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ABSTRACT

Identification and quantification of small RNAs are challenging because of their short length, high sequence similarities within
microRNA (miRNA) families, and the existence of miRNA isoforms and O-methyl 3′ modifications. In this study, the detection
performance of three high-throughput commercial platforms, Agilent and Affymetrix microarrays and Illumina next-generation
sequencing, was systematically and comprehensively compared. The ability to detect miRNAs was shown to depend strongly
on the platform and on miRNA modifications and sequence. Using synthetic transcripts, including mature, precursor, and O-
methyl-modified miRNAs spiked into human RNA, a large intensity variation in all spiked-in miRNAs and a reduced capacity in
detecting O-methyl-modified miRNAs were observed between the tested platforms. In addition, endogenous human miRNA
expression levels were assessed across the platforms. Detected miRNA expression levels were not consistent between
platforms. Although biases in miRNA detection were previously described, here the end-point result, i.e., detection intensity,
of these biases was investigated on multiple platforms in a controlled fashion. A detailed exploration of a large number of
attributes, including base composition, sequence structure, and isoform miRNA attributes, suggests their impact on miRNA
expression detection level. This study provides a basis for understanding the attributes that should be considered to adjust
platform-dependent detection biases.
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INTRODUCTION

Small RNAs (sRNAs) are known to play an important regu-
latory role in a wide range of organisms in many biologi-
cal processes, such as gametogenesis, embryo development,
cell differentiation, growth/proliferation, defense, migra-
tion, and apoptosis/death via regulation of expression of a
diverse array of genes (Ghildiyal and Zamore 2009; Zhang
2009; Karginov and Hannon 2010). In addition, they have
been shown to regulate cellular processes by affecting chro-
matin modifications in animals and plants (Bourc’his and
Voinnet 2010), fertilization, and early zygotic development
(Lejeune and Allshire 2011; Simon and Meyers 2011).
Recent studies have also established their increasing impact
on disease states, as manifested by aberrant sRNA expression
profiles in cancer as well as in neurological and cardiovascu-
lar diseases (Chang and Mendell 2007; Esteller 2011). Since
sRNAs have been proposed to constitute potential biomark-
ers, it is of extreme importance to detect and quantify their

differential expression accurately (Schöler et al. 2010; Li et
al. 2012).
Several classes of sRNA have been identified, including

microRNAs (miRNAs), small interfering RNAs (siRNAs),
and Piwi-interacting RNAs (piRNAs), all of which modulate
mRNA expression by physically binding to specific targets.
While they differ in their biogenesis, their modes of target
regulation, and in the biological pathways they regulate, all
sRNAs are characterized by a 5′ phosphate and a 3′ hydroxyl
group. A previously characterized modification, 2′-O-methyl
at the 3′ terminus, can be found in plant miRNA and in
piRNAs and siRNAs of other organisms (Ghildiyal and
Zamore 2009).
The primary miRNA is processed by the Drosha enzyme,

releasing an ∼70-nt precursor that is subsequently processed
by the Dicer enzyme to result in a mature ∼22-nt product.
miRNA precursors have been detected in cell lines and tis-
sues and have been suggested as potential disease markers
(Schmittgen et al. 2008; O’Hara et al. 2009). The quantity
of mature miRNA does not necessarily correlate with the
quantity of its precursor, due to divergent and unique regu-
lation processes individually influencing each molecule
(Chugh and Dittmer 2012).
Profiling of mature miRNAs and their precursors has

an important role in elucidating the regulatory networks in
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which they are involved. Real-time qPCR (Shi and Chiang
2005), microarray hybridization (Yin et al. 2008), and next-
generation sequencing (NGS) technologies (Fox et al. 2009)
have been used to identify and quantify miRNAs. All these
miRNA profiling methods face unique challenges, due to
several miRNA characteristics: (1) mature miRNAs are very
short; (2) miRNAs share high sequence homology within
families, with as low as 1 base difference; (3) miRNAs are
known tohave a largenumberof isoformsdue toRNAediting,
single nucleotide, and length polymorphisms. All the above
present obstacles for primer or probe design and hybridiza-
tion in microarrays or qPCR (for review, see Chugh and
Dittmer 2012; Pritchard et al. 2012). In NGS, sequence sim-
ilarity of miRNAs may cause a problem in discriminating be-
tween miRNAs due to PCR and sequencing errors. The short
and variable length of miRNA reduces the ability to accurate-
ly identify the border between the miRNA and the adaptor.

NGS of miRNAs is coming into wider use and provides
unmatched efficacy in discovering and detecting miRNAs.
However, the library preparation methods used in NGS seem
to have systematic biased representation of the miRNAs
(Linsen et al. 2009; Tian et al. 2010; Hafner et al. 2011; Van
Nieuwerburgh et al. 2011). These biases can be introduced
during ligation, cDNA synthesis, and PCR amplification.
Biases in microarrays can be caused during labeling and
hybridization (Bissels et al. 2009; Willenbrock et al. 2009).
In addition, it has been reported that several enzymatic reac-
tions are less efficient on 2′-O-methyl-modified miRNAs and
can result in under-representation of the modified miRNAs
in quantification experiments (Ebhardt et al. 2005; Munafó
and Robb 2010).

Several studies have compared the ability of microarrays
andNGS tomeasure differentialmiRNAexpression (Fahlgren
et al. 2009; Willenbrock et al. 2009; Git et al. 2010). Willen-
brock et al. (2009) compared microarrays (Exiqon) to NGS
(Illumina Genome Analyzer II) by sequencing 16 pools of
744 synthetic human miRNAs using both methods. The
investigators conclude that microarrays better reflect the
spiked-in quantities and that both methods are equivalent
in reproducibility and relative ratio quantification. Fahlgren
et al. (2009) separately introduced three synthetic oligoribo-
nucleotides (21 bases) mimicking miRNAs to Arabidopsis
RNA samples and then sequenced the samples by NGS. The
different spiked-in molecules were found to have varied effi-
ciency of sequencing.

