow et al., 2002; van Amelsvoort et al., 2001).

Few studies to date have examined neuroanatomic differences between psychotic and non-
psychotic individuals with 22qDS; nevertheless, available evidence suggests that subjects
with 22qDS and psychosis demonstrate morphologic abnormalities similar to those
commonly observed in idiopathic schizophrenia, including reduced overall brain volume,
particularly white matter, reduced frontal and temporal gray matter volume, and increased
ventricular volume (Chow et al., 1999, 2002; van Amelsvoort et al., 2004).

Although younger children with 22qDS are unlikely to manifest overt psychotic disorder,
quantitative indices of psychopathology may be related to differences in brain development
in 22qDS. Using a continuous measure, the CBCL, Bearden et al. (2004) found that reduced
temporal gray matter was associated with severity of Thought Problems in non-psychotic
youth with 22qDS. Consistent with this, Campbell et al. (2006) found that severity of
schizotypy score was correlated with gray matter density in temporo-occipital regions and
the basal ganglia in children with 22qDS. This study also found that emotional and social
problems were associated with gray matter concentration in fronto-striatal regions.

The cingulate gyrus may be critically involved in both executive dysfunction and the
expression of positive symptoms in patients with psychosis. Gray matter deficits in the
anterior cingulate gyrus of 22qDS patients have been observed, and reported to be correlated
with poorer executive functioning and increased psychotic symptoms (Dufour et al., 2008).
These data are consistent with findings from our group of marked cortical thinning in the
anterior cingulate and subgenual prefrontal cortex in 22qDS patients relative to healthy
controls (Devinsky et al., 1995; Drevets et al., 1998; Pardo et al., 1990). Notably, a recent
longitudinal study of patients with idiopathic first episode psychosis found both baseline
differences and progressive changes over 1.5 years, in which schizophrenia patients showed
significantly reduced cingulate gray matter vs. healthy controls, with progressive gray matter
loss in the cingulate over time, of greatest magnitude in anterior subregions, including the
subgenual cingulate (Koo et al., 2008). Baseline anterior cingulate volume differences also
predicted time to psychosis onset in a clinical high-risk sample, independent of clinical
symptomatology (Fornito et al., 2008), suggesting that structural alterations of the cingulate
gyrus may be particularly relevant to psychotic symptom development. Moreover, findings
of alterations in both shape and volume of the fusiform gyrus, a cortical area known to be
essential for facial emotion identification, lend additional support to emerging evidence for
social cognition deficits in 22qDS (Glaser et al., 2007).

Reductions in temporal regions, particularly the hippocampus (Debbane et al., 2006; Eliez et
al., 2001a) and superior temporal gyrus (Eliez et al., 2001a) have also been reported in
22qDS. Given that similar findings of alteration in medial temporal structures have been
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reported in individuals with schizophrenia (Jacobsen et al., 1998; Narr et al., 2001, 2002;
Schreiber et al., 1999) and those at-risk for the disorder (Lawrie et al., 2002; van Erp et al.,
2004), medial temporal anomalies may represent a vulnerability marker for psychosis in
22qDS patients (Kates et al., 2006).

3.2. Developmental brain changes in 22qDS
Normal brain maturation takes place last in the frontal regions during adolescence, and is
accompanied by both increased synaptic pruning and myelination, leading to a reduction of
gray matter volume and a corresponding increase in white matter (Giedd et al., 1999; Sowell
et al., 1999; Sowell et al., 2004; Toga et al., 2006). Cortical thinning –observed via MRI
scans –likely represents normal pruning of gray matter neuropil, associated with increased
cognitive efficiency with increasing age (Johnson and Munakata, 2005). Frontal brain
structures appear relatively preserved in children with 22qDS (Eliez et al., 2000; Kates et al.,
2001; Simon et al., 2005a) but substantially reduced in adulthood (van Amelsvoort et al.,
2001), suggesting abnormal pruning and maturational processes. Consistent with this notion,
we found differential age-associated cortical thinning in adolescent 22qDS patients (Bearden
et al., 2009) and, in a longitudinal study, Gothelf et al. (2007a) observed an abnormal
developmental trajectory in 22qDS patients overall, involving greater longitudinal increases
in white matter, and volumes of the superior temporal gyrus and caudate nucleus, but a
differential decrease in amygdala volume, relative to healthy controls (Bearden et al., 2009;
Gothelf et al., 2007c).

In a larger longitudinal study Schaer et al. (2009) found that preadolescent 22qDS patients
showed increased prefrontal cortical thickness relative to age-matched typically developing
controls. However, over a 3-year follow up period, age-related cortical thinning was more
pronounced in 22qDS patients. This trend of delayed thinning in pre-adolescence, leading to
an increased rate of thinning during and after the teenage years, is suggestive of a
differential developmental trajectory that may derive from aberrant neuronal migration or
disruption in the mechanisms of synaptic pruning. This implicates one or several of the
deleted genes (see Fig. 1) in such processes, and provides a plausible substrate by which the
clinical symptoms of 22qDS and predisposition to psychosis may arise (Fig. 2).

