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The failure to replace damaged body parts in adult mammals
results from a muted growth response and fibrotic scarring.
Although infiltrating immune cells play a major role in de-
termining the variable outcome of mammalian wound repair,
little is known about the modulation of immune cell signaling in
efficiently regenerating species such as the salamander, which can
regrow complete body structures as adults. Here we present a
comprehensive analysis of immune signaling during limb regener-
ation in axolotl, an aquatic salamander, and reveal a temporally
defined requirement for macrophage infiltration in the regenerative
process. Although many features of mammalian cytokine/chemokine
signaling are retained in the axolotl, they are more dynamically
deployed, with simultaneous induction of inflammatory and anti-
inflammatory markers within the first 24 h after limb amputation.
Systemic macrophage depletion during this period resulted in
wound closure but permanent failure of limb regeneration, as-
sociated with extensive fibrosis and disregulation of extracellular
matrix component gene expression. Full limb regenerative capacity
of failed stumps was restored by reamputation once endogenous
macrophage populations had been replenished. Promotion of a
regeneration-permissive environment by identification of macro-
phage-derived therapeutic molecules may therefore aid in the
regeneration of damaged body parts in adult mammals.
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Salamanders have the remarkable ability to regenerate complex
structures such as limbs, tails, retina, and spinal cord, along with
some sections of the heart and brain, during any stage of their life
cycle (1-7). Salamanders are also able to perform scar-free repair of
deep tissue wounds after injury (8). Although the cellular mediators
and immunological signaling necessary for regeneration in the
salamander have not been described, recent reports suggest
that inflammation may influence the initiation and completion
of wound healing and regeneration (9-14), as the cytokine
microenvironment directly influences the time course of leu-
kocyte infiltration, cellular proliferation, angiogenesis, and colla-
gen remodeling of damaged tissues.

In mammals, fibrotic scarring is a major impediment to tissue
regeneration (15), where cellular infiltration and immune signaling
play a key role (16). Macrophages are an important source of both
inflammatory and anti-inflammatory signals, arriving in mammalian
wounds 48-96 h after injury, where they clear dead cells, release
proinflammatory cytokines, and subsequently produce factors that
dampen inflammation and stimulate angiogenesis, fibroblast mi-
gration, and replication (17). In mice, macrophage depletion or
disruption of macrophage transcriptional regulation after skeletal
muscle injury results in incomplete muscle repair and induction of
fibrotic scarring (18, 19).

To investigate the role of macrophages during scar-free tissue
repair in an efficiently regenerating model, we dissected the in-
flammatory response to injury in regenerating limbs of the axolotl
aquatic salamander (Ambystoma mexicanum) at the cellular and
molecular level. A distinctively dynamic signaling microenvironment
during the early stages of axolotl limb regeneration was accompanied
by early myeloid cell recruitment. We documented an absolute re-
quirement for macrophages in the orchestration of postamputation
immune microenvironment and blastema formation, providing direct

www.pnas.org/cgi/doi/10.1073/pnas.1300290110

evidence for the immunological control of successful regeneration
in an adult vertebrate.

Results

Pro- and Anti-Inflammatory Signals Are Simultaneously Induced Following
Axolotl Limb Amputation and Sustained Through Regeneration. We
screened the blastema of resected axolotl limbs with a cross-reactive
mouse cytokine protein detection array, revealing a rapid induc-
tion of cytokines, chemokines, and inflammatory markers within 1 d
of limb resection. Unexpectedly, we detected high levels of anti-
inflammatory (Th2) cytokines (Fig. 1; Fig. S1), which are normally
induced later in mammalian wound healing (20). The fibrotic
responses normally associated with IL-4 and IL-13 induction were
countered by increased expression of the antifibrogenic (Thl) cy-
tokine IFN-y (21). All cytokines and chemokines returned to nor-
mal baseline levels by 15 d postamputation (dpa; late blastema).
Myeloid chemotactic molecules peaked within 1 dpa (Fig. 1), in-
dicating that robust monocyte recruitment precedes limb regen-
eration. A comparative analysis of the inflammatory response in-
duced by crush injury (necrotic model) and LPS injection (modeling
bacterial infection) confirmed that many of the inflammatory
cytokines and chemokines induced in mammalian wounding exhibit
similar patterns of induction in the axolotl (Fig. 1; Fig. S1), as ex-
emplified by the strong induction of IL-1p to LPS exposure (40-
fold). Thus, we focused attention on the unusually early activation
of anti-inflammatory signaling in the regenerating axolotl limb.