However, a comprehensive study inwhich specificmiRNAs
at known concentrations were spiked in andmeasured within
a real biological background has not been performed. The
present study undertook an integrative technological ap-
proach to compare three high-throughput commercial plat-
forms: Agilent, Affymetrix, and Illumina NGS, in their
efficacy of miRNA detection. To the best of our knowledge,
this is the first study to evaluate 2′-O-methyl-modified
miRNA quantification and to assess whether the presence
of precursor miRNA interferes with mature miRNA quanti-

fication. For this purpose, human precursor, 2′-O-methyl-
modified, and mature spiked-in miRNAs were artificially in-
troduced, in a controlled fashion, into native human total
RNA samples. This study comprehensively and systematically
compared the efficiency of the three platforms in quantifying
a large number of endogenous miRNA and thoroughly ex-
plored numerous factors influencing quantification dispari-
ties, using the most recent laboratory protocols.

RESULTS

The primary goal of this analysis was to compare the
strengths and weaknesses of three widely used high-through-
put commercial platforms, namely, Agilent and Affymetrix
microarrays and Illumina NGS, for miRNA analysis. This
was performed by spiking biological samples with artificial
transcripts, in which the relative abundance of spiked-in
miRNAs is predetermined. Precursor, 2′-O-methyl-modi-
fied, and mature miRNAs were spiked in to total native hu-
man RNA at various concentrations. A basic assessment of
spiked-in miRNA detection slopes and fold changes between
the administered concentrations was performed. Next, the
large number of total RNA replicates containing endogenous
miRNAs served as a sound basis for comparing the detection
abilities of the three platforms and to uncover the factors in-
fluencing detection.

Mature spiked-in miRNA behavior

Twelve synthetic transcripts were spiked in to human pla-
centa total RNA, at known input amounts. These transcripts
included six mature miRNAs (hsa-miR-147, hsa-miR-338-
3p, hsa-miR-383, hsa-miR-211, hsa-miR-219-5p, and hsa-
miR-429), three precursor miRNAs (hsa-miR-147, hsa-
miR-338-3p, and hsa-miR-383), and three miRNAs carrying
an O-methyl 3′ modification (hsa-miR-211, hsa-miR-219-
5p, and hsa-miR-429). All spiked-in miRNAs were selected
based on prior knowledge that they endogenously occur
in human placenta at quantities below the power of micro-
array detection (Sah et al. 2010). Six mixes were prepared,
three of which contained the mature miRNAs spiked at
various concentrations, while the others contained a com-
bination of precursor and modified miRNA sequences.
Each mix contained 1, 10, or 100 fmol of any given compo-
nent (Table 1). A control mix containing only native total
RNA was added. The entire mix design was repeated in two
biological replicates. The starting material used in all plat-
forms was identical.
Linear correlations were found between the amounts of

spiked-in miRNA detected (Supplemental Table 5) and the
actual amounts added to total RNA samples (Fig. 1). The lin-
ear correlations were high and similar among the three plat-
forms, spanning between 0.97 and 1. The slope of the linear
fits was between 0.57 and 1.01 in Affymetrix, between 0.9
and 1.4 in NGS and between 0.9 and 1.3 in Agilent. The
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fluorescence intensities and normalized reads (rpm) ob-
tained for different spikes at the same concentration varied
up to 500-fold in Affymetrix (Fig. 1A), 10-fold in NGS
(Fig. 1B), and fivefold in Agilent (Fig. 1C) platforms. These
variations were miRNA dependent and/or platform depen-
dent, e.g., miRNA 383 showed high detection values in all
tested platforms (miRNA dependent), while detection values
ofmiRNA 338-5p were platform dependent (Fig. 1). All coef-
ficients of variance were below 0.15, with the single exception
of the Affymetrix platform (Supplemental Table 5), indicat-
ing reasonable reproducibility of the spiked-inmiRNA detec-
tion values. Since all mixes were prepared simultaneously
and the same batch was used for all platforms, the variation
observed is not a result of technical issues. The spiked-in
miRNA at 0.1 fmol lies within the lower end of the detection
threshold of the Agilent platform (Fig. 1C). For Affymetrix
and NGS, the scattering of the intensity signals was observed
for all three tested concentrations of spiked-in miRNA (Fig.
1A,B).
When comparing miRNA expression between samples,

differentially expressed genes are usually defined as those un-
dergoing statistically significant changes, with a fold change
of ≥1.5. In the present setup, the miRNA to be detected
was introduced at concentrations with 10-fold incremental
differences; however, the detected differences were as low
as 1.8-fold and as high as 47-fold, when using Affymetrix ar-
rays, some of which were not statistically significant. NGS
and Agilent detected fold changes ranging 6.0–32.7 and
4.8–30.2, respectively. Agilent was found to be the most ac-
curate platform in comparing the 1- and 10-fmol spiked-in
miRNAs, showing the smallest standard deviations (3.2) in
the fold change means (10.7) (Fig. 2A).