Two recent studies suggest a specific association between volumetric reductions in temporal
lobe gray matter and prodromal/psychotic symptoms in 22qDS (Chowet al., 2011; Kates et
al., 2011). In particular, Kates et al. (2011) reported that, while progressive volume loss in
multiple brain regions was associated with a general increase in symptom severity over a 3-
year follow-up period, only decrements in temporal lobe gray matter and verbal IQ were
uniquely predictive of increased severity of positive psychotic-like symptoms. Using a
receiver operating characteristic (ROC) analysis to determine the accuracy with which
subthreshold psychotic symptoms could be predicted by neuroanatomic changes, they found
that this classification strategy could accurately identify a 22qDS patient with prodromal
psychotic symptoms 86% of the time. This analysis presents a novel approach to looking at
predictive accuracy of neuroanatomic markers in the context of this disease model, in which
it may be possible to identify larger effects due to reduced heterogeneity (Jalbrzikowski and
Bearden, 2011). Further corroborating these findings, Chow et al. (2011) directly compared
brain structures of adults with 22qDS with and without schizophrenia, finding that the
expression of schizophrenia in adults with 22qDS is associated with a selective reduction in
gray matter in the superior temporal gyrus (STG; Chow et al., 2011). Taken together, these
findings suggest that temporal gray matter loss in adolescence may remain a stable and
distinguishing characteristic associated with the expression of psychosis in 22qDS. These
findings are particularly interesting, given their remarkable convergence with the extant
literature on youth with clinical symptoms indicating high risk for developing psychosis
(e.g., Pantelis et al., 2003; Takahashi et al., 2009). Findings of selective STG gray matter
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loss have previously been observed in first-episode schizophrenia (but not in patients with
affective psychosis (Kasai et al., 2003)), and volume reduction of these regions, particularly
in the left hemisphere, is associated with auditory hallucinations and thought-disorder
severity (Shenton et al., 1992). Taken together, these results implicate disruption of temporal
regions in disease pathogenesis, and thus may serve as a valuable phenotype for identifying
increased psychosis risk in vulnerable individuals.

3.3. Structural connectivity and myelination defects in 22qDS
It has long been proposed that schizophrenia is a disorder of “dysconnectivity,” with
disruption of white matter integrity affecting developmental processes in the brain (Davis
and Haroutunian, 2003). White matter regions of the brain consist of myelin, a sheath that
insulates neurons. Because myelination of axons is necessary for efficient transmission of
information between brain areas, aberrations in white matter may reflect the absence of –or
poorly synchronized – “long distance” connectivity between brain areas Given that the
22q11.2 deletion region includes myelin-related genes (e.g., PIK4CA, RTN4R; Fournier et
al., 2001; Jungerius et al., 2008; Vorstman et al., 2009a; Vorstman et al., 2009b; Wang et al.,
2002), and white matter has been shown to be disproportionately affected in 22qDS (Kates
et al., 2004, 2001), examining white matter dysconnectivity in 22qDS may help us better
understand how these disturbances contribute to the pathophysiology of schizophrenia.

Diffusion tensor imaging (DTI) is a powerful tool for examining white matter microstructure
and coherence in vivo, by measuring the diffusion of water molecules within axons. The
degree of fractional anisotropy (FA) in a voxel indicates the directionality and density of the
fiber tracts, and can be viewed as a proxy for white matter or myelin integrity (Basser, 1995)
(see Glossary, Table 1 and Fig. 3). FA is higher in heavily myelinated fiber tracts, and
increases with progressive myelination during development (Beaulieu, 2002).

Previous research using DTI in 22qDS suggests that disruption of white matter integrity may
be due to reduced FA in widespread brain regions. In a cross sectional study of individuals
ranging from 7 to 21 years old (n =19), Barnea-Goraly (2003) found reductions in the
superior longitudinal fasciculus (SLF), which connects the parietal lobe to the frontal lobes,
and the inferior longitudinal fasciculus (ILF), which connects the occipital and temporal
lobes; however, FA was increased in 22qDS patients relative to controls in regions spanning
the corpus callosum. Consistent with this, our group also found altered callosal morphology,
concomitant with increased FA in midline brain regions in 7–14 year old children with
22qDS (Simon et al., 2005a). However, in another small sample of 22qDS youth (n =11,
ages 9–17 years), reduced FA was restricted to many regions of the left hemisphere: the
posterior thalamic radiations, the posterior limb of the internal capsule, the superior region
of the corona radiata, and in the arcuate fasciculus, which is often considered to be part of
the SLF (Sundramet al., 2010). Others have also found that, in comparison to age-matched
healthy controls, adults with 22qDS had reduced FA in bilateral pre- and post-central brain
regions, bilateral parahippocampal regions, and right superior frontal and parietal areas of
the brain (da Silva Alves et al., 2011a, 2011b). The variability in DTI findings across studies
may be due to the small sample sizes, differences in age ranges, diverse image processing
techniques, and divergent statistical methods. Thus, future studies examining DTI in 22qDS
should examine sub-groups of narrow age ranges, follow longitudinal brain changes over
time, and examine the data using multiple processing and statistical methods.

Studies have also identified relationships between FA and cognitive measures or clinical
symptomatology in 22qDS. Barnea-Goraly et al. (2005) found that better arithmetic
performance in children and adolescents with 22qDS was associated with higher FA in
parietal areas, brain regions critical for visuospatial cognition and arithmetic function. In
22qDS youth, increased schizotypy scores, which reflect an increased susceptibility for
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psychosis, were associated with decreased FA in the internal capsule and corpus callosum
(Sundram et al., 2010). More recently, increased psychotic symptom severity as assessed by
the Positive and Negative Symptom Scale (PANSS, Kay et al., 1987), was shown to be
correlated with reduced FA in multiple frontal, cingulate, and temporal regions in adults
with 22qDS (da Silva Alves et al., 2011a, 2011b). These findings provide preliminary
evidence that disruption of white matter integrity may underlie for cognitive deficits and
psychotic symptoms in 22qDS.

Higher FA is typically associated with better cognitive processing in healthy individuals
(Grieve et al., 2007). However, the same studies finding widespread FA reductions have also
found increased FA in localized regions when comparing individuals with 22qDS to age-
matched controls. For example, Barnea-Goraly (2003) found increased FA in 22qDS youth
in tracts connecting the splenium to the occipital lobe. Additionally increased FA relative to
controls has been observed in the anterior cingulate, in both children (Simon et al., 2005c)
and adults with 22qDS (da Silva Alves et al., 2011a, 2011b). These findings suggest that
aberrant white matter may also be reflected through increased FA and could be due to a
variety of factors, such as reduced dendritic branching, and/or smaller axonal diameter.
Neuropathological studies and/or studies in animal models are needed in order to determine
the underlying basis of the observed in vivo white matter alterations.

