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SUMMARY
The genetics of complex disease produce alterations in the molecular interactions of cellular
pathways whose collective effect may become clear through the organized structure of molecular
networks. To characterize molecular systems associated with late-onset Alzheimer’s disease
(LOAD), we constructed gene regulatory networks in 1647 post-mortem brain tissues from LOAD
patients and non-demented subjects, and demonstrate that LOAD reconfigures specific portions of
the molecular interaction structure. Through an integrative network-based approach, we rank-
ordered these network structures for relevance to LOAD pathology, highlighting an immune and
microglia-specific module dominated by genes involved in pathogen phagocytosis, containing
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TYROBP as a key regulator and up-regulated in LOAD. Mouse microglia cells over-expressing
intact or truncated TYROBP revealed expression changes that significantly overlapped the human
brain TYROBP network. Thus the causal network structure is a useful predictor of response to
gene perturbations and presents a novel framework to test models of disease mechanisms
underlying LOAD.

INTRODUCTION
Complex diseases such as late-onset Alzheimer’s disease (LOAD) arise from the
downstream interplay of DNA sequence variants and non-genetic factors that act through
molecular networks to confer disease risk (Schadt, 2009). Despite decades of intensive
research, the causal chain of mechanisms behind LOAD remains elusive. In fact, there are
no effective disease modifying or preventive therapies and the only available treatment
remains symptomatic; meanwhile the incidence of LOAD is expected to double by 2050
(Brookmeyer et al., 2007). Progress in LOAD research is fundamentally limited by our
reliance on mouse models of severe familial/early-onset Alzheimer’s disease: therefore our
primary knowledge of LOAD is in actuality based on the downstream effects of three rare
mutations in APP, PSEN1 and PSEN2 (Bertram et al., 2010). While such mouse models are
necessary and helpful, the cognitive deficits in these transgenic mice are less severe than
those in humans and they do not exhibit equivalent neurodegeneration, which is the most
accurate clinical marker of cognitive disease progression in humans. Correspondingly,
attrition rates from early discovery to late drug development have been very high (Schafer
and Kolkhof, 2008).

In contrast to the plethora of potential disease mechanisms detected in humans with LOAD,
the search for LOAD-modifying interventions has focused primarily on compounds
targeting the amyloid-β pathway. Both biological risk factors, often related to vascular
health and psychosocial factors (Cechetto et al., 2008; Qiu et al., 2010), as well as genetic
susceptibility play a critical role in the underlying pathophysiology of LOAD (Bertram et
al., 2010). APOE is still the best validated suceptibility gene accounting for at least 30% of
the genetic variance in LOAD (Corder et al., 1993). Several additional genetic risk loci for
LOAD have been identified via genome-wide association studies (GWAS) that seem to
cluster in patterns suggesting immunity (CLU, CR1, CD33, EPHA1, MS4A4A/MS4A6A),
lipid processing (APOE, ABCA7) and endocytosis (PICALM, BIN1, CD2AP) as important
causal biological processes (Bettens et al., 2013). More recently, low-frequency missense
variants in APP and TREM2 were found to confer strong protection or elevated risk of
LOAD (Guerreiro et al., 2013; Jonsson et al., 2012; Jonsson et al., 2013). However, the
overall contribution of these new common and low-frequency variants to the heritability of
LOAD is very small, suggesting that a large fraction of the genetic variance beyond the
APOE risk still remains hidden. Can we clarify the pathology of LOAD by zooming out to
the pathway level to search for emergent risk of many genomic contributions? If so, how can
we identify the key causal genes in these pathways?

In light of the complexity and elusiveness of LOAD pathogenesis, new approaches are
needed to boost the probability of identifying causal genes and pathways. Recently, we have
leveraged the molecular network structure that is reflected in genotypic and gene expression
data to uncover biologically meaningful gene modules involved in the development of
complex disease (Chen et al., 2008; Emilsson et al., 2008). Targeting such causal networks
in ways that restore them to a normal state has been proposed as a path to treat disease
(Schadt et al., 2009), but this potential has never been realized for LOAD. However, the
complexity of these networks makes it difficult to distinguish the causal from correlated
disease effects or how the causal regulators propagate their effects. To better address this,
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we constructed molecular networks based on whole-genome gene expression profiling and
genotyping data in 1647 autopsied brain tissues from hundreds of LOAD patients and non-
demented subjects. We identified numerous modules of distinct functional categories and
cellular specificity, many showing a massive remodeling effect in the LOAD brain. Next we
applied an integrative network-based approach to rank-order these modules for relevance to
LOAD pathology and used a Bayesian inference to identify the key causal regulators of
these remodeled networks. For instance, we identified, eight causal regulators of the top-
ranked immune/microglia module including TYROBP (aka DAP12) as the highest ranking
in terms of regulatory strength and differential expression in LOAD brains. We demonstrate
through mouse microglia cells over-expressing intact or truncated dominant-negative
TYROBP that downstream expression changes significantly overlapped the human
TYROBP brain network. This study presents many of the network advantages useful in
identifying and prioritizing pathways and gene targets involved in the pathophysiology of
LOAD.

