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Phorbol Ester Induces c-sis Gene Transcription in
Stem Cell Line K-562
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The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced megakaryoblastic differentiation
and c-sis expression in the human hematopoietic stem cell line K-562. This induction occurred at the
transcriptional level, as determined by a nuclear runoff transcriptional assay, and was not a generalized effect
of TPA, since the treatment of other hematopoietic cell lines and normal peripheral blood lymphocytes with
TPA did not result in the appearance of c-sis mRNA.

The study of cellular oncogenes (c-onc) has become an
important tool in exploring the mechanisms of neoplasia (2).
Many proto-oncogenes are also expressed in normal cells
during growth and differentiation (7, 13, 21). Simian sarcoma
virus bears in its structure the viral oncogene sis (v-sis)
which has its homologous cellular counterpart, c-sis (7).
Expression of this oncogene has been reported in glioblas-
toma and sarcoma cell lines (10, 22, 28), but it is also
expressed in normal endothelial and placental cells (1, 13,
15). c-sis codes for the B chain of platelet-derived growth
factor (4, 9, 16, 23, 27), a potent mitogen for connective
tissue cells which is released from platelet alpha granules
during clot formation (17). Recently, the sequence of a
cDNA clone (from normal endothelial cells) coding for c-sis
was reported (6). However, the expression of this oncogene
has not been studied in megakaryocytes, the main source of
platelet-derived growth factor in the organism, because it is
extremely difficult to obtain enough megakaryocytes from
normal bone marrow. We report here the expression of
c-sis in the stem cell line K-562 during phorbol ester
(12-O-tetradecanoylphorbol-13-acetate [TPA])-induced mega-
karyocytic differentiation of these cells (12, 24, 25). The c-sis
transcript can be detected as early as 4 h after adding TPA to
cultures, even though megakaryocytic differentiation could
only be detected after day 2 of treatment. We demonstrate
that c-sis expression may occur concomitantly with the
megakaryocytic differentiation of K-562 cells rather than as
result of nonspecific effects of TPA, since other cell lines and
normal peripheral blood lymphocytes treated with TPA do
not show c-sis-related transcripts. c-sis induction occurs at
the transcriptional level as determined by a nuclear runoff
assay.

The K-562 cell line was grown in RPMI 1640 medium
supplemented with 10% fetal bovine serum and penicillin-
streptomycin. Log-phase K-562 cells were treated with TPA
(Sigma Chemical Co., St. Louis, Mo.) (final concentration,
10~ M) and kept in culture for variable lengths of time
ranging from 1 h to 6 days. Megakaryoblastic differentiation
was assessed by flow cytometric analysis with the monoclo-
nal antibody 10ES (5; kindly provided by B. Coller, State
University of New York at Stony Brook) which recognizes
the Gpllb-Illa complex, a specific megakaryocytic marker
expressed early in the differentiation of this lineage (19, 26).
Cellis positive for the GplIb-IIIa complex were detected after
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2 days of TPA treatment, and by 4 days, the majority of the
cells expressed this antigen. Untreated cells were 10ES
negative (Fig. 1). This agrees with previous reports (12, 24,
25) in which megakaryoblastic differentiation of the K-562
cell line was achieved after 2 to 4 days of TPA treatment. By
morphologic criteria megakaryoblastic differentiation could
be observed within 3 days of TPA treatment.