3.4. Human neurotransmitter studies
As disruptions in dopamine (DA) neurotransmission have long been reported to be
associated with the development of psychiatric disorders (Del Campo et al., 2011; Howes et
al., 2012) and genes within the 22q11.2 locus are involved in modulating DA levels
(Karayiorgou and Gogos, 2004), there is an intense interest in understanding the
contribution of DA dysregulation to the 22qDS psychiatric phenotype. Yet, few studies to
date have directly investigated this link, most of which have assessed the catechol-O-
methyltransferase (COMT) gene (see Glossary, Table 1) which is hemizygously deleted in
patients with 22qDS. This gene encodes for an enzyme that is responsible for dopamine
metabolism, particularly in the frontal cortex (Yavich et al., 2007), has been found to
strongly influence the brain and behavior.

A challenge study by Boot et al. (2008) was the first investigation of putative DA-ergic
dysfunction in 22qDS. This study demonstrated that individuals with 22qDS had higher
peripheral DA at baseline and lower concentrations of the primary DA metabolite
homovanillic acid (HVA) than controls. Following the DA challenge/depletion regimen,
22qDS subjects showed lower urine and plasma HVA levels and a reduced prolactin
response, suggesting that affected individuals have higher tonic dopaminergic activity,
ostensibly as a consequence of decreased dopamine metabolism due to COMT
haploinsufficiency. Moreover, the ratio of DA concentration to HVA concentration was
found to be significantly higher in 22qDS subjects at both baseline and following the
depletion regimen, and as this ratio is inversely related to the rate of DA turnover, it is
indicative of impaired DA metabolism in 22qDS.

To follow up on this intriguing evidence from peripheral and neuroendocrine indices of DA
function, Boot et al. next examined central DA disruption in neuroleptic-naïve 22qDS
patients using single photon emission computed tomography (SPECT) (see Glossary, Table
1), to compare striatal D2/3 Dopamine Receptor (D2/3R) availability, relative to healthy
controls. Contrary to their predictions, the authors found no evidence of statistically
significant difference in Binding Potential (BPND) (see Glossary, Table 1) between the two
groups when utilizing the common SPECT radiotracer [123I]IBZM (Boot et al., 2010).
While this would suggest that striatal DA function is not altered in 22qDS, it is important to
keep in mind that striatal D2/3R availability depends not only on endogenous DA levels, but
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also on receptor affinity, and neuroreceptor density. Accordingly, tonically high DA
concentrations and the resultant overstimulation of the receptors may have resulted in the
up-regulation of striatal D2/3R expression as a compensatory mechanism, which could
conceivably mask differences in BPND between 22qDS patients and healthy controls. In
addition, prolactin release is typically repressed by DA (Schlegel et al., 1996); this
relationship was observed in healthy controls, but was absent in individuals with 22qDS,
suggesting that dopaminergic dysregulation may also exist at another level in 22qDS,
perhaps pre-frontally or within the midbrain (Boot et al., 2010).

Interestingly, later work by the same group investigating the impact of the COMT
Val158Met polymorphism on striatal BPND in 22qDS patients only, found evidence of a
difference between 22qDS patients as a function of genotype, with Met hemizygotes
exhibiting significantly lower BPND than Val carriers, and presumably, higher levels of
synaptic DA (Boot et al., 2011). As the major mechanism of synaptic DA clearance within
the striatum is ostensibly via the Dopamine Transporter (DAT), rather than degradation by
COMT, haploinsufficiency of this particular gene may not play a key role in striatal DA
function, except in cases where polymorphisms such as this deleteriously affect the activity
of the single remaining allele. Functional variants such as the COMT Val158Met
polymorphism within the 22q11.2 locus could further assault the neural architecture
necessary for normal structural and functional development, conceivably contributing to
variability in dopaminergic neurotransmission, and in turn, the cognitive and
neuropsychiatric phenotype. Notably, case reports on the development of early onset
Parkinson’s Disease (which is characterized by reduced DA in the Substantia Nigra and
Striatum) in this population have recently emerged, further highlighting the complex but
integral involvement of the DA-ergic system in the phenotype of 22qDS (Booij et al., 2010;
Zaleski et al., 2009) Recent work utilizing Proton Magnetic Resonance Spectroscopy to
track metabolite concentrations in the brain has investigated the putative association
between glutamatergic dysfunction, the 22qDS phenotype and risk of psychosis. This study
offers new evidence of significant excesses of glutamate, the major excitatory
neurotransmitter in the brain, within the hippocampus of 22qDS patients with schizophrenia,
compared to those of healthy controls (da Silva Alves et al., 2011a, 2011b). Moreover,
hippocampal glutamate was significantly increased in 22qDS patients with a diagnosis of
schizophrenia compared to 22qDS patients without schizophrenia, suggesting that
glutamatergic dysfunction may play an integral role in the development of psychosis in this
population. Given the key involvement of the hippocampus in learning and memory
functions, increased hippocampal glutamate may also be related to the increased cognitive
impairment observed in 22qDS patients with schizophrenia. Overall, the picture that
emerges from these radioligand and neurotransmitter-oriented studies is, one of subtly
impaired function in the DA-ergic and glutamatergic systems, but the currently available
literature is inconclusive and far from complete; further research is clearly warranted to
better understand the full extent and mechanisms of this dysfunction.