RESULTS
Leveraging a Systems Approach to LOAD

We developed and applied an integrative network-based approach to identify modules of
genes associated with neurodegenerative disease (Figure 1A-C). We processed 1647
autopsied tissues from dorsolateral prefrontal cortex (PFC), visual cortex (VC) and
cerebellum (CB) in 549 brains of 376 LOAD patients and 173 non-demented healthy
controls (Figure 1A). All subjects were diagnosed at intake and each brain underwent
extensive LOAD-related pathology examination. We note that the known APOE genotype
exposure was confirmed in the HBTRC sample, showing an odds ratio of 3.74 per copy ε4
allele (P=4.1e-13). Each tissue sample was profiled for 39,579 transcripts representing
25,242 known and 14,337 predicted gene expression traits and each subject genotyped for
838,958 unique SNPs (Figure 1A). Unless otherwise noted, gene expression analyses were
adjusted for age and sex, postmortem interval (PMI) in hours, sample pH and RNA integrity
number (RIN). In the overall cohort of LOAD and non-demented brains the mean±SD for
sample PMI, pH and RIN were 17.8±8.3, 6.4±0.3 and 6.8±0.8, respectively. Extensive
analysis of the effect of covariates on gene expression variation in LOAD and non-demented
brains was carried out, as shown in Figure S1 and described in the Extended Experimental
Procedures. Here, we used a robust linear regression model for covariate corrections in all
our gene expression analyses (Experimental Procedures). Results of traditional differential
expression analysis demonstrate that subsets of genes were up- or down-regulated in LOAD
(Figure 2A). Consistent with the known progression and regional severity of LOAD
pathology (Braak and Braak, 1991), we observed the PFC region contained the greatest
number of differentially expressed genes (Figure 2B). Figure 2C summarizes the clustering
or co-linearity of the various LOAD pathology traits and age within the HBTRC cohort,
resulting in distinct groups of clinical pathology and age as separate clusters. For instance,
the number of significant correlations of expression traits to neuropathology like Braak stage
within the LOAD patient group was highest in the PFC region (Figure 2D). Given these
observations and the fact that PFC is more commonly affected in LOAD than CB and VC
(Braak and Braak, 1991), a particular attention was paid to this region in our strategy to
rank-order modules for relevance to LOAD. These massive datasets were the basis of further
method development with the aim to identify and rank-order network modules and gene
targets associated with LOAD pathology (Figure 1A-C). Results of these various analysis
steps are discussed in the sections that follow, and a more detailed description of methods
and statistical procedures is found in the Extended Experimental Procedures.
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Remodeling of the Molecular Interaction Structure in LOAD Brains
For simultaneously capturing the intra- and inter-regional gene-gene interactions in the
LOAD or non-demented state, we constructed multi-tissue co-expression networks
consisting of the top one-third (n=13,193) of the most variable gene expression traits per
brain region in individuals donating tissues from all three regions (Extended Experimental
Procedures). The multi-tissue co-expression network in LOAD brains indicated strong
structurally segregated regions of the human brain molecular interactome (Figure 3A),
generating 111 modules in the LOAD network, each containing between 30 and 1446 gene
members (Figure 3A), while the network generated from non-demented samples has 89
modules ranging in size from 30 to 2278 genes. Figure 3B highlights a direct comparison of
the two topological overlap matrices corresponding to the LOAD or non-demented
associated network for a subset of 16 modules, demonstrating that LOAD reconfigures
specific portions of the molecular interaction structure. To analytically detect and quantify
this network reorganization across the demented and non-demented states, we developed a
metric we refer to as modular differential connectivity (MDC) (Extended Experimental
Procedures). MDC is the ratio of the average connectivity for any pair of module sharing
genes in LOAD compared to that of the same genes in the non-demented state, and is a
continuous measure ranging from 0 to infinity. This module-centric measure of differential
connectivity between the two states is therefore fundamentally different from the gene-
centric analysis of previous studies that applied hard cutoffs (Mani et al., 2008). Given the
nature of the co-expression network analysis, MDC > 1 indicates gain of connectivity
(GOC) or enhanced co-regulation between genes, while MDC < 1 indicates loss of
connectivity (LOC) or reduced co-regulation between genes. In extreme cases where MDC
>>1, e.g. the glutathione transferase (GST) module (Figure 3B), or MDC <<1, e.g. the nerve
myelination module (Figure 3B), the corresponding genes do not form a coherent cluster in
the non-demented state or LOAD, respectively. Thus, new modules are created in LOAD
while in other cases a portion of the network is completely disrupted. The statistical
significance of the MDC metrics was computed through the false discovery rate (FDR)
procedure as described in Extended Experimental Procedures. Based on 10% FDR, 54%
of all modules showed GOC while 4.5% of modules exhibited LOC. The structure of the
remaining 41.5% of the modules were found to be conserved across the LOAD and non-
demented states by this MDC measure. We note a negligible overlap of only 6% between
signatures of differential connectivity and standard differential gene expression in LOAD
brains, implying that the observed disruption in co-regulation of genes reflects a previously
untapped marker of LOAD neuropathology.