Myeloid Cell Recruitment Is a Major Feature of Limb Regeneration.
To monitor leukocyte subsets entering the regenerating limb blas-
tema, we used enzyme cytochemistry to detect monocytes, macro-
phages, and granulocytes in regenerating axolotl tissue as early as
1 dpa, subsequently peaking between 4 and 6 dpa (Fig. 2; Fig. S2),
before returning to baseline levels by 15 dpa (late blastema). Using
naphthol AS-D chloroacetate (CA) esterase chemistry, neutrophil
granulocytes were also specifically detected within the wound 1 dpa
and persisted for up to 4-6 d (Fig. S2). Unexpectedly, macrophages
detected with a-naphthyl acetate (NSE) staining were also in-
creased within the 1-dpa blastema, located immediately around and
within the developing wound epithelium. Macrophage numbers
peaked at around 4-6 d and persisted in the regenerate up to the
early redevelopment phase before returning to baseline numbers
(Fig. 2; Fig. S3).

To confirm the phagocytic capacity of macrophages detected
within regenerating limb and deep tissue injuries, three in-
dependent labeling methods were used (Fig. S4). First, carbon-
labeled phagocytes stained with Giemsa exhibited typical mono-
cyte morphology within the blastema and wound epithelium (Fig.
S4 A-C). Second, neutral red staining, shown to be highly selective
for macrophages in young zebrafish (22), revealed positive cells
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Fig. 1. Cytokine regulation during the time course of regeneration. A cross-
species cytokine protein array detects changes in cytokine/chemokine pro-
files in axolotl blastema at various time points after amputation relative to
baseline expression in uninjured normal limb. Crush injury and LPS treat-
ments were analyzed at 2 dpa after injury, relative to untreated limb.
Arrowheads indicate 2 dpa time points. Each data point shows the mean
from two separate experiments using pooled samples from six animals per
time point/treatment. dpa, days postamputation; NL, normal limb.

accumulating in regenerating tissue (Fig. S4F). Neutral red stain-
ing cells also undertake phagocytosis of 0.7-pm-diameter fluores-
cent beads (Fig. S47). Phagocytic cells could be tracked into deep
tissue injury as early as 24 h (Fig. S47) and were found in compa-
rable locations throughout the regenerating limb as detected by
macrophage-specific immunocytochemistry (Fig. S2). Third, 2 MDa
dextran rhodamine was injected 24 h before limb resection to detect
macropinocytic mononuclear phagocytes (23). Compared with tis-
sue macrophages in uninjured limb and circulating monocytes in
peripheral blood, macrophage levels were significantly enriched in
the regenerating limb and injured tissue (Fig. S5). Flow cytometric
isolation of the labeled populations from limb tissue showed the

expected macrophage/monocyte morphology, staining positive for
NSE chemistry (Fig. S5).