4. A theoretical model of psychotic symptom development in 22qDS
Although the mechanisms underlying the development of psychotic symptoms in 22qDS are
not well understood at present, our working hypothesis is that a central component of the
neuropathology underlying emergence of these symptoms during adolescence is a process of
neuronal volume reduction, resulting in reduced cortical connectivity (Feinberg, 1982;
McGlashan and Hoffman, 2000; Selemon and Goldman-Rakic, 1999; Weinberger, 1987).
Fig. 3 presents a schematic diagram of several known genetic factors that contribute to
disturbances in brain function and may lead to behavioral alterations. The basic view
reflected in this model is of a life-long biological vulnerability (i.e., reduced synaptic
plasticity and connectivity), that results from haploinsufficiency for particular genes that are
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critical for primary brain development. This, when combined with subsequent alteration of
predetermined biological events (i.e., abnormal pruning and increased dopaminergic
innervation during adolescence), leads to a range of measurable changes in brain structure
(e.g., reductions in gray matter), endophenotypes (e.g., executive function deficits), clinical
symptoms and functional disturbances. A “two hit” theoretical view is proposed, in which
the first ‘hit’ results in reduced neuropil and disrupted white matter integrity during early
development (Cannon et al., 2003;Weinberger, 1987), and the second constitutes abnormally
aggressive synaptic pruning, possibly associated with dopaminergic changes in adolescence
(Feinberg, 1982).

Abnormal synaptic pruning is believed to be relevant to the development of psychotic
symptoms (Hoffman and McGlashan, 2001). This is supported by findings of reductions of
cortical synaptic density (Selemon and Goldman-Rakic, 1999) and decreases in gray matter
in schizophrenia patients (Cannon et al., 1998, 2002, 2003). Computer modeling has
demonstrated how abnormally thinned neuronal networks can generate symptoms
characteristic of psychosis (Hoffman and McGlashan, 2001; McGlashan and Hoffman,
2000). Although the causes of abnormal pruning are unknown, gene expression studies
suggest that the 22q11.2 microdeletion could lead to atypical neural maturation and
excessive synaptic pruning (Maynard et al., 2003; McGlashan and Hoffman, 2000).
Moreover, heightened dopaminergic neurotransmission during adolescence –likely
involving COMT haploinsufficiency, and possibly in combination with other genetic or
epigenetic factors –may contribute to this dysmaturational process (Boot et al., 2008).

As indicated by the model, brain dysmaturation, indexed by gray matter loss and white
matter disruption, results in brain dysfunction, as assessed by neurocognitive measures.
Excessive frontal gray matter loss during adolescence would, in turn, be expected to result in
cognitive declines over this time period, especially in executive control, working memory,
and attentional functions (Brewer et al., 2006). Deficits in these cognitive domains are also
observed in children and adolescents with 22qDS (Bearden et al., 2001a; Debbane et al.,
2006; Lewandowski et al., 2007; Simon et al., 2005a). Moreover, the severity of
abnormalities in these cognitive domains predict conversion to psychosis in youth with
clinical symptoms indicating a behaviorally defined psychosis risk syndrome (Pukrop et al.,
2006). Previous research also suggests that cognitive deficits contribute to the profoundly
impaired social functioning that characterizes psychosis, including during the prodromal
phase (Addington et al., 2007; Cornblatt et al., 1992). Impaired social functioning is a robust
predictor of subsequent psychosis (Cannon et al., 2008) as well as long term disability and
may be mediated by social cognitive deficits such as emotion perception, and theory of
mind. Thus, an evolving pattern of brain dysfunction is hypothesized to underlie a range of
emergent positive and negative prodromal or psychotic symptoms and functional difficulties
in 22qDS patients (Table 2).

5. Mouse models of 22qDS
Animal models provide an invaluable tool for understanding the pathophysiology of
complex neuropsychiatric disorders. Technological advances in the field have provided us
with the ability to recapitulate specific aspects of human disease in rodents, mainly by
means of targeted genetic modifications, such as introduction of specific mutations or
deletions of putatively causal genes. In the case of 22qDS, a complex disorder with variable
phenotypes caused by heterozygous loss of multiple genes, this tool has provided a way to
dissect several of the specific traits at the single gene level (Karayiorgou and Gogos, 2004).
Targeted deletions of single genes that span the syntenic mouse locus have allowed us to
determine which specific deficits might potentially arise from deficiencies in their
corresponding proteins. There have also been successful attempts to assess the impact of

Schreiner et al. Page 10

Neuropharmacology. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hemizygous deletion of multiple genes within the 1.5 Mb critical region in mice. Table 3
provides an overview of the results of these studies, and attempts to provide a distinction
between any human findings relevant to 22qDS and to idiopathic schizophrenia wherever
appropriate.

Here, we will concentrate on mouse model investigations of several of the individual genes
within this critical region for the mouse orthologs of COMT, PRODH, DGCR8, and
ZDHHC8, beginning with a discussion of the findings involving a full-microdeletion model,
the DF(16)A+/− mouse model. We will focus on the relevance of each of these models for
understanding neurotransmitter system abnormalities, pathophysiological correlates of
psychosis, and the biological pathways that increase risk of psychosis.

5.1. Full deletion models
Studies in DF(16)A+/− mice, the murine homolog of the 1.5 Mb human deletion, have
found compelling evidence for changes in neuronal cell properties that could potentially
underlie disease pathology in affected individuals, and have provided us with insights on
how clinical manifestations arise. On a broader scale, DF(16)A+/− mice recapitulate several
behavioral phenotypes observed in human microdeletion carriers, including deficits in
prepulse inhibition (an index of sensory processing abnormalities), learning, as well as
hyperactivity and anxiety (Stark et al., 2008). This model has also demonstrated reduced
prefrontal-hippocampal synchrony, analogous to the impaired functional connectivity
observed in 22qDS patients, which goes in hand with deficits in working memory
(Sigurdsson et al., 2010).

