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Abstract
We report a facilitatory role of inhibitory synaptic input that can enhance a neuron’s firing rate, in
contrast to the conventional belief that inhibition suppresses firing. We study this phenomenon
using the Hodgkin-Huxley model of spike generation with random Poisson trains of subthreshold
excitatory and inhibitory inputs. Enhancement occurs when, by chance, brief inhibition leads
excitation with a favorable timing and counterintuitively induces a reduction of the spike
threshold. The basic mechanism is also illustrated with the phase-plane analysis of a two variable
model.

Inhibitory synaptic inputs play an important role in generating collective neuronal
mechanisms of synchronization [1–3], wave propagation [4], chaos [5,6], asynchronous
behavior [7], persistent states [8,9], neural oscillations [10], and a formation of cluster states
[11]. At the single neuron level, inhibition is also effective in gain control of neuronal
signals [12] and temporal sensitivity to coincident inputs [13]. In the classical view, an
inhibitory input hyperpolarizes the membrane away from its spike threshold resulting in a
reduction of the spike probability. Thus inhibition has conventionally been viewed as a
suppressor of neuronal response [14–17], and, in particular, causing either divisive or
subtractive effect on the output firing rate [14]. But inhibition playing a facilitatory role was
recognized about 50 years ago [18,19], to the best of our knowledge, in the form of
postinhibitory rebound [PIR] and is thought to play a major role in central pattern generator
networks [20]. In PIR a neuron fires after being released from a long-lasting hyperpolarizing
input. Here we report a facilitatory mechanism by which brief inhibitory inputs can, in
contrast to the conventional belief, enhance firing probability during ongoing stimulation by
trains of brief excitatory inputs. Unlike PIR, this mechanism does not require that an
inhibitory input by itself leads to a rebound spike. In our case both the excitatory and
inhibitory single inputs are subthreshold in magnitude.

We study this phenomenon using a Hodgkin-Huxley model neuron [21] with external
excitatory and inhibitory input conductances. The inputs are subthreshold α functions timed
at random independent Poisson intervals. For pure excitatory driving, the neuron responds
with a finite output rate due to temporal summation of nearly coincident inputs. When
inhibitory inputs are included some spikes are lost but other ones are added. With respect to
the onset time of these evoked spikes, inhibitory events form a temporally localized
distribution leading ahead of a similar distribution of excitatory events. The leading
inhibition can transiently reduce the spike threshold, and a well timed brief subthreshold
excitation can utilize this to evoke a spike. We term this phenomenon as the postinhibitory
facilitation (PIF) [22]. The enhanced output response could also consist of inhibitory events
that are paired with another set of inhibitory events displaying PIR for temporally brief
inputs. Our result stresses the importance of the timing of the prespike input events rather
than postspike [23,24] or the diffusion process response [25] of the membrane.
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Experimentally, some neurons’ firing probability and precision in response to excitatory
synaptic input is enhanced by a preceding fast inhibition [26].

The membrane potential of the Hodgkin-Huxley model evolves according to the following
equation [21,36]: CmV̇ =−INa − IK − IL − Isyn, where INa[=GNam3h(V −ENa)], IK[= GK

n4
(V

− EK)], and IL[= GL (V − El)] are, respectively, sodium, potassium, and leakage currents
through the membrane. The gating variables, activation m, and inactivation h of the sodium
current and activation n of the potassium current, evolve according to ẋ = αx(1−x)− βxx,
where x = m, h, and n. h and n are feedback variables. The rates αx and βx are voltage
dependent, and are expressed via standard formulation [21,27]. The total synaptic current
Isyn(=Iex + Iinh) is the sum [Σjiex(t −tj) + Σjiinh(t −tj)] of individual events of excitatory
[iex(t)=Gex(t/τex)exp(1−t/τex)(V −Eex)H(t)] and inhibitory [iinh(t)=Ginh(t/τinh)exp(1−t/τinh)
(V −Einh)H(t)] α-function synaptic currents, that are generated at times tj determined by
independent random Poisson processes each with a rate λ. Gex and Ginh (measured in mS/
cm2) are the peak conductances, and τex and τinh (measured in ms) are the time constants of
excitatory and inhibitory synaptic currents. For finding reverse correlations and input arrival
distributions about 250 000 action potentials per integration were generated in a typical run.
The model’s response is described by the average firing rate, i.e., the number of evoked
action potentials per second. For our long integration times, this quantity relaxes to a steady
state and the errors in the mean firing rate can be neglected.