Functional Organization of the Network and Its Relevance to LOAD Pathology
As observed in previous network-based studies (Chen et al., 2008; Emilsson et al., 2008;
Zhang and Horvath, 2005), we find that the brain gene expression is organized into modules
of distinct functional categories (Figure 3C). Over-representation of canonical pathways and
biological processes in modules was measured through Fisher’s exact test (FET), corrected
for number of modules and functional categories tested. Figure 3C highlights significant
over-representation of functional categories in modules showing GOC, LOC or conserved
connectivity and containing at least 50 genes. The multi-factorial basis of LOAD
neuropathology involves biological processes active in both the CNS and the metabolic and
vascular peripheral system that have often progressed silently for many years (Huang and
Mucke, 2012; Murray et al., 2011). In fact, we find that multiple functional categories are
highly enriched in the LOAD-associated modules, including the immune response, unfolded
protein, vascular system, extracellular matrix, neurogenesis (brain development), glucose
homeostasis, synaptic transmission and olfactory sensory perception categories in the GOC
modules (Figure 3C), while the LOC modules are enriched for genes involved in nerve
myelination, cell-cycle, γ-aminobutyricacid (GABA) metabolism, and neurotrophin
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signaling (Figure 3C). Many of these functional categories have previously been implicated
in LOAD and/or CNS-related function (Ansari and Scheff, 2010; Cechetto et al., 2008;
Dodel et al., 2003; Luchsinger, 2008; Morawski et al., 2012; Schiffman et al., 2002), again
reinforcing the complex multi-factorial basis of the underlying pathophysiology. The
functional categories enriched in the conserved modules included “muscle contraction”
(actin-related system), coated vesicle, cadherin and zinc ion metabolism (Figure 3C).

CNS cell-type specific gene signatures, from the Allen Brain Atlas (http://www.brain-
map.org/) were enriched in distinct network modules as previously observed (Oldham et al.,
2008): neurons in the synaptic transmission modules (11 fold, P=3.7e-24), astrocytes in
GABA biosynthesis module (22 fold, P=1.5e-15), oligodendrocytes in the nerve myelination
module (30 fold, P=2.5e-30), choroid plexus cell types in the extracellular matrix module
(35 fold, P=3.9e-15) and microglia signatures responding to amyloid-β treatment (Walker et
al., 2006) in the immune module (10 fold, P=4.5e-20) (Figure 3C). In contrast to the GOC
and LOC modules, conserved modules were not enriched for any CNS specific cell types
(Figure 3C). Pathways enriched in the brain modules and not previously implicated in
LOAD, may therefore represent novel disease mechanisms including, for instance, the
glucuronosyl transferase activity and the dynein complex (Figure 3C). Moreover, the
comprehensive representation of gene-gene interactions in the LOAD-associated networks
can uncover novel gene members in pathways already implicated in LOAD, thus allowing
us to work out a known pathologic mechanism in more detail than ever before. In summary,
the immune module shows the statistically most significant functional enrichment of all
modules (Figure 3C), and as such may have a more comprehensive representation of its
respective pathway members.

Table S1, available online in the Supplementary Data, contains extensive information
regarding the functional enrichment and gene membership of modules containing at least 50
unique gene symbols. We highlight some specific findings of interest from Figure 3C: (1)
the enrichment of pathways related to olfactory sensory perception in a LOAD-associated
module is of interest given the processing of olfactory function is affected in subjects who
are genetically at risk of developing LOAD long before the symptoms of dementia are
manifested (Schiffman et al., 2002); (2) the APOE transcript is located in the LOC module
enriched for astrocyte signatures and GABA metabolism, consistent with the observation
that astrocytes are the major source of APOE in the CNS (Boyles et al., 1985). The close
connectivity of APOE and GABA metabolism in the brain network, may therefore have
some bearing on the observation that GABA interneuron dysfunction is particularly severe
in APOE4 carriers (Li et al., 2009); (3) the previously identified macrophage enriched
metabolic network (MEMN) in peripheral tissues and strongly supported as causal for a
number of metabolic and vascular traits related to obesity, diabetes and heart disease (Chen
et al., 2008; Emilsson et al., 2008), is remarkably enriched within the brain immune/
microglia module (3.9 fold, P= 2.4e-46). This is of interest given the strong epidemiological
evidence for metabolic- and vascular-based exposure on LOAD (Huang and Mucke, 2012;
Murray et al., 2011); (4) The postsynaptic density proteome in the human neo-cortex of 748
proteins over-represented with risk loci known to underlie cognitive, affective and motor
phenotypes (Bayes et al., 2011), was significantly enriched in the synaptic transmission
module (3 fold, P = 1.6e-32). It is still unclear how and which of these different biological
processes mentioned above interact to affect LOAD, however it is likely that only few
downstream mechanisms on which many diverse effects converge are causally related to
LOAD (Huang and Mucke, 2012; Murray et al., 2011). The accumulated data show a
strikingly coherent organization of molecular processes in the LOAD-associated network.

The co-expression network structure, its changes between non-demented and LOAD brains,
and the genetic loci responsible for the expression co-variation behind these networks,
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collectively reflect molecular processes associated with LOAD. By linking the network
modules to clinical outcome or LOAD neuropathology via a multiple regression analysis
(Extended Experimental Procedures), we can infer key molecular processes associated
with LOAD. A covariance matrix of the average expression correlation (∣r∣) between 49
modules, comprised of at least 100 probes, and 25 LOAD-related traits is shown in Figure
4A. We performed principal component analysis (PCA) to estimate the module-trait
correlation and used the FDR method to assess the significance (see Extended
Experimental Procedures). Of all modules, the immune/microglia showed correlation to
the greatest number of LOAD-related neuropathology traits (Figure 4B). Expression of the
PFC immune/microglia module correlated to atrophy levels in multiple brain regions,
including frontal cortex (r=0.27, FDR=0.018), parietal (r=0.20, FDR=0.016), temporal
(r=0.19, FDR=0.022) and neostriatum regions (r=0.28, FDR=3.3e-09) as well as ventricular
enlargement (r=0.17, FDR=0.031). Several modules, however, showed correlation to a more
restricted type of neuropathology, including the modules characteristic for the glucuronosyl
transferase correlated to Braak stage (r=0.18, FDR=9.8e-05), NAD(P) homeostasis to Braak
stage (r=0.25, FDR=1.4e-07), neurogenesis to ventricular enlargement (r=0.19,
FDR=5.1e-05) and GST to ventricular enlargement (r=0.22, FDR=4e-06). The significance
of functional enrichment in modules and the number of neuropathology traits correlated with
modules were considered important criteria in rank-ordering modules for their potential to
affect LOAD.

