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Cellular and ionic causes of variability in the electrophysiological
activity of hearts from individuals of the same species are
unknown. However, improved understanding of this variability
is key to enable prediction of the response of specific hearts to
disease and therapies. Limitations of current mathematical mod-
eling and experimental techniques hamper our ability to provide
insight into variability. Here, we describe a methodology to unravel
the ionic determinants of intersubject variability exhibited in ex-
perimental recordings, based on the construction and calibration of
populations of models. We illustrate the methodology through its
application to rabbit Purkinje preparations, because of their im-
portance in arrhythmias and safety pharmacology assessment. We
consider a set of equations describing the biophysical processes
underlying rabbit Purkinje electrophysiology, and we construct a
population of over 10,000 models by randomly assigning specific
parameter values corresponding to ionic current conductances and
kinetics. We calibrate the model population by closely comparing
simulation output and experimental recordings at three pacing
frequencies. We show that 213 of the 10,000 candidate models are
fully consistent with the experimental dataset. Ionic properties in
the 213 models cover a wide range of values, including differences
up to ±100% in several conductances. Partial correlation analysis
shows that particular combinations of ionic properties determine
the precise shape, amplitude, and rate dependence of specific
action potentials. Finally, we demonstrate that the population of
models calibrated using data obtained under physiological condi-
tions quantitatively predicts the action potential duration prolon-
gation caused by exposure to four concentrations of the potassium
channel blocker dofetilide.
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Biological variability is exhibited at all levels in all organs of
living organisms. It manifests itself as differences in physi-

ological function between individuals of the same species and
often more drastically by significant differences in the outcome
of their exposure to pathological conditions. Thus, healthy car-
diac cells of the same species and location exhibit a qualitatively
similar response to a stimulus, i.e., the action potential (AP).
However, significant quantitative intersubject differences exist
in AP morphology and duration, which may explain the different
individual response of each of the cells (and patients) to disease
or drug action.
The variability underlying the physiological and pathological

responses of different individuals has often been ignored in experi-
mental and theoretical research, ultimately hampering the extrap-
olation of results to a population level. Experimentalists often
average the results obtained in different preparations to reduce ex-
perimental error, therefore also averaging out the effects of inter-
subject variation and resulting in an important loss of information.
This averaging of experimental data is inherited by theoretical

research, and, consequently, models are often developed for
a “typical” behavior within a particular population (1). Therefore,
whereas all experimentallymeasuredAPs are different even within
a homogeneous population, a singleAPmodel is obtained from the
data, again losing all information regarding intersubject variability.
In this paper, we tightly couple experimental measurements

and mathematical modeling to construct and calibrate a popu-
lation of cardiac electrophysiology cell models representative of
physiological variability, which we then use to investigate the
causes of experimentally measured variability in physiological
conditions and following drug response. Our research builds on
previous studies by us and others (2–4) showing the importance
of mathematical methods such as model populations and sensi-
tivity analysis in investigating the ionic determinants of inter-
subject variability in biological properties. Previous studies have
described the construction of populations of cardiac cell models,
building on the work by Marder et al. in neuroscience (5). Sarkar
et al. (3) constructed populations of around 300 cardiac models
by varying ionic properties in an arbitrary range, but no experi-
mental calibration of the model population was conducted nor
was the predictive capacity of the model population evaluated.
Davies et al. (4) adjusted model parameters in the Hund and
Rudy canine model (6) to obtain 19 different models, which were
fit to specific AP recordings at 1 Hz. Given the reduced number
of models and data (e.g., single frequency) considered in the study,
it is unlikely that the models obtained are unique or provide
coverage representative of the full experimental range.
Here, we describe the construction and calibration of a popu-