An individual input iex(t −tj) is subthreshold. However, spikes are evoked during trains of
inputs, e.g., when two or more inputs are nearly coincident if their arrival times fall within a
window tw whose width depends on the strength of the input. For an input strength of Gex
=0.05 and τex =1 ms, the window’s width is tw =2.24 ms. An excitatory input train with
λ=100 Hz produces a firing pattern with a mean firing rate of 19.3 Hz. When a train of
inhibitory synaptic inputs is added to this, however, more spikes occur [Fig. 1(a)] than
before. For Ginh =0.5, the spike rate is enhanced by 15% (22.3 Hz) and for Ginh =1.0, it is
further enhanced by a total of 28% (24.7 Hz). For further increments in Ginh, the mean firing
rate plateaus (explained later). In contrast, a suppression of the spike rate with Ginh would
occur if the membrane received a suprathreshold excitatory signal [shown in Fig. 1(b)]. The
inhibition-induced enhancement of a firing rate for subthreshold excitatory inputs is the
major result of our paper. The voltage reverse correlations, in the presence of inhibition,
show a noticeable depression several milliseconds before the spike onset [Fig. 1(c)]. For
example, for Ginh =1 and τinh =1 ms this depression occurs at a spike-preceding time of td
=7.4 ms and increases in depth with Ginh. This is indicative of the effect of inhibition either
before or around td. As we will see for the present membrane whose effective membrane
time constant is 0.86 ms, inhibition is indeed distributed with a finite width around td. Thus
the enhanced firing is evidenced by the role of inhibition in the voltage reverse correlations.
In the rest of the paper we describe the mechanisms that contribute to such an enhancement.
From Fig. 1(a) we see that each output spike in the absence of inhibition is preceded by a
sequence of excitatory arrivals with a leading ee pair. Some of these ee-caused spikes are
eliminated in the presence of inhibition, and thus their contribution to the total spike rate is
reduced. Also in the presence of inhibition, many of the spikes are preceded by a sequence
of e and i combinations led by an ie pair. That is, these spikes are generated by an excitatory
arrival (e) with a leading and well timed inhibitory arrival (i). This is an important
observation. Some spikes are also caused by a leading ii pair and a very small fraction could
also appear to have come from leading ei pairs. For the time windows of relevance for our
input, the first two arrivals preceding a spike would be more effective to either induce or
inhibit a spike. We present in Fig. 2(a) the relative contributions of these spike-causing pairs
to the total spike rate. The effect of the ee contribution has decreased as expected in the
presence of inhibition, but a prominent contribution is coming from ie pairs. As the strength
of inhibition is increased, more and more ie pairs that were previously too far apart now
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become capable of causing spikes and the resultant contribution to the total spike rate
increases. However, the number of such pairs is limited by the input arrival rate. Thus an
increasing Ginh recruits these pairs up to the maximum available number resulting in a
saturation of the spike rate.

How does a favorably timed inhibitory input that precedes a subthreshold excitatory input
lead to a spike? To address this question, we consider a resting membrane and subject it to
an isolated pair of subthreshold excitatory and leading inhibitory input conductances [Fig.
2(b)]. As the lead time of inhibition (δ) is increased from 0 to a large value the membrane
passes through a phase of hyperexcitability (time window, gray in figure) that resulted in a
spike. The depression in the reverse correlations [Fig. 1(c)] is associated with the time range
provided by this window that acquires the hyper-excitable nature due to a transient decrease
in effective negative feedback of the system.