Furthermore, anatomical and physiological characterization of the DF(16)A knockout
identified morphological abnormalities in the dendritic arbors of hippocampal pyramidal
cells, including a reduction in the density and size of mushroom spines and an overall
“simplification of dendritic complexity/branching”, both in vitro and in vivo (Mukai et al.,
2008). It is known that changes in cell morphology, dendritic complexity, and spine density
have significant effects on the overall properties of neurons and circuits (Calabrese et al.,
2006; Henze et al., 1996). The 22q11.2 deletion could thus lead to alterations in excitatory
neurotransmission in the hippocampus, which can cause seizures and underlie the range of
cognitive defects observed in a subset of schizophrenic and 22qDS patients (Henze et al.,
1996; Raux et al., 2007). In addition, these changes could conceivably prevent proper
integration and relay of salient sensory information, reminiscent of the sensorimotor gating
deficits observed in individuals with or at risk of psychosis (Braff et al., 1992). A reduction
in neuronal complexity could also explain reductions in brain volume of 22qDS patients
(Gothelf et al., 2005b). Moreover, the DF(16)+/− model has demonstrated reduced
prefrontal-hippocampal neural synchrony, suggesting impaired functional connectivity
between these two regions, which may underlie the working memory deficits observed in
22qDS (Sigurdsson et al., 2010).

Interestingly, the morphological abnormalities observed in DF(16)A+/− primary cultured
neurons were reversed with transfection of ZDHHC8, a gene that is also found in the
22q11.2 critical region (Mukai et al., 2008). Thus, loss of ZDHHC8 may play a significant
role in altering neuronal morphologies that, on a larger scale, affect behavior (see below).
Overall, this evidence suggests a potential substrate by which aberrant neural networks in
human patients with 22qDS develop, mainly as a result of altered neural connections that
jeopardize the computational efficiency and information processing capacity of the brain.
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5.2. COMT and dopaminergic dysregulation
One of the more well-researched genes within the 22q11.2 locus is COMT (see Glossary,
Tables 1 and 3). Both human and mouse studies have found that COMT has sexually
dimorphic effects on brain function (Lewine et al., 1990; Tunbridge and Harrison, 2010).
COMT deficiency is believed to primarily affect behavior via decreased dopamine
metabolism, most notably in the frontal cortex, a brain region critical for higher-order
cognitive functions, including executive control and emotion regulation (Fig. 4) (Gogos et
al., 1998).

Studies in COMT-null mice have shown that alterations in COMT-mediated modulation of
dopaminergic neurotransmission in this region also lead to increased anxiety and aggressive
behaviors (Gogos et al., 1998). Moreover, dopamine metabolite overflow in the PFC has
been proposed to exacerbate the onset of psychotic symptoms and schizophrenia in 22qDS
patients, perhaps by making the region less responsive to other forms of neuro-modulation
and less able to process and filter newly-incoming sensory inputs (Blasi et al., 2010; Yavich
et al., 2007).

As previously discussed, the Val158Met polymorphism encodes for a less active COMT
enzyme, which results in decreased clearance of dopamine metabolites. This low activity
COMT genotype has also been associated with violent behavior in schizophrenia, suggesting
that an alteration in the dopaminergic system influences behavior and is a potential
therapeutic target (Lachman et al., 1998). Early work in COMT mouse knockouts
recapitulated this aggressive behavior, which also manifested in a sexually dimorphic
manner, being more pronounced in males (Gogos et al., 1998). Alternatively, the same study
found that COMT also modulates anxiety, most notably in females. This sexual dichotomy
in behavior could be due to the influence of sex hormones. Estrogen, for example, decreases
COMT activity and may exert protective effects against the development of psychosis in
females (Hafner et al., 1993; Harrison and Tunbridge, 2008).

Consistent with human studies Huotari et al. (2004) found that, in the COMT knockout
mouse, amphetamine administration increased DA metabolites (but not dopamine) in a way
that was inversely proportional to COMT dosage and, again, that this effect was more robust
in the cortex, as compared to striatum and hypothalamus. Sexually dimorphic effects were
also observed in these mice, as males were more affected than females in terms of increased
locomotion after D-amphetamine administration. This is also comparable with sex-specific
differences observed in 22qDS and schizophrenia, as studies have found sex-related
differences in behavior and brain anatomy in function of the COMT polymorphism. For
instance, Coman et al. (2010) found a gender-specific difference in emotional processing in
22qDS patients that was influenced by an interaction between sex and COMT genotype, as
female carriers of the Val allele and male carriers of the Met allele both showed increased
activation of inferior frontal regions when processing pleasant stimuli, whereas Met females
and Val males showed increased activation of limbic regions in response to unpleasant
stimuli. Thus, this differential regulation of region-specific activity could in turn predispose
certain individuals (e.g., male carriers of the Met allele) to develop psychiatric symptoms as
a result of decreased frontal regulation of limbic responses (Gothelf et al., 2005a, 2005b).

The COMT allele can also influence brain anatomy in a gender-specific manner, as Kates et
al. (2006) found a tendency for hemizygous Met allele females and hemizygous Val allele
males to have increased dorsal prefrontal volumes relative to Val hemizygous females and
Met hemizygous males, which exhibit larger orbital frontal volumes. Thus, while there is
some evidence that COMT genotype can modulate behavior, and brain structure and
function in a gender-specific manner, further work is needed to elucidate the precise causal
mechanisms underlying these relationships. It is also notable that factors other than sexual
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dimorphism could affect COMT activity, such as age and developmental stage (for further
discussion on this topic see Tunbridge and Harrison, 2010).

The above mentioned studies provide evidence that baseline dopamine metabolism is
reduced as a function of COMT gene activity and dosage. Since 22qDS patients only carry
one copy of the gene, this might predict that variation in the remaining allele could
predispose them to exacerbated effects of decreased dopamine metabolism and advance the
onset of psychosis. Accordingly, studies on 22q11.2 microdeletion carriers that contain the
low activity COMT allele have shown that these subjects exhibit a higher predisposition for
developing psychotic symptoms, along with a decrease in prefrontal cortical volume and
Verbal IQ and worsening clinical symptomatology, as measured by the Brief Psychiatric
Rating Scale (BPRS) (Gothelf et al., 2005a).