lation of cell models that is able to represent the variability
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exhibited in specific experimental recordings under physiological
conditions and to predict intersubject variability in response to
potassium channel block. We base our investigations on rabbit
Purkinje electrophysiology, because of the importance of Purkinje
fibers in lethal arrhythmias (7) and in drug testing in preclinical
safety pharmacology (8). We hypothesize that intersubject vari-
ability in experimentally measured APs is primarily caused by
quantitative differences in the properties of ionic currents, rather
than by qualitative differences in the biophysical processes un-
derlying the currents. The equations proposed in our previous
rabbit Purkinje AP Corrias–Giles–Rodriguez (CGR) model (9)
are considered as the model structure to generate over 10,000
candidate models, all sharing the same equations (i.e., the same
ionic biophysical processes) as in the original CGR model, but
with different parameter values for the ionic properties, ran-
domly selected within a wide range. The cell model population is
then calibrated using a set of cellular biomarkers extracted from
experimental AP recordings at three pacing frequencies to cap-
ture key rate-dependent AP properties. The calibrated model
population is then used to identify the ionic mechanisms deter-
mining intersubject variability in each biomarker, yielding infor-
mation about the relative importance of ionic currents in the
generation of the AP at each pacing frequency. Finally, we
demonstrate the capacity of the model population to predict
variability in the response of rabbit Purkinje fibers to drug action
(using an independent dataset) and to determine the underlying
ionic mechanisms. We specifically show that the calibrated cell
model population quantitatively predicts the prolongation of AP
duration (APD) caused by exposure to four concentrations of
dofetilide, a blocker of the rapid component of the delayed recti-
fier potassium current ðIKrÞ. We chose IKr block as the intervention
to evaluate the predictive power of our population of models be-
cause IKr block is the main assay required in safety pharmacology
assessment, because of its importance in long QT-related arrhyth-
mias (8). The flexibility of our methodology to construct and cali-
brate populations of models means it can be easily applied to other
areas of biology.

Results
Construction and Calibration of the Model Population.We generated
a large initial population of 10,000 models with randomly varied
parameter sets. This initial population was calibrated to retain
only those models that were fully consistent with the experi-
mentally observed ranges of six biomarkers at frequencies of
2, 1, and 0.2 Hz. The calibration process reduced the population
to 213 accepted models. Fig. 1 shows the time course of different
APs obtained experimentally (n = 12; red traces), all models
considered in the initial sample (n = 10,000; black traces), and
those accepted into the population because they were in range
with experiments (n = 213; blue traces).
Fig. 2 further illustrates the calibration process and depicts the

biomarker values obtained from each of the 10,000 models
during simulated pacing at 1 Hz. We show values from models in
the calibrated population as white dots, values from models rejected
from the population as black dots, and the experimental ranges
for each biomarker as gray lines. To visualize the distribution of
models across the range of allowed biomarker values, we plot the
histograms of the distribution of values of each biomarker at
1 Hz across the population, as shown in Fig. 3. We find that our
calibrated population of models yields biomarker values covering
the majority of the experimental range for each biomarker.

Ionic Properties Do Not Exhibit Specific Correlations Within the Model
Population. Because many ionic currents are known to act to-
gether in different phases of the AP, we investigated whether
there were correlations between parameters values in the models
finally accepted into the population. The parameter sets of the
initial 10,000 models were randomly generated and uncorrelated,

so any correlations we found would be attributable to the cali-
bration process. Fig. 4 illustrates the distribution of parameter
values for the 213 models accepted into the population. These
results show that the majority of accepted parameter values span
close to the entire range of sampled values (up to ±100% of their
values from the original parameter set of the base model). This is
with the exception of GNaF (the conductance of the fast sodium
current), the allowed values of which are within a narrow subset
of the sampled range. This could be attributable to the fast so-
dium current’s role in determining both the velocity and peak
value of the AP upstroke. We also find that the parameter values
of models accepted in the calibrated population do not exhibit
any obvious pair-wise correlations with other parameters. For
most parameters (excluding GNaF), the values of these parame-
ters that were found in accepted models were spread across at
least 83% of the total sampled range. For GNaF, the spread was
34% of the sampled range. We do find that for some parameters,
the distribution of their values across the calibrated population of
models is nonuniform. Specifically, parameter values for the
parameters GCaL, GKr, GK1, and GToSus are more often in the
top half of the sampled range, whereas for τNaL, parameter
values are more often in the bottom half of the range. The
remaining parameters appear to be distributed without bias
across the whole of the covered range. Overall, we find that for
almost any parameter value within our sampled range there is a
parameter set that includes it and that will produce a valid model.
With the exception of the fast sodium current’s role in initial de-
polarization, no current appears to have a unique and irreplace-
able role in creating the AP.
We wanted to identify significant correlations between param-

eter and biomarker values while controlling for the effects of the
remaining parameters. Therefore, we used partial correlation,
which identifies correlations between variables after taking into
account the contributions of one or more additional variables
(10) (see Materials and Methods for details). We took each of the
parameters that were varied during the construction of the
population of models and looked for correlations between each
model parameter and any of the biomarkers used. The results of
this analysis at each pacing frequency are shown in Fig. 5. For