Bayesian Networks and the Immune Module as an Effector in LOAD
Causal probabilistic Bayesian networks were constructed and used as an alternative
approach to delineate potential regulatory mechanisms. In order to establish a causal
relationship or dependency between nodes in the network, we constructed a directed
probabilistic Bayesian network through the application of brain cis expression (e)SNPs as
causal anchors. Because cis eSNPs are in LD with causal variants that affect the expression
levels of a neighboring gene or they are the causal variant themselves, they serve as an
excellent source of natural perturbation to infer causal relationships among genes and
between genes and higher order phenotypes like disease (Chen et al., 2008; Emilsson et al.,
2008). We detected a total of 11,318 unique cis eSNPs-transcripts in the three brain regions,
at FDR of 10% (Figure S2A), which is the largest number of brain eSNP-transcripts detected
to date in a single study (Webster et al., 2009). The methodology to identify cis and trans
eSNPs is detailed in Extended Experimental Procedures, while Table S1 lists all cis and
trans acting eSNPs detected in the present study at FDR of 10%. There was between 70 and
80% sharing of cis eSNP-transcripts between different brain regions and 37% overlapped all
brain regions (Figure S2A). Importantly, we find a variable and often strong enrichment of
brain eSNPs in many of the LOAD-associated modules compared to all probes on the array,
suggesting the possibility that these variants determine the differential connectivity observed
in LOAD. For instance, in the PFC region (Figure 4C) there were five modules showing
significant enrichment for cis eSNPs including the unfolded protein (3.8 fold, P=3.8e-81),
nerve myelination (2.5 fold, P=2.9e-40), immune function (2.2 fold, P=4.3e-30), GABA
metabolism (2.7 fold, P=2.3e-13) and extracellular matrix (1.6 fold, P=2.3e-07) modules
(Figure 4C). The enrichment of cis eSNPs in the differentially connected LOAD modules in
the VC and CB regions is shown in Figure S2B. For the present study, however, a particular
attention was paid to the cis eSNPs for their applicability as priors in the construction of
Bayesian networks (Extended Experimental Procedures and schematic Figure S3).

We constructed Bayesian networks for each co-expression module. While many of the
LOAD-associated network modules are of potential interest, the reconstruction of the
Bayesian network for the immune/microglia module is highlighted given it has the strongest
disease association based on clinical covariates and network-associated properties: (1)
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significant differential connectivity of the cortex specific immune modules in LOAD (MDC
between 49 and 100% GOC at FDR < 0.001); (2) the immune/microglia module showed the
most significant enrichment of functional categories; (3) the highest degree of gene
expression correlation to several measures of LOAD neuropathology; (4) the PFC version of
the module was highly enriched for brain eSNPs. To increase the predictive power of
inflammation related regulatory networks, we further built up the directed Bayesian network
for the inflammation modules derived from the individual brain regions. Figure 5 highlights
the interactions within and between the five predominant immunologic families in the PFC-
based putative microglia module. To generate this roadmap to the complex structure of the
immune/microglia module, genes which were not direct members of one of these five core
pathways were assigned to the family with which they have the greatest number of causal
interactions. The immune module was dissected into five families representing functional
immune pathways that were labeled according to their main function as ‘Complement’, ‘Fc’
for Fc-receptors, ‘MHC’ for major histocompatibility complex, ‘Cytokines’ for cytokines/
chemokines and ‘Toll-like’ for toll-like receptors (Figure 5).

Highlighting the Microglia Pathway with TYROBP as Causal Regulator
The Bayesian inference enabled us to compute the causal regulators of the differential
connectivity in individual modules, defined as the genes controlling many downstream
nodes in the respective network (see Extended Experimental Procedures). The causal
regulators of the highest scoring immune/microglia module were rank-ordered based on the
number of downstream nodes, i.e. the power of regulating other genes, as well as differential

expression in LOAD brains. Here, we used a combined score as , where, gji is the

discriminant value of a j in the case i, and is defined as  (Duda et
al., 2000). In comparison to the average gene/node in a given network the causal regulators
are expected to have a stronger effect on the clinical outcome as they direct the expression
of a significant portion of the network module they reside in. The size of the gene
membership for the different regional specific immune modules ranges from 386 in CB to
1108 in the PFC, with 247 of the genes in the CB detected in all regions (P=1e-19). The
identity of the key causal regulators is somewhat variable across each brain regional version
of the microglia module of which CTSC, HCK, TYROBP, SERPINA1, S100A11, LY86,
DOCK2 and FCER1G were common to all immune modules, regardless of brain region.
Through the combined ranking score based on regulatory strength and differential
expression in PFC of LOAD brains, TYROBP scored the highest (Figure S4A). Table 1 lists
the 20 top ranking PFC modules and their respective key causal regulators. Expression of
TYROBP is restricted to cells involved in the innate immunity including the microglial cells
in the brain (Schleinitz et al., 2009). Here, TYROBP was significantly up-regulated in
LOAD brains in the HBTRC sample (1.18 fold, P = 0.028) and the direction of this effect
was replicated (1.17 fold, P = 5.1e-05) in an independent multi-center cohorts study (see
Extended Experimental Procedures and Figure S4B). Additionally, we observed a
progression of TYROBP expression changes across mild cognitive impairment (MCI) in the
replication study (Figure S4B). Estimating what constitutes a “large” or “small” change in
gene expression levels is challenging in microarray analyses. We note, however, that
TYROBP was the 124th most differentially-expressed probe out of 48,803 probes assayed in
the replication study cohort. Moreover, TYROBP was more differentially expressed in
LOAD brains than the classical markers of microglia AIF1, and CD68, indicating there was
not a relative down-regulation of TYROBP despite elevated microgliosis in LOAD brains
(Perry et al., 2010).