Precursor miRNA detection

The ability of the three detection platforms to discern be-
tween mature and precursor miRNA was then evaluated.
Spiked-in miRNA precursors were detected by all three plat-

forms. As for mature and modified
miRNAs, the detection was miRNA and
platform specific. Less than 8% of the
mature miRNA signal was detected by
Agilent, and <5% by NGS, but 0.6%–

73% by Affymetrix (Fig. 3B; Supplemen-
tal Table S2). Since Affymetrix arrays in-
clude probe sets that are designed to
specially bind precursors, the hybridiza-
tion intensity of the spiked-in precursor
miRNAs with these probes was assessed.
The three precursors were detected to
similar degrees (Supplemental Fig. S1),
which resembled those seen for detec-
tion of the mature spiked-in miRNA
using mature miRNA probes. Two en-
dogenous miRNA precursors were de-

tected at similar levels as the highest concentrations of their
spiked-in precursors hsa-mir-516a and hsa-mir-525 (data
not shown).
The spiked-in miRNAs precursor fold changes were calcu-

lated using the mature miRNA probes. Because the intensity

TABLE 1. Experimental design of the sample mixes

Spike Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7

hsa-miR-147 0.1 1 10 0
hsa-miR-211 1 10 0.1 0
hsa-miR-219-5p 10 0.1 1 0
hsa-miR-338-3p 0.1 1 10 0
hsa-miR-383 1 10 0.1 0
hsa-miR-429 10 0.1 1 0
Precursor hsa-miR-147 0.1 1 10 0
Precursor hsa-miR-338-3p 1 10 0.1 0
Precursor hsa-miR-383 10 0.1 1 0
O-Methyl hsa-miR-211 0.1 1 10 0
O-Methyl hsa-miR-219-5p 1 10 0.1 0
O-Methyl hsa-miR-429 10 0.1 1 0

The numbers are femtomoles of spiked oligos per 1 μg of total RNA.

FIGURE 1. Scatterplots of the amounts of mature spiked-in miRNAs
and the observed intensities, in log (base 10) scale on the (A) Affymetrix,
(B) NGS, and (C) Agilent platforms.

Differences in miRNA detection levels
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values were low (Supplemental Table 5), the fold changes
were unreliable (Fig. 2B).

O-Methyl-modified miRNAs detection

O-Methyl is a 3′ modification known to exist in several classes
of sRNAs. The ability to detect such modified miRNAs was
evaluated in each platform. Ideally, modified miRNAs should
be detected just as effectively as unmodified miRNAs. Thus,
the hybridization intensity and the number of reads observed
for spiked-in O-methyl-modified miRNAs were examined
and compared to their matching spiked-in mature miRNAs.
The Agilent and NGS platforms demonstrated decreased sen-
sitivity toward O-methyl-modified miRNAs when compared
with their mature miRNA counterparts, with signals as
low as 6% of those measured for mature miRNA (Fig. 3A;
Supplemental Table S2). This decrease seemed to be miRNA
and platform specific; for example, inconsistent changes
were recorded for O-methyl-modified miRNA-211, which
seemingly underwent a most prominent decrease, as detected
by Agilent, yet was better detected by Affymetrix than mature
miRNA. Despite these inconsistencies in detection power, the
linearity for serial dilutions was preserved (data not shown).

Overall, the spiked-in O-methyl-modified miRNAs’ fold
change values were close to their expected values (Fig. 2C).
However, in the Affymetrix platform, some of the fold
change values were not statistically significant.

FIGURE 2. Fold change differences between the spiked-in miRNA amounts in the three platforms for (A) mature miRNAs, (B) precursors, and (C)
O-methyl 3′-modified miRNAs. In the fold change comparison headers, the numbers represent femtomole per 1 μg of total RNA. The symbol † in-
dicates non-statistically significant fold change values (FDR). (GEO Mean) Geometric mean; (ST DEV) standard deviation.

FIGURE 3. Histogram showing the detection intensity level of
the spiked-in (A) O-methyl 3′-modified miRNAs and (B) precursor
spiked-in miRNA, as a percentage of the mature matching spiked-in
miRNA. The amounts of the spiked-in miRNAs are in femtomoles/mi-
crogram of RNA. The thick line indicates the detection intensity level of
the spiked-in mature miRNA. (∗) A value of 416.
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Comparison of endogenous mature miRNA expression

To better understand the influence of specific platforms on
miRNA quantification, the reproducibility of the measured
endogenous miRNA intensities, as observed by the three
platforms, was evaluated. The log-normalized intensities of
miRNAs above background fromboth theAgilent (500 differ-
ent miRNAs) and Affymetrix (497 miRNAs) analyses were
used, along with the log rpm values of the NGS output (640
miRNAs), which had at least five reads in at least one of the
14 libraries. This resulted in 326 overlapping miRNAs (Fig.
4A) and included the six miRNAs that were spiked in. NGS
detected the largest number of miRNAs, since it is dependent
on the currently available annotation database for the align-
ment, and not on the probes present on the microarray.
The correlations between expression intensities detected

by each platform for the 320 miRNAs remaining after exclu-

sion of the spiked-in miRNAs are expected to be high, since
all the samples were prepared from the same tissue. Although
the Spearman correlations were high within each platform
(>0.9) (Fig. 4B), there were clear differences between the
three platforms. The correlation between NGS and Agilent
platforms was higher than between either of them and Affy-
metrix. The Spearman correlation between NGS and Agilent
was 0.68, 0.57 between NGS and Affymetrix, and 0.58 be-
tween Agilent and Affymetrix (Fig. 4C). The better agree-
ment between Agilent and NGS is also demonstrated in the
scatterplots.
Since each platform was normalized differently, the inten-

sities within each platform were ranked, to allow for compar-
isons. A complex picture emerged when partitioning the
miRNAs by K-means into clusters based on their ranked ex-
pression intensities (Fig. 5). Six clusters were identified: high
signals in NGS and low signals in Agilent (cluster 10), high in