Total cellular RNA was isolated by guanidine isothiocya-
nate extraction and cesium chloride centrifugation by the
method of Chirgwin et al. (3). Briefly, 108 cells were washed
twice in phosphate-buffered saline, lysed in 4 M guanidine
isothiocyanate, layered on 5.7 M cesium chloride, and spun
at 25,000 rpm in a Beckman SW 27 rotor at 20°C for 24 h.
Pellets were suspended in 10 mM Tris hydrochloride (pH
7.6)-1 mM EDTA and ethanol precipitated. The final RNA
precipitate was dissolved in water, and total cellular
poly(A)* RNA was selected by affinity chromatography over
oligo(dT)-cellulose columns. Poly(A)* RNA (4 pg) was size
fractionated on a 1% agarose-formaldehyde gel and trans-
ferred to Gene-Screen Plus nylon paper (New England
Nuclear Corp., Boston, Mass.), and the blot was prehybrid-
ized in 50% formamide-1% sodium dodecyl sulfate-1 M
NaCl-10% dextran sulfate~-50 mM Tris-hydrochloride (pH
7.5) at 43°C for 20 h. Hybridization was initiated by adding
32p_labeled probes (v-sis, c-myc, or beta2-microglobulin la-
beled by the random priming technique [11]; specific activi-
ties, 10° cpm/pg) and sheared salmon sperm DNA (100
wng/ml) with incubation at 43°C for 24 h. Blots were washed
three times in 0.3 M NaCl-0.03 M sodium citrate-0.17%
sodium dodecyl sulfate at room temperature for 5 min and
three times for 15 min each in 0.015 M NaCl-0.0015 M
sodium citrate-0.1% sodium dodecyl sulfate at 50°C. The
filters were exposed to Kodak XAR-S film for variable
periods in the presence of an intensifying screen. The v-sis
probe is an SstI-Xbal fragment representing the complete
v-sis transforming gene of simian sarcoma virus (Oncor); the
c-myc probe is a Clal third exon cDNA clone; and beta2-
microglobulin is a full-length ¢cDNA clone (both probes
kindly provided by K. Kelly, National Institutes of Health).
mRNA hybridizing with the v-sis probe could be detected as
early as 4 h after TPA treatment (Fig. 2, lane b). The highest
level of v-sis-hybridizing transcripts was reached after 4
days, concomitant with the greatest number of differentiated
cells, according to flow cytometric analysis. It was not
possible to demonstrate c-sis transcripts in the poly(A)*
mRNA isolated from untreated K-562 cells. The results are
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FIG. 1. K-562 differentiation. (A) Control K-562 cells (Wright stain); (B) K-562 cells treated with TPA for 4 days (same staining and
magnification as in panel A); (C) light scatter histograms generated by flow cytometric analysis after fractionating TPA-treated K-562 cells by
size; (D) control K-562 cells (solid line) and K-562 cells treated with TPA for 4 days (dashed line) were reacted with the monoclonal antibody

10ES (specific for the GplIb-1Ila complex of megakaryocytes).

not likely to be due to different amounts of RNA loaded
since both untreated and TPA-treated cells possessed rela-
tively equal amounts of beta2-microglobulin mRNA (Fig. 2).
In our hands, the size of the v-sis-hybridizing mRNA was 3.3
kilobases. An mRNA of similar size was observed in
HUT-102 cells and in two glioblastoma cell lines (data not
shown).

After TPA treatment, two populations of K-562 cells could
be seen: one comprised large cells with a polylobated
nucleus and vacuoles similar to those found in megakaryo-
blasts; the other consisted of small cells difficult to distin-
guish morphologically from untreated K-562 cells (Fig. 1A
and B). To look for differences in the amount of c-sis mRNA
expressed in these populations, TPA-treated K-562 cells
were size fractionated on discontinuous Percoll density
gradients (Fig. 1C), and the poly(A)” mRNA was prepared
for Northern blot analysis. The largest cells (morphologi-
cally similar to megakaryoblasts) contained approximately
the same amount of c-sis mRNA as the small-cell population
(morphologically undifferentiated) (Fig. 3). In addition to
sharing c-sis expression, both the small-cell and the large-
cell populations expressed equivalent levels of the 10ES
megakaryocytic marker, and both size populations were cell
cycle synchronized and growth inhibited (data not shown).