Mononuclear Phagocytes Regulate Regenerative Gene Expression
Patterns. Phagocytic uptake of liposome-encapsulated clodronate
(Clo-Lipo) is a well-established method for specific in vivo ablation
of macrophages (24). This reagent was effective in specifically de-
pleting circulating axolotl monocytes and tissue resident macro-
phages on i.v. injection, leaving the neutrophil numbers relatively
unaffected (Figs. S5 and S6). Replenishment of mononuclear
phagocytes begins 5-10 d after complete ablation (Fig. 34; Fig. S5).
By examining molecular profiles in the first week after amputation
before macrophages return, we detected changes in macrophage
chemoattractants (Fig. 3B), increased levels of inflammatory cyto-
kines, and reduced levels of anti-inflammatory cytokines (Fig. 3C).
A concomitant decrease in the expression of the ECM-degrading
enzymes matrix metalloproteinase 9 and 3 (MMP9 and MMP3,
respectively) was accompanied by a significant reduction in the ex-
pression of Msx2 and the blastemal marker genes PrrxI and Sp9
(Fig. 3D). Macrophage depletion also caused a failure in the acti-
vation of Tgf-p1 and TGF target genes Runx2 and fibronectin.
Down-regulation of TGF-p, fibronectin, and Msx2 was confirmed by
histological examination (Fig. S7). TGF-p regulates various stages
of mammalian wound healing and constitutes an important signal-
ing pathway in salamander limb regeneration (25). The lack of the
appropriate levels of TGF-f1 activation in macrophage-depleted
limbs following amputation may therefore contribute to the failure
to regenerate in these animals. Unexpectedly, macrophage de-
pletion caused precocious expression of DIx3, a homeobox
ortholog of Drosophila distal-less, required for leg outgrowth in
the fly (26) and strongly expressed in the wound epidermis of
regenerating axolotl limb (27). Failure to up-regulate the acti-
vated wound epithelial marker WE3 in Clo-Lipo animals within
6 dpa suggested that the wound epithelium is not functional.
Although BrdU incorporation was maintained in the wound
epithelium, it was mainly undetectable in the underlying mes-
enchyme, and staining for the classic blastemal progenitor
marker 22/18 confirmed the failure to activate mesenchymal
progenitors (Fig. S7). Included among markers that were rela-
tively unperturbed were Bmp2, normally associated with differen-
tiation (28), and its downstream target AmTwist, a marker of
dermal differentiation (29). Retinoic acid signaling, implicated in
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Fig. 3. Macrophage depletion alters cytokine and chemokine induction after amputation and modulates the gene expression profiles of key regenerative genes.
(A) Flow cytometric measurement of rhodamine-labeled macrophage populations in macrophage depleted (Clo-Lipo) vs. control (PBS-Lipo) animals. (B and C)
Specific cytokine and chemokine profiles 4 dpa with and without macrophage depletion. Histograms show relative levels and were normalized to uninjured
normal limb from the same animal. (D) Changes in gene expression profiles in the resected stump on macrophage ablation were assessed by quantitative RT-PCR,
over the first 6 dpa. Plots show mean + SEM of at least three independent experiments. *P < 0.05; **P < 0.01; **P < 0.001, ****P < 0.0001. n > 3. Primer sequences

used in RT-PCR gene expression analysis are listed in Table S1.

the patterning of the embryonic axolotl limb and the limb re-
generate (30), was also unaffected, suggesting that the programs
leading to proper proximodistal limb patterning in a more permis-
sive environment are left intact. Thus, macrophage depletion before
amputation disrupts specific gene pathways important for the pro-
gression from wound healing to regeneration within the first 6 d.

Early Macrophage Engagement Is Critical for Limb Regeneration.
Whereas partial macrophage depletion with a single liposome
injection before amputation delayed but did not block blastemal
formation and limb outgrowth (Fig. S8), maximal macrophage

Godwin et al.

depletion in both limb tissues and peripheral blood (three con-
secutive i.v. injections of clodronate liposomes over 4 d) before
amputation (Fig. 44) resulted in complete blockade of limb re-
generation in all cases (n = 10; Fig. 4B). The fibrotic stumps that
formed in the absence of macrophages contained permanent scar
tissue still evident after 90 d (Fig. 4F). Some of these animals
were followed for up to 150 d, and although full macrophage
repopulation occurred within 2 wk after injection, limb stumps
did not initiate blastema formation thereafter. The failed regen-
erates featured altered ECM components, with extensive collagen
deposition and fibrosis in which thick mature type I collagen
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predominates, as shown by picosirius red staining and polarized
light analysis (Fig. 4 G-J). Moreover, immunostaining revealed
extensive collagen I, and collagen IV deposited directly below the
wound epithelium at 20 and 6 dpa (Fig. 5 and Fig. S9). a-Smooth
muscle actin (a-SMA) is an established marker for differentiated
myofibroblasts displaying subepithelial localization (31-33) in
several species. Macrophage-depleted animals showed increased
numbers of a-SMA-—positive cells compared with the normally
low levels observed in control animals at 20 dpa (Fig. 5).

To examine the role of macrophages in later stages of re-
generation, we injected clodronate-loaded liposomes after midbud
blastemal formation (three consecutive i.v. injections of clodronate
liposomes days 1013 after limb resection). Macrophage depletion
at this later stage delayed but did not block regeneration, albeit
with an apparent reduction in the superficial vascular network (Fig.
S8). A role for macrophages in late phase tissue remodeling (34) is
consistent with the relatively high level of conservation in the in-
flammatory signaling response that closely parallels the chemo-
tactic events in mammalian wound healing (Fig. 1). However, the
critical window for macrophage-mediated limb regeneration
occurs early in blastemal formation.

To determine whether the failure of limb regeneration caused
by the initial absence of macrophages was permanent, we ream-
putated limb stumps that failed to regenerate with early clodro-
nate treatment. Even after 150 d, resection of failed limb stumps
at a more proximal position resulted in complete limb regrowth
(Fig. 6), demonstrating that a viable regenerative program can be
reactivated in the renewed presence of macrophages.