A possible mechanism by which this might occur comes from the work of Yavich et al.
(2007), who demonstrated that dopamine is removed two-fold slower in the prefrontal cortex
of COMT-deficient mice (as compared to wild-type controls), suggesting a dopamine
overflow in this region (Yavich et al., 2007). Such “overflow” could cause the region to
become less responsive to alternating neuromodulation and lead to difficulties processing
and filtering newly-incoming sensory information. This could consequently lead to
psychotic symptoms and thought disorder.

5.3. PRODH and the glutamate-dopamine theory of psychosis
The PRODH gene, also found within the 22q11.2 critical region, encodes for the proline
dehydrogenase enzyme, which is involved in the degradation of proline, an agonist of
glutamatergic receptors and potentiator of excitatory neurotransmission (Wang and
Brandriss, 1987; Henzi et al., 1992; Cohen and Nadler, 1997). Research on murine
knockouts of Prodh has shown that these mice have deficits in sensorimotor gating, as
compared to wild type animals (Gogos et al., 1999). In addition, Prodh null mutant mice also
presented decreased biosynthesis of glutamate, GABA, and aspartate, and these effects were
more pronounced in the frontal cortex (Table 3, Fig. 4) (Gogos et al., 1999). These studies
suggested that increased proline levels, resulting from decreased proline metabolism, can
adversely impact tonic neurotransmitter concentrations and may have a bearing on epilepsy,
mental retardation, and psychosis, perhaps by adversely modifying neural connections and
excitatory neuronal activity (Raux et al., 2007).

Along these lines, a considerable proportion of both patients with 22qDS and idiopathic
schizophrenia are hyperprolinemic (Goodman et al., 2000; Jacquet et al., 2005, 2002). It is
thus possible that altered proline metabolism, resulting from aberrant PRODH activity, can
change brain physiology and function, with detrimental effects on behavior. For example,
patients with 22qDS show deficits in cognitive functions that rely on frontal cortical
function, such as working memory and emotion regulation (Kiley-Brabeck and Sobin,
2006). Further evidence supporting the involvement of PRODH in idiopathic psychosis
comes from human linkage disequilibrium studies in family-based samples, which have
identified a schizophrenia susceptibility locus in the PRODH/Dgcr6 region (Liu et al.,
2002b). Further, the observation association was stronger among those with an early onset of
psychosis, suggesting that PRODH may be particularly relevant to early-onset forms of the
illness. This, taken together with the fact that proline metabolism disruption is more
pronounced in regions within or projecting to frontal cortex, suggests a mechanism for
psychosis predisposition and/or precipitation. This has led some investigators to speculate
that promoting a low-proline diet for at-risk individuals, in order to reduce overall proline
levels and protect against the putative neurotransmitter dysfunction intrinsic to the
syndrome, may be a potential approach for reducing psychosis risk (Jaksic et al., 1990).
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Another interesting perspective on mechanisms involved in the onset of psychosis derives
from animal models, which indicate that excess striatal dopaminergic activity may be driven
by dysfunctional glutamatergic transmission in the hippocampus (Lisman et al., 2008). This
relationship has led to the glutamate-dopamine theory of psychosis, which is supported by
evidence that the relationship between hippocampal glutamate and striatal dopamine
systems is disrupted in individuals at clinical high risk for psychosis, and that the degree of
disruption is related to increased risk of conversion to overt psychosis (Stone et al., 2010). In
individuals with 22qDS, Raux et al. (2007) showed that cognitive performance was
inversely correlated with plasma proline levels; further, hyperprolinemic 22qDS patients
carrying the COMT Met (low-activity) allele had a 2.8-fold increased risk for psychosis.
Interestingly, it is believed that decreased inhibition in the hippocampus, perhaps due to
NMDA receptor hypo-function, may result in increased glutamatergic inputs onto the
striatum and an increase in limbic dopaminergic neurotransmission, which can then
precipitate psychotic symptoms (Stone et al., 2010).

5.4. Evidence for epistatic interactions: COMT and PRODH
As mentioned above, hyperprolinemic 22qDS patients are at increased risk for psychosis if
they carry the Met allele of the COMT gene (Raux et al., 2007). Evidence from gene
expression profiling of brain tissue taken from PRODH knockout (KO) mice indicates that
increased proline levels induce COMT overexpression in the frontal cortex, perhaps as a
feedback mechanism to increase dopaminergic transmission (Paterlini et al., 2005). The fact
that 22q11.2 microdeletion deletion carriers lack one copy of both PRODH and COMT
suggests that they are unable to compensate for loss of PRODH (and the subsequent increase
in proline levels) by means of COMT upregulation. In fact, it has been shown that 22qDS
patients with the Met allele are more likely to have elevated serum proline levels and
perform poorly on smooth pursuit eyemovement (SPEM) tasks (Vorstman et al., 2009a;
Vorstman et al., 2009b).

PRODH KO mice are also less sensitive to NMDA blockade, perhaps due to higher tonic
glutamate concentration or because of congenital desensitization (Paterlini et al., 2005). In
addition, they exhibit learning deficits, and are more sensitive to amphetamines, which is
also the case for patients with schizophrenia (Breier et al., 1997). These features should be
taken into consideration when therapeutically targeting specific neurotransmitter systems.
Thus, it is possible that the PRODH-COMT interaction modulates the penetrance of
psychiatric features in 22qDS patients.

5.5. ZDHHC8 – role in neural cell morphology and synaptic transmission
The zinc finger domain-containing protein (ZDHHC8) gene putatively encodes for a
palmitoyltransferase enzyme, which is highly expressed in the brain and is responsible for
palmotylation of proteins (see Glossary, Table 1). It has been shown to play an important
role in regulating nervous system development, dendritic morphology, spine density,
synaptic proteins, and glutamatergic neurotransmission (el-Husseini Ael and Bredt, 2002).
Previous associations have been reported between with ZDHHC8-truncating variants and
schizophrenia in the general population (Liu et al., 2002a).