FIGURE 4. (A) Venn diagram showing the overlap between expressed miRNAs (320 endogenous and six spiked-in miRNAs) in the three platforms.
(B) Heat map representing pairwise correlations between the 14 replicates in each platform, seven technical replicates for each biological replicate. (C)
Pairwise comparisons of the miRNA expression levels between the platforms. The correlations and scatterplots were performed using the geometric
mean of the expression levels of the 14 replicates for each miRNA. Correlation values (abovemain diagonal), histograms of expression values (main
diagonal), and scatterplots (below main diagonal) are shown.
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NGS and low in Affymetrix (cluster 30), low in NGS and high
in Agilent (cluster 11), high in Affymetrix and low in Agilent
(cluster 21), high in Agilent and low in Affymetrix (cluster
20), and high in Affymetrix and low in NGS (cluster 31)
(Supplemental Table 6). None of the miRNAs had similar
ranking across all platforms. Since the clustering method is
based on ranking, it is important to note that the distribution
of the intensities and the rpm in the three platforms has a
similar range andmedian (Fig. 4C, histograms; Supplemental

Fig. S2). The differences in ranking between NGS and Agilent
were smaller than the differences between either of them and
Affymetrix. In all the comparisons involving Affymetrix
(clusters 20, 21, 30, and 31), ∼70% of the rank differences
were >50 (Supplemental Fig. S3A). A Kruskal-Wallis test
was performed to examine the interplatform differences in
ranking. All rank differences were found to be statistically
significant (P-adjusted ≤0.022). The maximum absolute
pairwise rank difference between platforms was calculated
for each of the miRNAs within the clusters (Supplemental
Fig. S3B).
The miRNA sequences of the six clusters were used to cre-

ate a sequence logo in order to assess the impact of miRNA
sequence composition on the differences in gene expression
ranking between the clusters. The logos show the probability
of each base along the DNA sequence position, representing
the endogenous miRNAs (Fig. 6). The logos revealed that
miRNAs in the clusters ranked “low” by Affymetrix were
rich in thymine (T) (Fig. 6B,D), while miRNAs in the clusters
ranked as “high” by this same platform were rich in guanine
(G) (Fig. 6C,E). The logos of the clusters were similar for
NGS and Agilent platforms (data not shown). Logos were
also calculated using bits, and no specific position was found
to be conserved within a certain cluster (data not shown).
A detailed exploration of miRNA characteristics among

the six clusters was performed in efforts to discriminate be-
tween the clusters. For each miRNA, attributes related to
structure and composition were calculated, and attributes de-
rived from the NGS data, i.e., number of isoforms and vari-
ations from the canonical miRNA, were collected. For a
detailed list of the 32 attributes, see Materials and Methods.
A Kruskal-Wallis test was performed to compare the attribute

FIGURE 5. Heat map of six miRNAs clusters according to their expres-
sion level. For each miRNA, the expression values were standardized
by its median. The left-most columns are NGS log rpm, the middle are
Agilent log-normalized expression intensities, and the right-most col-
umns are the normalized log expression intensity Affymetrix values.
The arrows (↑↓) indicate high or low expression. (Affy) Affymetrix;
(Agi) Agilent.

FIGURE 6. Sequence logos for (A) the 320miRNAs present in all three platforms; (B) cluster 20, low in Affymetrix and high in Agilent; (C) cluster 21,
high in Affymetrix and low in Agilent; (D) cluster 30, low in Affymetrix and high in NGS; (E) cluster 31, high in Affymetrix and low in NGS. The
arrows (↑↓) indicate high or low expression.
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values between the clusters (Supplemental Table S3). The 12
attributes that were found to differ in at least one cluster
(Fig. 7) were tested between reciprocal clusters, such as
high in NGS and low in Affymetrix, low in NGS and high
in Affymetrix (Supplemental Table S4). Ten attributes (G,
T, A, GG, TT, GC, TA, mfold, mismatches, and 5′ insertions)
were significantly different between Agilent and Affymetrix,
nine of which overlapped with the NGS and Affymetrix com-
parison. The 5′-insertions attribute did not differ between
NGS and Affymetrix; however, the number of isoforms did.
Only three attributes differed between NGS and Agilent clus-
ter readings: GG, TT, and the number of isoforms.

Multinomial logistic regression model

The 12 attributes that were significantly different in at least
one cluster were used to build a model explaining intercluster
differences. A multinomial logistic regression was then per-
formed. The log of the number of isoforms was used to build
the model to obtain a more balanced distribution. Ten attri-
butes were found to be significant in themodel and can be ap-
plied to predict themiRNA cluster: percentages of single G, A,
and T bases and CC, TT, and GC dimers, as well as the mfold,
log of the number of isoforms, and the weighted means of
mismatches and 5′ insertions (Tables 2, 3). Table 4 demon-
strates that the clusters for >50% of the miRNA population
(predicted average of the correct cluster), spanning from
30.6% for “high in Agilent—low in NGS” to 68.1% for
“high in Affymetrix—low in NGS,” were correctly predicted.

It was difficult to distinguish between the
reciprocal NGS–Agilent clusters, as well
as between the two clusters in which
Affymetrix ranking was either high or
low. In a random situation, when each
cluster has the same probability, 17% ac-
curacy (100% divided by six clusters) in
cluster prediction would be expected.
Random prediction of the clusters can
be performed by calculating their proba-
bility according to the cluster abundance.
Using this method, probability of the
most abundant cluster, “high in Affy-
metrix—low in NGS,” comprising 94
miRNAs, would result in 29% accuracy.
In addition, a model validation was per-
formed by leave-ten-out cross-valida-
tion, which yielded a pattern similar to
the original model, with an average accu-
racy of 42% (Table 4).