Discussion

In this study, we established an essential requirement for mac-
rophages in orchestrating the early response to injury and the
activation of subsequent limb regeneration in the salamander.

9418 | www.pnas.org/cgi/doi/10.1073/pnas.1300290110

Although macrophages are a major component of the mono-
nuclear phagocyte system involved in clearance of tissue debris
and host defense, our work adds to the emerging appreciation for
the broader role of macrophages in tissue homeostasis and repair.
Although wound healing and regeneration are thought to share
common molecular pathways, the transition from wound healing to
regeneration is likely to require a concerted gene program that

Clod-Lipo treated animals

PBS-Lipo treated animals PBS-Lipo treated animals Clod-Lipo treated animals

Collagen |

Collagen IV

Fig. 5. Extracellular matrix components are altered by macrophage de-
pletion. At 20 dpa, Clod-Lipo-treated animals show increased (D and D’)
collagen | and (E and E’) collagen IV deposition under the wound epithelium
(WE) and (F and F’) an increased number of cells (marked with white arrows)
staining positive for the myofibroblast marker o-SMA relative to control
animals (A-C). Tiled confocal images taken at x20 magnification. (Scale bars,
100 pm.)
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integrates a permissive immunological signaling environment and
the precise activation of both growth and developmental pathways.
The unexpected early up-regulation of anti-inflammatory cyto-
kines and precocious macrophage engagement after limb ampu-
tation may recapitulate developmental programs necessary for
complete regeneration. Macrophages play a key role in embryonic
tissue and organ morphogenesis by producing chemokines that in
turn attract and/or activate other cell types (e.g., fibroblasts and
progenitor cells) (35). Indeed, macrophage ablation disrupts am-
phibian development (36). The mammalian embryo retains the
ability to repair wounds without scar formation, featuring a limited
inflammatory response (37). In the 11.5 d postcoitum (dpc) mouse
embryo, macrophages represent 3-10% of all cells and are par-
ticularly abundant in developing limb (35), consistent with a role
in limb morphogenesis. Compared with adult macrophages by
microarray, embryonic mouse macrophages are enriched in wound
healing and angiogenesis signatures (38), which may support limb
growth and development. Indeed, mouse embryos deficient in IL-
10, a potent anti-inflammatory cytokine secreted by macrophages,
lose their scar-free healing capacity (39). Thus, correct regulation
of the inflammatory milieu may be a critical precondition for both
embryonic and adult regeneration.

In mammalian tissue repair, macrophages replace neutrophils
and participate in a variety of functions during the complex
multistep process of wound resolution. Macrophages debride
damaged tissue by releasing various proteases, growth factors,
and cytokines that attract cells involved in the proliferation stage
of repair, and their exit from the wound environment is associated
with the end of the inflammatory phase and the onset of wound
contraction (16). Conditional macrophage depletion studies have
documented other functions during the early inflammatory phase
of mammalian skin repair, where their ablation reduces the for-
mation of vascularized granulation tissue, impairs epithelializa-
tion, and minimizes scar formation (34).
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In contrast, early macrophage depletion in the axolotl did not
affect epithelial wound closure after limb amputation but instead
caused excessive fibroplasia, collagen deposition, and a complete
block in blastemal formation. It is likely that the early arrival of
macrophages into the regenerating axolotl blastema by 24 h after
amputation, along with simultaneous induction of inflammatory and
anti-inflammatory cytokines, is part of a distinct regenerative pro-
gram. Macrophage depletion also blocked activation of the wound
epithelial marker WE3, suggesting that the wound epithelium
is nonfunctional in these animals: although cellular proliferation
was maintained in the epithelium, underlying mesenchymal pro-
liferation was not faithfully activated. Indeed, dedifferentiation
markers Prrx] (40), Sp9 (41), and 22/18 (42) were disregulated in
the amputated limb by early ablation of macrophages, consistent
with disruption of the early blastema, comprising dedifferentiated
multipotent cells. Moreover, homeodomain transcription factor
Msx2, which is normally activated in both healing and regeneration
phases (43, 44) and implicated in repression of differentiation, was
also decreased, whereas DIx3, an early differentiation phase marker
(27, 44), was up-regulated early in macrophage-depleted limb
stumps. Notably, overexpression of DIx3 in epidermal basal cells
of transgenic mice disrupts normal skin differentiation by a blockade
in cellular proliferation and the premature induction of basal cell
maturation (45). Together, these findings indicate that one po-
tential mechanism whereby macrophages permit regeneration is
by promoting dedifferentiation and formation of the progenitor
cell pool by either direct or indirect routes.