Notably, both Zdhhc8+/− and Zdhhc8−/− mice reproduce aberrant neural cell morphology
and synaptic abnormalities observed in DF(16)A+/− mice, as well as many of the behavioral
phenotypes observed in 22qDS patients (Mukai et al., 2008). In particular, these mice show
a decreased density of dendritic spines and glutamatergic synapses in primary hippocampal
neurons, as well as impaired dendritic growth (Fig. 4). These deficits were reversed by re-
introduction of enzymatically active ZDHHC8 protein, a putative palmitoyltransferase
encoded by a gene in the 22q11.2 locus, and were also observed in primary cultures from
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Zdhhc8-deficient mice. Also, a detailed assessment of the molecular effect of ZDHHC8
deficiency found that it causes a reduction of PSD95 staining, an important synaptic protein
that modulates spine and dendrite morphology. These structural and functional changes
represent possible predisposing factors to the psychiatric and cognitive symptoms associated
with the 22q11.2 microdeletion, and further suggest that impaired neuronal protein
palmitoylation may contribute to these deficits.

5.6. Other models of interest
Recent findings have generated intense interest on the role of molecules that regulate gene
expression changes in the nervous system and their role on disease. Such is the role of micro
RNAs (miRNAs), non-coding RNA segments that are about 22 bp in length, that bind to
untranslated mRNA transcripts and play a role in inhibiting or promoting their expression
(Ambros, 2004) (see Glossary, Table 1). Work done by Stark et al. (2008) on the full-length
knockout of the mouse “critical region,” (Df(16)A+/− mice), revealed that these animals
have upregulated miRNA expression in the brain. Further sequence characterization of these
molecules confirmed that, in fact, many of these miRNAs were in fact pri-miRNAs, a
premature and –to some extent –less active form of miRNAs (Stark et al., 2008). Not
surprisingly, Dgcr8, a gene that is also knocked out in the critical region, encodes for a
miRNA processing molecule (see Glossary, Table 1, Fig. 4).

Characterization of the Dgcr8 +/− mouse shows that haploinsufficiency of this sole gene
leads to altered miRNA expression, just as in the full-length knockout. In addition, this
model recapitulates some of the behavioral deficits observed in Df(16)A+/−, such as
decreased dendritic complexity, which might influence functional connectivity, and could
play a role in the emergence of restrictive/repetitive behavior and reported deficits in PPI.
Another study showed that the knockout has a decreased number of cortical neurons along
with white matter abnormalities, and that the animals exhibit a deficit in synaptic
potentiation and short-term plasticity (Fenelon et al., 2011), which could explain the deficits
in learning and memory observed in 22qDS individuals.

These findings have opened a new window into the understanding of gene dynamics and
their role in modulating psychiatric disorders. Recent work by Moreau et al. has showed that
there is indeed a dysregulation of miRNAs in post-mortem brain tissue of individuals with a
diagnosis of schizophrenia, as well as those with bipolar disorder (Moreau et al., 2011). It
would be interesting to assess miRNA expression changes in 22qDS patients, which may be
related to increased risk for psychosis. Any interruption or change in the orchestration of
gene expression, such as that mediated by miRNAs, could potentially lead to altered cellular
function, aberrant network properties, and changes in systemic functions, which could also
contribute to the phenotypic variability of psychiatric disease. Future research should be
driven toward understanding these changes, in conjunction with their effect on dynamics of
neurotransmission, brain function, and behavior.

6. Future directions and conclusions
A consistent picture is emerging regarding the neurobehavioral phenotype of the 22q11.2
Deletion Syndrome. Nevertheless, much work remains to be done to fill the gaps in
knowledge regarding the functional correlates and the precise mechanisms by which each of
the deleted genes contributes to the overall 22qDS phenotype. Future research should
endeavor to bridge these existing gaps with multidisciplinary and cutting edge approaches to
the disease, from the molecular level up to the functional. The development of conditional
knockout mouse models, in which the investigators can control the precise timing and/or cell
type for which a gene of interest is silenced, offers great potential as a technique for
elucidating the molecular underpinnings of 22qDS-associated psychosis. Additionally, the
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integrity of neuronal network and microcircuit activity can be further assessed via 2-photon
microscopy; alterations in brain synchronization have been revealed using these methods in
mouse models of psychiatric disorders (Penagarikano et al., 2011). Future radioligand-based
studies utilizing techniques like PET and SPECT, should endeavor to explore dysfunction in
the Glutamatergic and GABA-ergic systems, in addition to DA-ergic neurotransmission, in
both animal models and human patients with 22qDS. Functional MRI data, obtained both
during and in the absence of an overt cognitive task (i.e., Resting State fMRI) will prove
essential in unraveling the functional consequences of the 22qDS-specific structural and
neurofunctional abnormalities, and will create the foundation for future work on brain–
behavior relationships in 22qDS. In addition, there is a clear need for large-scale,
prospective longitudinal studies, paralleling those of behaviorally defined clinical high risk
studies (Cannon et al., 2008; Seidman et al., 2010), in order to determine neurobiological
and clinical risk factors for psychosis in the context of this syndrome. This is the first step in
developing targeted interventions that can be applied early in the course of illness, leading to
exponentially improved outcomes (McGorry et al., 2002). Eventually, through rigorous
investigation and informed experiments, research on 22qDS can serve as a model for how a
well-characterized genetic anomaly can lead to a cascade of abnormal neurodevelopmental
processes, which disrupt brain structure and function, and manifest as early disturbances of
emotion, cognition, and behavior. Collectively, the translational evidence reviewed here
offers a powerful example of how this line of inquiry can provide clues into the biological
mechanisms underlying development of psychotic illness in the broader population.
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Fig. 1.
The del22q11.2 region on chromosome 22, with genes of interest marked by red arrows.
Purple blocks represent low-copy repeats (LCRs) which are believed to mediate the
common 3 Mb deletion. The common 3 Mb typically deleted region (TDR), present in over
85% of 22qDS patients and the 1.5-Mb deletion are shown.
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Fig. 2.
Framework mapping commonly studied measures (boxes) onto the underlying theoretical
constructs (shaded circles), with arrows connecting hypothesized genes to relevant
neurodevelopmental disturbances. GM = Gray Matter; WM = White Matter; FA =Fractional
Anisotropy.
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Fig. 3.
Diffusion tensor imaging (DTI) uses the movement of water to measure white matter tracts
in the brain. Left figure displays individual subject data, with color indicating fiber
orientation. Right panel is an example of an average fractional anisotropy (FA) image, with
tracts common to all participants shown in red and yellow.
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Fig. 4.
Schematic depiction of molecular, cellular, anatomical, and behavioral alterations that result
from deficiencies in five genes within the 22q11.2 locus: COMT, PRODH, ZDHHC8,
DGCR8 and PIK4A. Evidence from mouse models shows that deficient COMT activity
results in slower dopamine (DA) metabolism and altered dopaminergic neurotransmission in
the prefrontal cortex (PFC) (Gogos et al., 1998; Yavich et al., 2007), which also correlates
with decreased prolactin levels in plasma (Boot et al., 2010); reduced Prodh activity leads to
proline accumulation and increased glutamatergic neurotransmission in the hippocampus,
which can also cause dopaminergic overflow in PFC (Paterlini et al., 2005); deficiency in
ZDHHC8 activity decreases palmitoylation of synaptic protein (Mukai et al., 2008), and
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altered Dgcr8 activity leads to pri-miRNA overexpression (Stark et al., 2008; Fenelon et al.,
2011), both affecting the integrity of dendrites and spines. These changes in molecular
processes and cell morphology potentially impact brain stability at many levels, resulting in
changes in neuronal connectivity and aberrant cortical development (Schaer et al., 2009;
Bearden et al., 2007, 2009; Barnea-Goraly, 2003; Gothelf et al., 2007d). This ultimately
leads to an array of behavioral phenotypes that increase susceptibility to psychosis (e.g.,
Gothelf et al., 2007a, 2007b, 2007c; Chow et al., 2006; Baker and Skuse, 2005; Bearden et
al., 2005; Paterlini et al., 2005).
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Table 1