DISCUSSION

miRNAs have essential roles in gene
expression regulation and have been pro-
posed to serve as diagnostic or prognostic

biomarkers in human diseases including cancer, and there-
fore it is critical to quantify them correctly (Hui et al. 2011).
Previous studies have demonstrated differences and biases
between various microarray platforms and between microar-
ray platforms and NGS in their ability to determine miRNA
expression profiles (Fahlgren et al. 2009; Willenbrock et al.
2009; Baker 2010; Git et al. 2010; Pradervand et al. 2010;
Sah et al. 2010). Although biases in miRNA detection were
previously described, here we investigated the end-point
result (detection intensity) of these biases in a controlled
fashion on multiple commercial platforms using the most
recent protocols. Furthermore, Affymetrix miRNA 2.0 array
and Illumina HiSeq 2000 have not yet been fully evaluated by
others for miRNA expression. This study focused on com-
parative quantification of more than 300 endogenously ex-
pressed miRNAs, and explored a large number of attributes
(32) that could explain the differences in platform perfor-
mance using a statistical model, allowing us to focus on the
12 most significant attributes. In addition, this study evaluat-
ed miRNA quantification using synthetic spiked-in mature,
O-methyl-modified, and precursor miRNA across the three
platforms. To the best of our knowledge, this is the first study
in which spiked-in modified and precursor miRNAs were
used to compare platform performance.
Significant differences in the ability to quantify mature

spiked-in miRNAs introduced at the same concentration
were observed between platforms; up to 500-fold in Affyme-
trix, 10-fold in NGS, and fivefold in Agilent. Agilent was
found to be the most accurate, as established by the tight

FIGURE 7. Boxplots of the 12 attributes that were found to be significantly different in pairwise
comparisons between the clusters. The x-axis shows the clusters. The y-axis shows the attribute
values (for more details, see Supplemental Table S6). The arrows (↑↓) indicate high or low expres-
sion. (Affy) Affymetrix; (Agi) Agilent.
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distribution of intensities detected for the six spiked-in ma-
ture miRNAs. The highest-ranked spiked-in mature miRNA
was different in each platform. This, together with the
Agilent platform performance, indicates that the differences
observed were not due to technical problems in sample and
mix preparations. These results stand in agreement with pre-
vious studies showing that the Agilent platform performs bet-
ter than other microarray platforms and than NGS (Git et al.
2010; Sah et al. 2010). The analysis of mature spiked-in
miRNAs indicates that in all platforms, including NGS, the
signal intensity does not directly infer the absolute amount
of miRNA, and therefore only relative abundance studies
are reliable with these platforms.

In all platforms, there was a strong correlation between
the amount of introduced mature spiked-in miRNA and
its detected signal. Agilent was most accurate in revealing
the 10-fold change in introduced miRNA concentration.
The ability to detect a relative fold change of 10 was shown
to be dependent on the platform, the specific miRNA, and
on its quantity. Usually, when determining differential ex-
pression between samples, one selects statistically significant

changes with a fold change of 1.5 or more
(Liu et al. 2012; Sokolov et al. 2012). The
present findings imply that the tested
technologies are not sufficiently sensitive
to detect concentration differences with-
in the range and the number of replicates
typically used for determining statistical
differences in expression; further valida-
tion methods would be required.
Interplatform miRNA quantification

signal discrepancies can stem from labo-
ratory procedures, array design and man-
ufacturing, detection hardware, intensity
signal extraction algorithms, and further
bioinformatics analysis. We assume that
the major factors responsible for the
observed differences are both the enzy-
matic reactions and an amplification
step carried out during sample prepara-
tion, as well as microarray probe design.
Microarray platforms are not expected
to indicate absolute concentrations of
miRNAs because of differences in hy-
bridization strength, cross-hybridization,
short miRNA length, and oftentimes in-
ability to design complementary micro-
array probes. It has been shown that
NGS suffers from base composition bias-
es (Hansen et al. 2010; Aird et al. 2011),
an effect observed in the present study
as well. RNA sample integrity, as well as
the precision of the miRNA band gel ex-
traction during the library preparation
for NGS, can influence miRNA detection

and can lead to detection of precursor as if it were a mature
miRNA.
Precursor miRNAs are expressed in and can be detected

under various biological conditions. Agilent and NGS were
not expected to detect precursor miRNAs and, indeed, the

TABLE 2. Model effects

Agi↑NGS↓ versus
NGS↑Agi↓

Agi↑Affy↓ versus
NGS↑Agi↓

Affy↑Agi↓ versus
NGS↑Agi↓

Coeff./SE RRR Coeff./SE RRR Coeff./SE RRR

Intercept −5/4.286 — −29.55/6.729∗∗∗ — 5.01/3.575 —

G 0.01/0.047 1.01 −0.02/0.062 0.98 0.07/0.038 1.07
T 0.06/0.072 1.06 0.45/0.105∗∗∗ 1.57 −0.09/0.061 0.91
TT 0.14/0.06∗ 1.15 0.17/0.068∗ 1.18 0/0.054 1
mfold −0.23/0.182 0.8 −0.36/0.242 0.7 0.15/0.153 1.16
GC 0.11/0.071 1.11 0.39/0.107∗∗∗ 1.48 0.09/0.059 1.1
A 0.11/0.06 1.11 0.44/0.088∗∗∗ 1.55 −0.08/0.051 0.92
CC 0.08/0.062 1.08 0.34/0.094∗∗∗ 1.4 −0.1/0.053 0.91
Isoforms (log) −0.64/0.203∗∗ 0.53 −0.32/0.248 0.73 −0.5/0.174∗∗ 0.6
Mismatch 6.07/3.742 433 10.51/4.38∗ 36736 5.57/3.929 262.91
5′ insertion 0.82/0.756 2.27 1.15/0.767 3.15 −0.02/0.82 0.99