The majority of the common causal regulators were located either in the ‘Fc’ pathway and
associated/clustered genes (HCK, SERPINA1, S100A11, DOCK2 and FCER1G) or the
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‘Complement’ pathway (TYROBP) in the immune/microglia network (Figure 5). Recent
reports (we note that our submission predates these reports) show a striking association of a
low-frequency DNA variant in TREM2 to LOAD (Guerreiro et al., 2013; Jonsson et al.,
2013). More specifically, TREM2 is known to associate and signal via TYROBP, the key
regulator of the immune/microglia network activated in LOAD. Thus our data-driven
network-based approach places both TREM2 and TYROBP in a gene network that literally
unifies them with previous top GWAS risk loci including MS4A4A, MS4A6A and CD33
(Figure 5). These new results provide exciting convergent evidence for the specific
microglia network that we had directly implicated as activated in LOAD, and reinforce the
potential causality of this pathway in LOAD pathology. In fact, the dissection of the
immune/microglia module into distinct families and key causal regulators point towards an
important function of the microglia pathways involving genes of the ‘Complement’ and/or
‘Fc’ network clusters. Figure S5 (genes marked in red) highlight many of the key genes in
the pathogen phagocytosis pathways found in the immune/microglia module. It is noteable
how comprehensive representation of a specific signal transduction pathways is observed
within the two immune families of this module. The strategic network position of TYROBP
as a causal regulator of many genes mirrors its bottleneck position in several microglia
activation signaling cascades. Extrapolating from this data-driven interaction, it is possible
that TYROBP may be associated with neuronal pruning activity of the complement system
that may be reawakened in LOAD via amyloid-β and Tau aggregates (Stevens, 2007; Perry,
2010). In this manner, the network structure can become a data-driven hypothesis generator
for novel disease-relevant interactions.

Structure of Causal Networks Guides Differential Expression in a Distance-dependent
Manner

To test our prediction that TYROBP can direct LOAD-associated gene networks, we
contrast both the molecular function and genome-wide effects of TYROBP with those
predicted by the structure of causal networks inferred from human LOAD brains. For this,
microglia cells derived from mouse embryonic stem cells were genetically modified by
lentiviral vectors to over-express either full length or a truncated version of Tyrobp which
lacks both intracellular ITAM motifs (Extended Experimental Procedures and Figure S6).
To assess the genome-wide gene expression changes in response to the perturbation of
Tyrobp, we derived gene expression data from the RNA sequencing of mouse microglia cell
lines over-expressing (1) vehicle, (2) the full length Tyrobp or (3) dominant negative
truncated Tyrobp. We identified 2638 and 3415 differentially expressed genes for the over-
expression of full length Tyrobp and truncated Tyrobp, respectively (Table S1), at FDR <
2.5%. Roughly one-third (858 to 1092) of these genes are found in the most variable gene
set in the brain dataset used for the network reconstruction. The PFC variant of the human
immune/microglia module was highly enriched for genes which are differentially expressed
in the full length or truncated Tyrobp experiments (P < 1e-15) (Figure 6A). We projected
results of RNA sequencing experiments onto a large Bayesian brain network of ~8000 nodes
that contains the microglia module as well as many other modules. In this large network, we
could track differential expression of genes which are predicted to be downstream of
TYROBP at various network path distances (Figure 6B). The highest predictive power for
differential expression is in the primary neighborhood of the perturbed gene, and this power
decreases for genes which are farther away in the network. The enrichment for differentially
expressed genes in the network neighborhood of TYROBP and strong negative correlation
between the fraction of confirmed targets and path distance (r= −0.82, P=4.e-07) (Figure
6B), show that our causal network structure is a significant and useful predictor of response
to gene perturbations, even in a challenging cross-species setting. Thus both the structure
and direction of links in these causal networks provide significant information on the effects
of complex signal transduction mechanisms.
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The inferred network structure has significant predictive power for nodes which are several
links away from TYROBP. We studied the enrichment of functional categories in the gene
sets responding to the Tyrobp perturbation experiments, and applied Bonferroni-corrected P-
values for statistical significance (Extended Experimental Procedures). Approximately
99% of the differentially expressed genes from the microglia over-expressing intact Tyrobp
were down-regulated compared to the control vehicle. This set was enriched for genes
involved in RNA metabolism (P=6.2e-05) and cell-cycle mitosis (P=2.7e-03). In the
microglia cells over-expressing the dominant negative truncated Tyrobp, 2856 up-regulated
genes were enriched for the vacuole/autophagy (P=1.7e-08) and mitochondrion (P=4.6e-04),
while 559 genes involved in histone assemply (P=1.6e-31) were down-regulated. Moreover,
the Tyrobp regulatory effect reflects a degree of symmetry as 658 genes, related to the
vacuole/autophagy (P=5e-03), were down-regulated by active Tyrobp but up-regulated in
cells expressing dominant negative truncated Tyrobp. These findings are of interest because
they link the far down-stream effects of TYROPB to known molecular pathology in LOAD,
such as abnormalities in the cell-cycle, mitochondrion and autophagy (Coskun et al., 2004;
Webber et al., 2005). The accumulated data suggest that TYROBP may be a therapeutic
target in prevention of neuronal damage in LOAD.