Macrophage-depleted axolotl limb stumps also failed to fully
activate expression of TGF-p1, a pleiotropic growth factor and key
regulator of embryonic development (46) and mammalian wound
healing (46), as well as its target genes Runx2 and fibronectin.
Inhibition of TGF-p1 signaling blocks successful limb regeneration
in the salamander (25), and fibronectin forms part of the pro-
visional matrix during scar-free repair (31) that may contribute to a
regeneration permissive environment. The stunted activation
of MMP9 and MMP3 on macrophage ablation is consistent with
an essential role for matrix remodeling in successful limb re-
generation (47) and implicates macrophages as a key regulator of
matrix degrading enzymes. Other matrix components such as
collagen were markedly altered in the absence of macrophages,
leading to a fibrous cap. The regenerative blastema features mainly
collagen type III (thin fibers), with a distinctive lack of collagen IV
(48, 49), whereas collagen I (thick fibers) is normally down-regu-
lated. Disruption of collagen production in macrophage-depleted
limb stumps is presumably due to the activation of myofibroblasts,
which are mainly absent in normal axolotl limb and scar-free skin
regeneration (31), contributes to scarring in mammals (50, 51), and
represents a major difference between fibrotic and scar-free repair
in the mouse (32).

The role of macrophages in later stages of wound repair are
reminiscent of macrophage depletion during mammalian skin
tissue regrowth, which results in severe hemorrhage, endothelial
cell apoptosis, vessel destabilization, and a failure in wound clo-
sure (34). Consistent with this role of macrophages, we observed
a delay in limb redevelopment associated with an apparent
reduction in surface vasculature when axolotls are depleted of
macrophages after blastemal formation. The requirement for
macrophages in successful salamander limb regrowth may
therefore involve functionally distinct roles in successive stages
of the regeneration program.

The presence of leukocytes in the newt blastema was first ob-
served in 1961, when a contribution of mononucleated blood cells
to multinucleated osteoclasts was proposed (52, 53). More recent
studies in the axolotl reported the recruitment of neutrophils in
deep tissue wounds but not in regenerating limbs (8, 31). By con-
trast, using a range of methods, the present study confirms the
active involvement of macrophages within the regenerating axolotl
limb. In an embryonic model of Xenopus tail regeneration, un-
regulated myeloid populations in the absence of T-regulatory cells
have a negative effect on regenerative ability (54). Our findings
indicate a positive role for macrophages in adult amphibian re-
generation, reinforcing the importance of macrophage phenotypic
states to the outcome of wound resolution and regeneration.
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Understanding the early regulation of expression patterns and
timing of various extracellular matrix components by macrophage
signaling is critical in identifying pathways permissive for ap-
pendage regeneration. Their early engagement in the secretion of
anti-inflammatory cytokines and other factors promoting the effi-
cient regeneration of axolotl limbs point to potential therapeutic
strategies for preventing fibrotic scarring and promoting tissue
regeneration in mammals following tissue injury.

Methods

All procedures using axolotls were performed in accordance with Monash
University’s Animal Ethics Committee. Tissues were collected from normal
or regenerating axolotl limbs, fixed in 4% (wt/vol) paraformaldehyde
(PFA), embedded in paraffin or O.C.T. compound (Tissue-Tek), and ana-
lyzed by immunohistochemistry, histology, or cytology. Cytokine protein
analysis was performed on homogenized tissue lysates and assayed using
a mouse cytokine array kit (R&D Systems) according to the manufacturer’s
instructions. Macrophage labeling was performed by uptake of 2 MDa
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dextran Rhodamine, 0.7 pM fluorescent beads, colloidal carbon, and
neutral red dye. Macrophage depletion was performed using i.v. injection
of clodronate-encapsulated liposomes. Macrophage isolation from tissue
was performed using an enzymatic and mechanical GentleMACS (Miltenyi)
cell dissociation protocol. Flow cytometric analysis was performed on fresh
or fixed cells using commercial reagents. Flow cytometric analysis/sorting
was performed on a LSRII (7 laser) flow cytometer or BD Influx cell sorter.
Quantitative real-time PCR was performed using a Roche LC480, using
SYBR green. Full methods and any associated references are available in
S| Methods.
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