NGS↑Affy↓ versus
NGS↑Agi↓

Affy↑NGS↓ versus
NGS↑Agi↓

Coeff/SE RRR Coeff/SE RRR

Intercept −6.2/4.068 — 1.63/3.464 —

G −0.08/0.046 0.92 0.09/0.038∗ 1.09
T 0.2/0.074∗∗ 1.22 −0.04/0.059 0.96
TT 0.04/0.061 1.04 0.04/0.053 1.04
mfold 0/0.208 1 0.18/0.152 1.2
GC 0.02/0.078 1.02 0.06/0.058 1.07
A 0.11/0.56 1.12 0.04/0.049 1.04
CC 0.07/0.067 0.93 0.04/0.052 0.96
Isoforms (log) −0.09/0.205 0.91 0.9/0.175∗∗∗ 0.41
Mismatch −44.55/0.058 0 −6.63/9.287 0
5′ insertion 0.82/0.756 1.41 0.041/0.759 1.51

(Coeff) Coefficient; (SE) Standard Error; (RRR) relative risk ratio.
The arrows (↑↓) indicate high or low expression. (Affy) Affymetrix; (Agi) Agilent.
Significance codes: (∗∗∗) 0; (∗∗) 0.001; (∗) 0.01.

TABLE 3. Analysis of deviance table (type II tests)

Attribute LR Chisq Df Pr(>Chisq)

G 19.942 5 0.001281∗∗

T 47.439 5 4.622 × 10−9∗∗∗

TT 12.852 5 0.024802∗

mfold 10.463 5 0.063120·

GC 18.847 5 0.002052∗∗

A 58.7 5 2.255 × 10−11∗∗∗

CC 33.084 5 3.622 × 10−6∗∗∗

Isoforms (log) 39.553 5 1.838 × 10−7∗∗∗

Mismatch 11.063 5 0.050150·

5′ insertion 26.282 5 7.868 × 10−5∗∗∗

(Df) Degrees of freedom. Significance codes: (∗∗∗) 0; (∗∗) 0.001; (∗)
0.01; (.) 0.05.
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amount of spiked-in precursor miRNA that was detected as if
it were mature was fairly low. However, at high concentra-
tions, precursor miRNA can be erroneously detected as ma-
ture. Spiked-in precursor miRNAs that are not endogenously
expressed were detected on the Affymetrix array by both ma-
ture and precursor miRNA probe sets, as expected. When a
signal is detected as both mature and precursor, determining
the correct ratio between the two is not trivial, and proper
algorithms should be developed. O-Methyl modification
results in a lack of change in signal detection efficacy to a dra-
matic drop in signal, down to 6% of signals measured for cor-
responding mature miRNA. This observation implies that
miRNAs with this modification, including plant miRNA,
piRNA, and siRNA, cannot be accurately quantified using
these platforms. Further research and protocol development
will be required to enable accurate detection of miRNAs with
this modification.
Analysis of the endogenous, non-spikedmiRNAs revealed a

stronger agreement in detection of mature miRNA between
the Agilent and NGS platforms than between either of them
and Affymetrix. miRNA clustering revealed that all miRNAs
are detected differently in at least two out of the three plat-
forms. The accumulated data suggest that theAffymetrix array
suffers from an over-representation of guanine-rich miRNAs
and from an under-representation of uracil-rich miRNAs.
This bias might be corrected by a normalization procedure
that account for the guanine and uracil content of the
miRNA. However, for this purpose, the probes sequence in-
formation should be public. Availability of probe sequence in-
formation would be most beneficial for the suggested
correction; however, to date, no such data are being shared.
NGS analysis of the miRNA sequences showed that, in

addition to the defined miRNA sequence, variants of the
sequence (isoforms) exist, as previously described by others
(Morin et al. 2008; Ebhardt et al. 2010; Lee et al. 2010).
Therefore, signal detection of a certain miRNAmight be mis-
leading due to the existence of miRNAs families and miRNA
isoforms. These miRNA variants were identified here by
NGS using analyses that retain the sequence information

along with its variants, and not merely
quantify the canonical mature miRNA.
The microarray platforms are designed
to detect the canonical miRNA, and
therefore it is not clear how well they
can detect all isoforms and distinguish
between members of miRNA families.
Since different isoforms might have dif-
ferent targets (Yang et al. 2006; Seitz
et al. 2008), the ability to distinguish be-
tween them is of functional relevance.
Therefore, microarray platforms must
be improved by adding probes matching
isoform sequences.

Analyses weighing the attributes that
influence the difference in ranking among

the platforms demonstrated that the Affymetrix platform had
a lower sensitivity, compared with the other two platforms,
for those miRNAs that have more isoforms, mismatches,
and 5′ insertions. These sample attributes are in addition to
the previously discussed base composition biases (Supple-
mental Table S4). Agilent was more permissive to mismatch-
es and 5′ insertions than Affymetrix. This can be explained by
the Agilent probe design that connects the probe to the glass
surface by a linker (Wang et al. 2007). The linker is suggested
to tolerate hybridization, even when the miRNA has a 5′ tail
that does not hybridize to the probe. The Agilent probes also
include a hairpin structure and an additional guanine that
matches a cytosine added to the 3′ of the miRNA during
the labeling procedure. Both probably stabilize miRNA bind-
ing and may allow for reasonable hybridization of diverse
miRNA isoforms. NGS does not depend on existing probes
and features a clear advantage in isoforms detection over mi-
croarray platforms. We suggest that in the analysis of the
spiked-in miRNA, Affymetrix had a lower performance due
to the probe design rather than the end labeling and lack of
PCR amplification, which are similar to Agilent laboratory
procedures. Biases in NGS might be influenced by the ampli-
fication performed in the library preparation. Yet, due to the
large number of factors involved in the laboratory procedure
until the final read out, further research is required to deter-
mine the contribution of each factor.
The model described here explaining the differences be-