When the inputs are random, the arrival times of these i and e inputs are distributed with
their time differences falling approximately in the window for hyperexcitability [Fig. 3(a)].
The phase of hyperexcitability occurs after the i-input, ginh(t), has mostly decayed. Thus as
τinh increases and ginh(t) decays slower, the window for pairs shifts to larger δ values.
Correspondingly, for the random input case, the distribution of favorable timings shifts to
larger δ [Fig. 3(a)]. The mean of the distribution is shown in Fig. 3(b) (as filled circles) as a
function of τinh. The points corresponding to 10% of the peak values are also marked for a
few τinh values. As τinh increases, the recovery time of the membrane subsequent to, for
example, a single isolated inhibitory input takes longer. In the present model, such a
recovery is accompanied by an overshoot (due to a transient reduction of dynamic negative
feedback in the system) of the membrane voltage above the rest level, Vrest. The time t* at
which V crosses Vrest upwardly depends continuously on τinh [solid line in Fig. 3(b)] and
nearly coincides with the mean of the ie relative timing distributions. The finite spread of
these distributions is reminiscent of the finite width of the excitable region shown in Fig. 2
(b), and this latter region is shown here again [gray in Fig. 3(b)] but now as a function of
τinh. The width and extent of this gray PIF region (and thus the relative ie timing distribution
widths) can be controlled by the level of Gex. The relative hyperexcitability (i.e., effective
threshold reduction), which is also reflected by the relative heights of the distributions,
varies across the PIF window; it is dynamic and also depends on τinh. For example, at the
point indicated by “+” (τinh =1 ms, δ=6.5 ms) a spike can be elicited with a Gex value that is
only 30% of the amount needed from rest.

What actual biophysical mechanism is behind the enhancement phenomenon? To address
this question we reduce the full model equations to a two-variable model [37] described by
CV̇ =− Ifast(V) − GK

n4
(V − EK)− Isyn, ṅ = αn(1 − n) − βnn, where

. And n is the negative feedback variable. The rest state at
−60 mV is a focus, as in the full system, and as visualized in this phase plane (Fig. 4). In this
reduced model, excitability corresponds to a spike-upstroke trajectory which is generated by
a transient input that drives the V-n trajectory across the stable manifold (SMF) of the
saddle. The SMF is the unique pair of phase plane trajectories (marked with double arrows
in the figure) that enter the saddle point. Note that a SMF crossing could be evoked from a
leftward-driving or rightward-driving stimulus. During a transient input, the V nullcline (i.e.,
the curve on which V̇ =0) and the SMF move dynamically; then, after the stimulus, the
phase point moves along the flow lines of the resting system. An inhibitory input that is
faster than the intrinsic relaxation time scale perturbs the phase point with nullclines and
SMF virtually returned to their “resting” positions. For inputs that would be subthreshold
from rest, there still are two mechanisms by which a spike upstroke can be achieved by
temporally sequencing such inputs. For a subthreshold inhibitory input, the trajectory returns
to the focus in a spiral (solid curve). If during this return toward rest the brief excitation (that
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would be subthreshold if applied at rest) is delivered (δ ms later, say at the point labeled δ in
Fig. 4 inset) when the trajectory is close to the SMF the phase point is pushed rightward
across the SMF and a spike results. For a given strength of inhibition, as before, a range of
such favorable times (marked by the thick portion on the solid curve) can be found that
define the δ-window where the spike threshold is effectively reduced and where PIF may
occur. During some phases of this window the membrane is depolarized or hyperpolarized
relative to rest [cf, t* in Fig. 3(b)]. The transient reduction in threshold for a brief input
depends on the instantaneous value of V and on the membrane resistance. The reduced value
of n means increased resistance which enhances the effect of an input. Being closer
horizontally to the SMF means less input is required for spike generation (for a given
resistance). In some phases both factors contribute positively. The second mechanism (PIR)
by which the trajectory can cross over the SMF is by using, instead of a delayed excitation, a
second inhibitory input given d ms later. In this case, the trajectory crosses the manifold
from right to left. Note that the counterclockwise flow during and after the inhibition leads
to a trajectory along which during some phases the neuron is hyperexcitable (thickened
portion, in Fig. 4 inset). Eventually the behavior of this trajectory locally is governed by the
eigenstructure of the rest state. For this V-n model (in Fig. 4) and the full Hodgkin-Huxley
model the rest state acts as a damped oscillator [29]. However, the counterclockwise flow
does not require that the rest state be a focus and could persist even if it has a nodal structure
[28]. For example, increasing GL somewhat in the full and the reduced models changes the
rest state structure from a resonator [30] to a nonresonator, but does not eliminate the
counterclockwise flow or PIF.