DISCUSSION
The construction of gene regulatory networks in a large sampling of human brain specimens
has revealed many facets of the molecular interaction structure in LOAD, when compared to
that in non-demented brains. A comprehensive characterization of gene network
connectivity, its regulation and association to disease can provide critical insights into the
underlying mechanisms, and identify genes that may serve as effective targets for
therapeutic intervention. For instance, targeting genes that are the most central (highly
connected) may be more effective in disrupting disease-related networks for the purpose of
therapy, but that could be at the cost of more adverse effects. In summary, the utility of
network-based approaches to complex disease includes: (1) elucidating the biological
function and molecular context of a particular set of causal genes, (2) establishing a
framework to map interaction between genes and network modules, (3) providing an
objective filter for rank-ordering genes based on connectivity or other network features, (4)
defining dynamic changes and corresponding causal regulators of the altered network
structure associated with disease condition, (5) identifying modules and pathways causally
related to disease, and (6) revealing tissue-to-tissue interactions that can aid in the
identification of key target tissues for disease (Dobrin et al., 2009). The present study
utilizes many of these network advantages to highlight and prioritize pathways and gene
targets causally related to LOAD.

Our network-based integrative analysis not only highlighted the immune/microglia module
as the molecular system most strongly associated with the pathophysiology of LOAD, but
identified the key network regulators including TYROBP. In a separate in vitro study we
have found that the microglia expressed TYROBP is directly involved in amyloid-β
turnover and neuronal damage (unpublished results). Of interest, mutations in TYROBP or
TREM2 cause Nasu-Hakola disease (Bianchin et al., 2010), a rare Mendelian disease
characterized by bone reabsorption dysfunction and chronic inflammatory
neurodegeneration leading to death in the fourth or fifth decade of life. The exact
pathomechanism underlying Nasu-Hakola disease is still unclear, but it was hypothesized
that failure of proper microglial clearance is causal for the lethal effect of
neurodegeneration. Thus dysfunctional immune/microglia pathways might not be unique to
LOAD. To test the generalization of this concept, we explored the connection of the
immune/microglia module to Huntington disease (HD), another neurodegenerative disease.
HD pathology, caused by expanded alleles of a variable stretch of trinucleotide (CAG)
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repeat length in HTT (The Huntington’s Disease Collaborative Research Group, 1993),
features astrogliosis and neurodegeneration of the striatum, prefrontal cortex and
hippocampus. We constructed molecular networks in the PFC from 194 HD patients
genotyped for CAG allele size (see Extended Experimental Procedures) and found that
the PFC version of the immune/microglia module was well conserved between LOAD and
HD in terms of gene annotation (75% overlap, P-value <1e-300). This module, however, did
not show any alteration in connectivity in HD brains compared to the disease-free controls
used in our LOAD study. Moreover, through a PCA we did not detect any gene expression
correlation of the HD brain immune/microglia module to expanded CAG repeat length
(r=-0.05, FDR=56%), a key biomarker for predicting HD severity (Gusella and MacDonald,
2006). Thus based on the comparison to HD, the disease-related effect of the immune/
microglia module appears to be specific to LOAD (and possibly Nasu-Hakola disease).

Immune activation in LOAD may have multi-faceted activity: long-term use of non-steroid
anti-inflammatory drugs (NSAIDs) before onset of the disease decreases risk (Etminan et
al., 2003), and microglia effector function via interfering with reactive oxygen production,
cytokines and complement cascade members have been postulated to damage healthy
neurons and synapses (Cameron and Landreth, 2010). Close association and positive
feedback between amyloid-β and microglia (Meyer-Luehmann et al., 2008) further clouds
the cause and effect relationships of inflammation to disease progression. Without a causal
framework for these observations, it is difficult to find optimal molecular targets that direct
LOAD inflammation. Therefore, we integrated clinical factors with whole-genome genotype
and molecular trait data to identify a network module containing several microglia signaling
cascades functionally related to the reactive oxygen burst during pathogen phagocytosis. We
highlight the causal regulator TYROBP that exerts control over multiple genes within this
module and pathways involved in LOAD, thus validating our network structure and its
relevance to LOAD pathology. This approach appears to offer novel insights for drug
discovery programs that can affect neurodegenerative diseases, such as LOAD.

EXPERIMENTAL PROCEDURES
Raw gene expression data together with information related to demographics, disease state
and technical covariates are available via the GEO database (GEO accession number
GSE44772; GSE44768, GSE44770 and GSE44771). A brief description of key methods and
sample description is provided below while complete details are found in the Extended
Experimental Procedures.

Data Sets and Sample Processing
We compiled six disease- and tissue-specific gene expression datasets consisting of 1647
postmortem specimens from three brain regions (PCF (BA9), VC (BA17) and CB) in LOAD
and non-demented subjects recruited through the Harvard Brain Tissue Resource Center
(HBTRC). Each subject was diagnosed at intake and via extensive neuropathology
examination. Tissues were profiled on a custom-made Agilent 44K array of 40,638 DNA
probes and each subject genotyped for 838,958 SNPs.