To study whether expression of c-sis after TPA treatment
was due to stabilization of low-abundance mRNA or to
induction of c-sis transcription, we performed an in vitro
nuclear runoff transcription assay by the method of
Greenberg and Ziff (14). Nuclei were isolated from K-562
cells either untreated or treated for 4 days with 10~° M TPA
(108 cells per condition). DNA probes (500 ng per slot) were
blotted onto nitrocellulose with a Schieicher & Schuell Slot
Blotter. After overnight prehybridization, the slots were
hybridized for 3 days at 40°C with 3?P-labeled runoff tran-
scripts generated by in vitro incubation of 20 X 10° isolated
nuclei in the presence of [*?PJUTP (New England Nuclear
Corp.). The filters were then washed, air dried, and exposed

to X-ray film as described above. Figure 4 demonstrates the
absence of newly synthesized c-sis transcripts in untreated
K-562 nuclei (Iane a) and the synthesis of such transcripts by
nuclei isolated from K-562 cells after 4 days of TPA treat-
ment (lane b). Conversely, c-myc transcription was not
altered by TPA treatment (Fig. 4, lanes a and b), but
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FIG. 2. Time course showing c-sis (3.3 kilobases), c-myc (2.2
and 2.4 kilobases), and beta2-microglobulin (1.1 kilobase) mRNA.
Lanes: a and b, 1 and 4 h, after adding TPA, respectively; c, e, and
g, control K-562 cells 1, 2, and 3 days after seeding, respectively; d,
f, h, and i, K-562 cells 1, 2, 3, and 4 days after TPA treatment,
respectively. Size in kilobases is on the left.
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FIG. 3. TPA-treated K-562 cells were size selected on Percoll
gradients, and mRNA was extracted and hybridized with the v-sis
probe. Lanes: a, small cells; b, large cells. Numbers on left are in
kilobases.

steady-state c-myc mRNA declined to undetectable levels
after TPA treatment (Fig. 2, lane d). These data are concor-
dant with the observed inhibition of cell growth (4a, 18) after
TPA and the induction of differentiation. Such posttranscrip-
tional regulation of the c-myc gene has been reported by
others (8).

The final question we addressed was whether c-sis activa-
tion is specific to megakaryocytic differentiation of K-562
cells or is a nonspecific effect of TPA. To test this, we
treated several cell lines (the T-acute lymphoblastic leuke-
mia cell lines CEM, 8402, MOLT-4; the Burkitt’s lymphoma
cell line Raji; the promyelocytic cell line HL-60; and the
myelomonocytic cell line U-937) and normal peripheral
blood lymphocytes with TPA for 3 days. Of these, only
U-937 cells expressed barely detectable c-sis mRNA after
TPA treatment (less than 10% the amount seen in K-562
cells) (data not shown). In itself, this finding is not surprising
since c-sis has been shown to be expressed in activated
monocytes (20). These data confirm that the c-sis expression
seen in TPA-treated K-562 cells is not due to a generalized,
nonspecific effect of TPA, but may instead occur in conjunc-

FIG. 4. Nuclear runoff transcription assay. Lanes: a, control
K-562 cells; b, K-562 cells treated with TPA for 4 days.
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tion with the TPA-driven megakaryoblastic differentiation of
these cells.

Megakaryocytic differentiation of K-562 cells after TPA
treatment has been reported (24). Since megakaryocytes are
very difficult to obtain, we took advantage of the ability of
TPA to induce megakaryocytic differentiation in K-562 cells
to study expression of the c-sis gene. The induction of c-sis
transcription is an early event in the differentiation of K-562
cells, even though the highest amount of c-sis mRNA is
detectable 4 days after the addition of TPA. If TPA is
mimicking endogenous or exogenous factors initiating nor-
mal bone marrow stem cell differentiation toward the
megakaryocytic lineage (19), induction of c-sis transcription
may be a very early event in this process. The data reported
here are the first demonstrating the induction of c-sis in a
previously transcriptionally silent cell and describe a suit-
able system for the study of mechanisms regulating expres-
sion of this oncogene.

We thank Keith C. Robbins for kindly providing mRNA from
glioblastoma cell lines and for his helpful discussions.
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