Using biophysical Hodgkin-Huxley model equations, we have shown that brief inhibitory
synaptic inputs that are usually associated with spike-rate suppression can, in fact, enhance
the spike rate. The enhancement of firing probability stems from favorable temporal pairings
of inhibitory inputs with subthreshold excitatory inputs. Such pairings will occur in any
neuronal system that is subjected to random inputs. Of course, some neurons or models will
show less (or more) hyperexcitability. But surprisingly, previous studies have not considered
these per chance timing effects between random excitatory and inhibitory inputs on the
output response. This could partly be due to the fact that studies of response to stochastic
input are often carried out with more analytically tractable leaky integrate-and-fire (LIF)
type one-variable models. The LIF, for example, disallows the PIF mechanism since it has
no negative feedback variable that could be transiently reduced from rest in response to an
inhibitory input. The LIF formalism may be insufficient to capture the full implications of
fast inhibition and may have to be modified appropriately. Our results carry implications for
the role of fast inhibition both in recurrent networks and in feedforward contexts, say, in
sensory pathways. Random brief inhibition could upregulate the spontaneous firing of
sensory neurons, many of which have high spontaneous activity. We are reporting separately
[28] experimental in vitro evidence for PIF behavior in auditory brain stem neurons, in
circuitry where inhibition can be quite fast. The coincidence detecting sensitivity of such
neurons, that carry out the neural computation for sound localization, is shaped by fast
inhibition [13]. Recent in vitro studies have revealed that fast inhibition can promote
synchronization and rhythmogenesis among neurons in hippocampal circuits [31] and in the
subthalamic nucleus [26]. In the latter case, the timing of inhibition before excitation was
shown to be especially effective. Suggestions that the transient hyperpolarizing current that
preceded depolarizing input contributes to spike firing have been made based on reverse
correlation analysis of random inputs and firings [32–34]. Our own theoretical extensions of
the PIF phenomenon to the network level with noisy inputs showed that PIF mediated the
onset of synchrony as well as an increase of the network’s frequency over control levels
[35]. Our findings of the enhancement to firing probability (by per chance PIF events)
should be considered in seeking to interpret the roles by brief inhibition in such networks.
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FIG. 1.
Enhancement due to inhibition. (a) Membrane response without and with inhibitory input.
The excitatory (e) and inhibitory (i) input arrival times are marked, respectively, by upward
and downward vertical lines. Well timed ie pairs marked with dots induce additional spikes
(Gex =0.050. (b) The normalized spike rate as a function of Ginh showing enhancement of
the firing rate for a subthreshold excitation (Gex =0.05) and suppression for a suprathreshold
excitation (Gex =0.1). (c) Reverse correlations of V showing a depression with increasing
inhibition (Gex =0.05). (For all figures τex =1 ms, τinh =1 ms, and when applicable λ =100
Hz.)
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FIG. 2.
(a) Breakdown of the total spike rate (normalized to control, 19.3Hz) into four contributors.
The ie pairs contribute to most of the enhancement overcoming the ee losses. (b) A precisely
timed ie pair can evoke a spike in a resting membrane: an excitatory input is given at t =30
ms, and an inhibitory input preceding it by δ ms (Ginh =1). (Gex =0.05.)

Dodla and Rinzel Page 7

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 June 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 3.
(Color online) δ-window distributions and comparison with response to isolated ie pairs. (a)
Distribution of relative timing of i with respect to e immediately preceding a spike onset for
different τinh. (b) The mean values of these distributions are plotted (as filled circles) as a
function of τinh. The gray region shows the parametric dependence of the width of
hypersensitive region shown in 2(b). The solid curve distinguishes two subregions where V
> Vrest (gray portion with δ > t*, see text) and where V < Vrest (δ < t*) following an isolated
inhibitory input. See text for other markings.

Dodla and Rinzel Page 8

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 June 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 4.
(Color online) Demonstration of PIF and PIR in a 2D reduced model. Three trajectories
emerging from the rest state in the direction of arrows are shown corresponding to a lone
inhibition delivered at t =0 (solid curve, subthreshold oscillation), an inhibition (at t =0)
followed by an identical inhibition delivered d(=3) ms later (dot-dashed curve, PIR), and an
inhibition (at t =0) followed by an excitation delivered δ(=8)ms later (dashed curve, PIF).
The thick portion of the solid curve indicates the reduced threshold region in which PIF may
occur. (Gex =0.05, Ginh =1.)
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