Molecular Networks and Causal Regulators
We constructed both multi-tissue and single tissue co-expression networks from the top one-
third (n=13,193) of the most variably expressed genes in each tissue and condition. We
computed the module differential connectivity (MDC) in LOAD brains as:

, where, kij is the connectivity between two genes i and j in a given
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network, and assessed the statistical significance through the FDR method. We constructed
causal probabilistic Bayesian networks from individual co-expression modules and used
brain cis eSNPs as priors to infer directionality between nodes (see Figure S3). For this, we
identified 11,318 unique cis eSNPs-transcripts at FDR of 10% (Extended Experimental
Procedures), all listed in Table S1. The Bayesian inference allowed us to compute the
causal regulators of the differential connectivity in individual modules by examining the
number of N-hob downstream nodes.

Mouse Microglia Cultivation, Cell Transduction and RNA sequencing
Genome-wide gene expression of mRNA from cultivated microglia cells over-expressing
intact or genetically modified TYROBP was sequenced using TruSeq Kit for RNA capture
and HiSeq 2000 for the sequencing. Read mapping was done using the TopHat (Trapnell et
al., 2009) RNA-seq aligner.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

▶ Systems approach to LOAD based on large-scale human brain tissue sampling

▶ Molecular networks show strong remodeling effect in LOAD brains

▶ Integrative network-based analysis implicates the immune/microglia network in
LOAD

▶ TYROBP is key causal regulator within the immune/microglia module
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Figure 1. Sample Processing and the Integrative Network-based Approach
(A) 549 brains were collected through the Harvard Brain Tissue Resource Center (HBTRC)
from 376 LOAD patients and 173 non-demented subjects and tissues extracted from three
brain regions, the commonly affected PFC in LOAD, and the less affected VC and CB 1).
Each brain went through extensive neuropathology examination, and all tissues were
profiled for 39,579 transcripts and every subject genotyped for 838,958 SNPs 2). These
datasets were the basis of the method development in the present study 3). (B) From the
microarray RNA expression data we identified gene expression traits showing individual
variability in gene expression traits as per brain region 1). Next we computed the co-
regulation (connectivity) strength between genes, defined the appropriate connectivity
threshold 2), and performed hierarchical clustering analysis to construct the undirected co-
expression network 3). Finally, we used brain eSNPs (Q) as causal anchors in the
construction of directed Bayesian networks to infer a causal relationship between nodes in
the network 4). A variant of the underlying causality scoring process here can be applied to
relationships among thousands of nodes to infer genome-scale networks. (C) Comparison of
LOAD and non-demented networks was performed to explore any effect on the molecular
interaction structure associated with the disease. Differentially connected modules in LOAD
were investigated for their functional organization 1), module relevance to clinical outcome
as well as the enrichment of brain eSNPs 2). Modules were rank-ordered (this figure does
not show the true rank order) for their strength of the functional enrichment, module
correlation to neuropathology and eSNP enrichment 3). See also Figure S1.
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Figure 2. Differential Gene Expression in LOAD Brains and Expression Correlation to Braak
stage
(A) The heat-plot shows the genes (n=6457), absolute mean-log ratio >1.5 for each profile,
which most significantly differentiate disease status in PFC. The legend to the right shows
the arrangement of samples with blue points denoting LOAD (A), and red points denoting
non-demented state (N). (B) The number of differentially expressed genes in LOAD
compared with controls per brain region using Bonferroni adjusted P<0.05 by correcting for
the number of probes tested (P ≤ 2.46×10−7). (C) Clustering analysis where the rows and
columns represent age and 25 LOAD pathology traits are arranged in a symmetric fashion
and sorted by the hierarchical clustering tree of the correlation matrix. The color intensity
signifies the correlation strength between two traits (red positive and green negative). AT,
atrophy; WMAT, white matter atrophy; EL, enlargement. (D) Number of genes showing
significant expression correlation to Braak stage as measured per brain region using
Bonferroni adjusted P<0.05 by correcting for the number of probes tested (P ≤ 2.46×10−7).
See also Table S1.
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Figure 3. Multi-Tissue Gene Co-expression Network in LOAD Brains
(A) The topological overlap matrix (TOM) plot corresponds to the LOAD multi-tissue co-
expression network. The rows and columns represent the same set of the top one-third
(13,193) of the most variably expressed genes in each of the three brain tissues and states,
expressed in a symmetric fashion and sorted by the hierarchical clustering tree of the LOAD
network. (B) Individual TOM covariance matrices of 15 differentially connected and one
conserved modules in LOAD (the upper right triangle of each module) versus that in the
non-demented state (the lower left triangle of each module). Differential connectivity
(MDC) and FDR estimate is specified in each panel in parenthesis (MDC, FDR). (C)
Significant (FET P-value after correcting for number of modules and functional categories/
pathways tested) enrichment of functional categories in conserved modules (left most
panel), LOC modules (center panel) or GOC modules (right most panel). The y-axis
represents the −log(P-value) of enrichment while the x-axis denotes the number of genes per
module. Each module contains at least 50 unique gene symbols. See also Table S1.
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Figure 4. Module Relevance to LOAD Pathology and Enrichment of Brain eSNPs
(A) A heat-map of the correlations (∣r∣) between 49 module principal components (PCs) and
25 LOAD-related neuropathology traits. These modules contain at least 100 probes. AT,
atrophy; WMAT, white matter atrophy; EL, enlargement. (B) Number of significant
module-dependent correlation to LOAD related neuropathology of all differentially
connected modules with at least 100 members and showing significant correlation to at least
single neuropathology trait (see Extended Experimental Procedures). The total number of
traits associated with a module was used to rank-order modules for relevance to LOAD
pathology. (C) We tested the enrichment of brain eSNPs in the differentially connected
modules of the multi-tissue co-expression network in LOAD as per brain region. Here we
present a significant enrichment of brain eSNPs in many of the PFC modules. We used the
FET analysis to access the significance of the overlap between each module and cis eSNPs,
correcting for the number of modules tested. See also Figure S2 and Table S1.
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Figure 5. The Bayesian Brain Immune and Microglia Module
A module that correlates with multiple LOAD clinical covariates and is enriched for
immune functions and pathways related to microglia activity (PFC module shown). [Inner
networks] The PFC module is enriched in genes which can be classified as members of the
complement cascade, ‘Complement’, toll-like receptor signaling, ‘Toll-like’, chemokines/
cytokines, ‘Chemokine’, and the major histocompatibility complex, ‘MHC’, or Fc receptor
system, ‘Fc’. The direction and strength of interactions between these pathways are
collected across all gene-gene causal relationships that span different pathways. The
minimum line width corresponds to a single interaction (MHC to toll-like) and scales
linearly to a maximum of 17 interactions (Fc to Complement). [Outer networks] Each
color-coded group of genes consists of the core members of the different families and genes
that are causally related to a given family. Core family members of each pathway are shaded
darkly, while square nodes in any family denote literature-supported nodes (at least two
PubMed abstracts implicating the gene or final protein complex in LOAD or a model of
LOAD). Labeled nodes are either highly connected in the original network, literature-
implicated LOAD genes or core members of one of the five immune families. Node size is
proportional to connectivity in the module. See also Figures S5.
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Figure 6. Structure of Causal Networks Guides Differential Expression in a Distance-dependent
Manner
A) Within the microglia module, we show all genes which receive direct or indirect causal
inputs to/from TYROBP. Genes which were differentially expressed in either full-length or
truncated Tyrobp experiments are circled (P-value<0.05, n=4/4/4 for control/truncated/full-
length RNA sequenced samples). Possible reasons for differentially expressed (DE) of
predicted upstream genes are mouse-human network differences, network inaccuracy, or
presence of feedback loops, which are not represented in a Bayesian framework. (B) We
mapped results of RNA sequencing experiments onto a large Bayesian network of ~8000
nodes that contains the microglia module as well as many other modules. In this large
network, we could track differential expression of genes which are predicted to be
downstream of TYROBP at various network distances (link distances). There was a strong
negative correlation (r= −0.82, P=4.e-07) between the differentially expressed genes in the
microglia and the path distance from TYROBP in the brain immune network. See also
Figure S6 and Table S1.
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Table 1
Top 20 Modules in PFC Ranked for Relevance to LOAD Pathology