tween the miRNA clusters can successfully predict the cluster
for 50% of the miRNAs.We suggest further using the defined
attributes, as well as additional ones, to correct the technol-
ogies’ biases and to allow more accurate quantification, as
was done for mRNA (Roberts et al. 2011; Hansen et al. 2012).

MATERIALS AND METHODS

Generation of pooled samples

Short RNA oligos with and without 3′-O-methyl modification were
purchased from IDT, at a 100 nM scale, and desalted. Long RNA

TABLE 4. Prediction power of the multinomial logistic regression model

Predicted
\actual NGS↑Agi↓ Agi↑NGS↓ Agi↑Affy↓ Affy↑Agi↓ NGS↑Affy↓ Affy↑NGS↓

NGS↑Agi↓ 32.6/34.9 11.1/5.6 3/3 8.2/6.9 14.6/12.2 7.5/7.5

Agi↑NGS↓ 7/7 30.6/8.3 6.1/6.1 1.4/4.1 2.4/4.9 2.1/4.3

Agi↑Affy↓ 0/0 13.9/16.7 66.7/51.5 0/0 17.1/19.5 2.1/3.2

Affy↑Agi↓ 25.6/18.6 13.9/19.4 0/3 49.3/38.4 4.9/7.3 16/18.1

NGS↑Affy↓ 16.3/11.6 19.4/13.9 18.2/24.2 4.1/0 51.2/39 4.3/6.4

Affy↑NGS↓ 18.6/27.9 11.1/36.1 6.1/12.1 37/50.7 9.8/17.1 68.1/60.6

The predicted values are in percentages: model based/cross-validation.
The arrows (↑↓) indicate high or low expression. (Affy) Affymetrix; (Agi) Agilent.
(Highlighted in gray) The correct prediction percentages for each cluster.
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oligos were purchased from Metabion at 200 nM scale and HPLC-
purified. Oligos were diluted to 50, 5, and 0.5 fmol/μL and mixed
with 5 μg of human placenta RNA (Ambion #AM7950) according
to Table 1, generating six mixes (mix 1–6) and a control sample
(mix 7) of native RNA without any spiked-in oligos. All dilutions
were prepared in duplicate, and each was mixed with separate batch-
es of placenta RNA to generate a biological replicate. All mixes were
prepared once and used for all platforms.

Agilent miRNA microarray labeling and hybridization

Each RNAmix (100 ng) was labeled using miRNA complete labeling
and the Hyb Kit (Agilent, 5190-0456), following the manufacturer’s
instructions. Briefly, RNA was dephosphorylated, labeled with Cy3-
pCp, and desalted using Micro Bio-Spin columns. Labeled RNAwas
hybridized with an 8 × 15 Human miRNA array rel 14 v2 (design
number 29297) at 55°C and 20 rpm for 20 h, and then washed ac-
cording to themanufacturer’s instructions. Scanning was performed
on an Agilent Scanner using 5 μM resolution.

Affymetrix miRNA microarray labeling and
hybridization and data preprocessing

Each RNAmix (500 ng) was labeled using the Flashtag RNA labeling
kit (Genisphere, HSR10FTA) according to the manufacturer’s in-
structions. Briefly, RNA underwent a poly(A) tailing reaction using
2.5 mMMnCl2, ATP, and poly(A) polymerase, followed by ligation
of the biotinylated 3DNA signal molecule to the RNA sample. Each
sample was hybridized to a GeneChip miRNA 2.0 Array (Affyme-
trix) at 48°C and 60 rpm for 16 h, then washed and stained on
Fluidics Station 450 (Fluidics script FS450_0003) and scanned on
a GeneChip Scanner 3000 7G (Affymetrix).

Illumina miRNA library construction and sequencing

Small RNA library construction from 5 μg of total RNA of each of
the 14 samples was carried out using the Illumina TruSeq smRNA
Sample Prep Kit, according to the manufacturer’s instructions.
Briefly, a 3′ adapter was ligated to total RNA using RNL2, followed
by 5′-adapter ligation, using T4 ligase. Reverse transcription with
SuperScript II generated cDNA, which was PCR-amplified and
size-selected on a gel and then purified. Sequencing was performed
on two lanes of HiSeq 2000 using v2 clustering and sequencing re-
agents; seven libraries were multiplexed on each lane. The sequenc-
ing was run using RTA 1.12.4.2 and analyzed by CASAVA-1.8.1.14,
resulting in 227.5 million passed filter single reads (11–21 million
reads per library), with a length of 50 bases.