Glossary of commonly used terms and associated abbreviations referred to throughout this manuscript.

Binding Potential (BP, BPND) – A commonly reported measure of receptor occupancy from radio-ligand based studies. Assuming the affinity
of the radio-ligand for the receptor of interest is significant, a high BP signifies the presence of many unoccupied receptors, while in contrast, a
low BP is indicative of less receptor occupancy, ostensibly due to competition at the receptor due to high concentrations of endogenous
neurotransmitters

Catechol-O-methyltransferase (COMT, Comt) – A hemizygously deleted gene within the 1.5 Mb critical region of 22qDS that codes for a
critical enzyme involved in catecholamine breakdown, such as dopamine and norepinephrine. COMT-dependent dopamine degradation is
particularly relevant in brain regions with low expression of the presynaptic dopamine transporter (DAT), such as the prefrontal cortex. A
common functional polymorphism within this gene, Val158Met, results in a roughly four-fold decrease in enzyme activity in the Met variant,
and hence, higher extrasynaptic DA levels.

Diffusion Tensor Imaging (DTI) – A magnetic resonance imaging (MRI) technique that maps the passive diffusion of water to quantify white
matter microstructure and connectivity across brain regions.

DiGeorge Syndrome Critical Region 8 (DGCR8, Dgcr8) – A gene from the 1.5 Mb critical deleted region of chromosome 22q11.2, DGCR8
encodes a crucial component of a complex involved in miRNA processing, which in turn is responsible for modulating gene expression in vivo.

Fractional Anisotropy (FA) – a measure of white matter integrity with values ranging from 0 to 1; a value of zero means that the diffusion is
isotropic i.e., that the diffusion occurs in all directions equally and there are no barriers, while barriers to diffusion (e.g., axonal tracts) cause
greater diffusion in one direction, resulting in anisotropic diffusion. Higher levels of fractional anisotropy are most often associated with greater
the coherence of the white matter tracts.

Magnetic Resonance Imaging (MRI) – A non-invasive neuroimaging modality that enables in vivo examinations of brain structure and
function in humans and animals.

MicroRNA (miRNA) – a short ribonucleic acid (RNA) molecule found in eukaryotic cells, with a very small number of nucleotides relative to
other RNAs. miRNAs are part of the cellular machinery for regulating gene expression/transcription.

Phosphatidylinositol 4-kinase, catalytic, alpha (PIK4CA, PI4KA, pik4ca) – A gene located within the 3 Mb region of 22q11.2, but outside
of the 1.5 Mb critical region, that encodes for an enzyme involved in the phosphatidylinositol pathway, and hence, the regulation of intracellular
calcium levels, synaptic transmission, exocytosis and vesicle trafficking.

Proline dehydrogenase (PRODH, Prodh) – A hemizygously deleted gene located at cytogenetic band 22q11.21, within the 1.5 Mb critical
region, that codes for an enzyme essential for the breakdown of proline, an amino acid that can act as a putative neuromodulator through
multiple pathways.

Single Photon Emission Computed Tomography (SPECT) – A versatile nuclear medicine imaging technique that utilizes radioisotopes
incorporated into ligands of interest to capture information about the function of the brain. Depending on the choice of radio-ligand, SPECT can
map cerebral blood flow, obtain a measure of receptor availability or localize tissues of interest/tumors.

Zinc Finger, DHHC-Type Containing 8 (ZDHHC8) – A palmitoyl-transferase protein produced by a gene from the deleted region, also
located at 22q11.21 within the 1.5 Mb critical region.
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