This table lists the top 20 rank-ordered modules consisting of at least 50 genes from PFC, or if majority of
genes are from PFC in mixed modules with a total of 50 genes or more. See also Table S1 and Figure S4.

Module Rank Top Functional &
Cellular Category

N PFC
Genes

MDC Highlighted Causal
Regulatorsa

Yellow 1 Immune & microglia 1102 1,49 TYROBP, DOCK2, FCER1G

Pink 2 Glutathione transferase 113 92,67 GSTA4, ABCC2, TIMELESS

Gray 1 3 Cell junction 51 0,82b ACBD5, LMAN1, MLL3S

Seashell 4 Coated vesicle 278 1,29b KIFAP3, PCTK2, SNCA

Red 3 5 Ribosome 50 24,93 RPS27, RPS18, PCBP2

Green yellow 6 Unfolded protein 721 4,50 STIP1, HSPA1A, DOPEY1

Red 7 Nerve myelination &
oligodendrocytes

987 0,68 ENPP2, PSEN1, GAB2

Gold 2 8 Axon growth repulsion 80 3,27 TUBB4, ACTL9, ACTG1

Tan 9 Extracellular matrix &
choroid plexus cells

700 2,88 SLC22A2, AGTR1, ZIC2

Gold 3 10 Dynein complex 67 12,12 TEKT1, FANK1, HYDIN

Light yellow 11 mRNA cleavage 96 6,01 MED6, STATIP1, SFRS3

Brown 2 12 Olfactory perception 77 25,51 PPP2R5A, C1ORF143, RNASE11

Dark cyan 13 Steroid biosynthesis 110 1,39b LAMP2, P2RX7, MID1IP1

Khaki 14 GABA biosynthesis &
astrocytes

267 0,29 GJA1, STON2, CST3

Grey 60 15 Ser/Thr kinase receptor 495 4,64 CREBBP, ABCC11, MDGA1

Purple 16 Synaptic transmission &
neurons

805 1,22 SNAP91, BSN, GLS

Green 4 17 Cell cycle 50 0,33 DTL, UBE2C, BUB1

Honey dew 18 Muscle contraction 128 1,10b RFX4, DGCR6, AQP4

Red 2 19 Zinc homeostasis 83 1,17b MT1M, MT1JP, MT1P3

Beige 20 Glucose homeostasis 95 12,64 AMPD1, EGR2, PDGFB

a
Selected set of maximum three causal regulators per module

b
MDC FDR > 10% and therefore not considered significant
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