Microarray gene expression data analysis

Statistical analysis of microarray data was performed using the
Partek Genomics Suite software (Partek Inc.). Affymetrix CEL files
(containing raw expression measurements) were imported in to
the Affymetrix miRNA QC tool and normalized using default
parameters. miRNAs showing normalized intensities under the
value of 3 were considered not to be expressed. GeneView.txt
files obtained from Agilent Feature Extraction Software 10.7.3.1
were used for data analysis of the Agilent platform. First, the inten-
sity of each miRNA signal was set as the maximum of either
“TotalGeneSignal” or the “TotalGeneError.” Then, the signal inten-

sities were log2-transformed and scaled by quantile normalization.
Only miRNAs that were detected according to the value in the
GeneView.txt file column “IsGeneDetected” were analyzed down-
stream. For each of the platforms, the normalized data were ex-
plored by Principal Component Analysis (PCA) and hierarchical
clustering to detect batch effects, which were corrected for using
the software defaults. To identify differentially expressed genes,
One-Way ANOVA was applied. Contrasts were calculated between
the different mixes. The false discovery rate (FDR) was used to cor-
rect for multiple comparisons (Benjamini and Hochberg 1995).

Bioinformatics analysis of small-RNA NGS data

For each library, sequences were collapsed into tags and quantified
using a UNIX command (egrep ‘(A|T|G|C|N){50}’ fastq_file|sort|
uniq -c|sort -nr). Tags were converted to a FASTA file along with
the frequency number. Perl scripts and the crossmatch tool (cross_
match -minmatch 10 -minscore 10 -screen; http://www.phrap.org/)
were used to screen and clip the adaptor sequence (TGGAATTCTC
GGGTGCCAAGGAACTCCAGTCACnnnnnnATCTCGTATGCCG
TCTTCTGCTTG) and then to update tag frequencies. Tags that ap-
peared at a frequency of five or more reads per library (about 90,000
tags) were normalized to reads per million (rpm). The tags were an-
notated using the best hit of BLAST 2.2.23 (-S -e 0.01 options)
(Altschul et al. 1990) and run against human mature or stem–loop
miRNA databases (downloaded from mirbase.org, release 18). The
frequency of reads matching each miRNA was calculated by summ-
ing the frequency of all the isoformsmatching themiRNA. Differen-
tial expression was calculated using the DESeq R package (Anders
and Huber 2010) from Bioconductor (http://bioconductor.org/
packages/release/bioc/html/DESeq.html).

Comparison of endogenous mature miRNAs
across the three platforms

The normalized log intensity values of mature miRNA probes that
were above background level in the microarray platforms were
combined with the log rpm of the mature miRNA from the NGS
analysis. This resulted in 326 miRNAs detected in all three plat-
forms, including the six spiked-in miRNAs. A Venn diagram was
made using the applet http://www.cs.kent.ac.uk/people/staff/pjr/
EulerVennCircles/EulerVennApplet.html. A Spearman correlation
matrix for all pairwise comparisons was calculated with Partek. In
addition, for each platform, the log of the geometric mean for all
14 replicates was calculated, and Spearman correlations of the
means were calculated using the R language. The 320 unspiked
miRNAs were partitioned by K-means into six clusters using ranked
Spearman dissimilarity (Partek).

We ranked 320 miRNA expression intensities of each replicate
within the platforms (14 replicates × 3 platforms), and then the
Kruskal-Wallis (KW) test was applied for each gene to compare
the gene ranking between the platforms. FDR adjustments were ap-
plied on the P-values (Benjamini and Hochberg 1995).

Sequence logos were calculated using WebLogo (http://weblogo.
threeplusone.com/create.cgi), with no compositional adjustment.
All miRNAs were extended at the 3′ end with N’s in order to have
an even number of bases. The sequence logo was calculated in bits,
and we followed the method as previously described (D’haeseleer
2006). The background frequencies used for the normalization
were extracted from the 320 relevant miRNAs.
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For each miRNA, the 32 attributes were calculated, including the
percent of single bases and all possible dimers (calculated using an
in-house Perl script), the canonical miRNA (the one that appears
in mirbase) length, the number of isoforms per miRNA, the median
(of the 14 replicates) of the canonical miRNA fraction out of the to-
tal sample number of miRNA counts, and the weighted means of the
number of mismatches, indels, and 5′ and 3′ deletions or insertions
in comparison to the canonical miRNA. The number of isoforms
and the weighted means were calculated according to the NGS
results. The mature miRNAs’ fold energy was calculated using
the Quikfold tool (http://mfold.rna.albany.edu) (Zuker 2003).
The attribute values for each miRNA are shown in Supplemental
Table 6. Attribute values were compared between clusters, by using
the Kruskal-Wallis rank-sum test. P-values were adjusted by FDR.
The significant attributes were further analyzed using the pairwise
Wilcoxon rank-sum test.

Building the multinomial logistic regression model

A multinomial logistic regression model was designed to explain
why each miRNA belongs to a certain cluster using the attributes
found to be significant in the previous analysis. Because the outcome
to be explained is a multinomial variable, a multinomial logistic re-
gressionmodel was fitted. The final model was achieved by using the
backward elimination procedure. The model was built using the
nnet R package (Venables and Ripley 2002).
The multinomial logistic regression is a generalization of the lo-

gistic regression for the case of J clusters (J > 2). The multinomial
logistic model, as described by Agresti (2010), has the form:

log
pj(x)
pJ (x) = aj + bjx, j = 1, . . . , J − 1

where πj(x) = P(Y = j|x) is the probability that the response belongs
to the j-th cluster given the value of the explanatory values. These
J − 1 equations determine parameters for logits with other pairs of
response clusters, since

log
pl(x)
pk(x) = log

pl(x)
pJ (x) − log

pk(x)
pJ (x) .

The equations that express the multinomial model directly in
terms of response probabilities πj(x) is:

pj(x) =
exp(aj + bjx)

1+∑J−1
l=1 exp(al + blx)

j = 1, . . . , J

with αJ = βJ = 0.
The model validation was carried out using the leave-ten-out

cross-validation.

DATA DEPOSITION

The Affymetrix, Agilent, and NGS data are available at NCBI’s
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE40820.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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