Fig. 1. APs obtained from experimental recordings (red; n = 12), simulations
using the models found to be within experimental range (blue; n = 213), and
all models considered (black; n = 10,000) at 0.2-, 1-, and 2-Hz pacing fre-
quencies. Plots extend to 400 ms for 2 and 1 Hz and to 800 ms for 0.2 Hz.
Each experimental trace shows a representative AP from experiments on
isolated female rabbit Purkinje fibers.
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each biomarker, multiple parameters show significant partial
correlation. GNaF correlates strongly and positively with peak
membrane potential (Vm Peak) and peak upstroke velocity (dV/
dt Max), biomarkers that quantify the initial upstroke of the AP.
GKr has strong negative correlations with plateau duration and
APD90, both measures of APD. GK1 correlates primarily with
resting membrane potential (RMP). The conductances for im-
portant plateau phase currents, GNaL, GCaL, GNaK, and GToSust,
all have significant correlations with most of the measured bio-
markers at all pacing frequencies. This is consistent with our find-
ings that a broad range of parameter values can produce models
that are consistent with our data, because multiple parameters in-
fluence each measured biomarker. Individual parameter values are
still important for determining the exact balance of currents and,
therefore, the specific AP properties of each model.

Model Population Quantitatively Predicts Concentration-Dependent
APD Prolongation Caused by Four Concentrations of Dofetilide.
Following the calibration and analysis of the model population,
we evaluated whether the rabbit Purkinje model population could
be used to predict electrophysiological response to drug block and
to investigate the underlying mechanisms that determine this
response for individual preparations. The predictive capacity of the
calibrated model population was evaluated using an independent

dataset not used for model calibration. Simulations and experi-
ments were independently conducted for dofetilide at concen-
trations of 0.001, 0.01, 0.05, and 0.1 μM, using identical protocols
as described in Materials and Methods. Fig. 6 shows example APs
simulated for control (blue traces) and following block of IKr
caused by application of a 0.01 μM concentration of dofetilide
(red traces). IKr block caused by dofetilide induces both APD
prolongation and increased APD variability, in agreement with
previous studies (11). Fig. 7A shows ranges of simulated ΔAPD
values (ΔAPD = APD90 with IKr inhibition − APD90 under
control conditions, where APD90 is APD at 90% repolarization)
obtained using the models in the calibrated population, with ex-
perimental values from five preparations shown as dots. The sixth
dofetilide preparation in our dataset is excluded from compari-
son. This is because this experiment displayed much higher APD
values at all concentrations (APD90 of 1,851 ms at 1-Hz pacing at
maximum concentration; the other five experiments were 414 ±
75 ms at the same concentration). The predicted range ofΔAPD
caused by dofetilide fully covers the range of the experimental
data for each of the four concentrations.
However, for the two higher concentrations, the lower end of

the predicted range of ΔAPD is significantly less than the smallest
values of ΔAPD seen in the data. This could be because the larger
number of models relative to experiments gives the models fuller
coverage of the range of possible prolongation values than the
experiments. To further investigate this point, we compared the
variability in ΔAPD values by analyzing the ranges of ΔAPD
seen in subpopulations of five models sampled from the total
population of models, thereby matching the number of models
to the number of experiments in our dataset. To perform this
comparison, 100,000 random samples of five models were
made and the range of ΔAPD values for each concentration of
dofetilide in each subpopulation was computed. Fig. 7B shows
the distribution and mean value of these ΔAPD ranges from
the models compared with the ΔAPD range seen in the experi-
mental data. These results show that the mean range of ΔAPD
values seen in the subpopulation samples agrees well with exper-
imental recordings at the three higher drug concentrations. At the
lowest concentration, simulations slightly deviate from experiments,

Fig. 2. Scatter plots showing biomarker values for all models when stimu-
lated at 1-Hz pacing frequency. Light gray lines indicate experimental mini-
mum/maximum ranges for each biomarker. White dots correspond to bio-
marker values for models accepted into the population and, therefore,
within experimental range; black dots correspond to rejected models out-
side of experimental range for at least one biomarker at one or more pacing
frequencies. Each plot shows results for a pair of biomarkers.

Fig. 3. Histograms of the distribution of biomarker values across the pop-
ulation of models for 1-Hz pacing. Dashed lines indicate the experimental
range used to calibrate the population of models for each biomarker at this
pacing frequency.
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but this is mostly attributable to the lack of effect of the drug at
this low concentration. This means that some experiments have
negative ΔAPD values attributable to other sources of variabil-
ity. Overall, these results suggest that the large number of models
in the population, relative to the number of experiments, could
explain the difference between predicted and experimental
ΔAPD ranges. Repeating the sampling process several times
with different sets of 100,000 random five model samples results
in similar mean values and histograms, indicating our results are
independent of the particular samples chosen.

Baseline IKr Conductance Is the Main Determinant of APD Prolongation
Caused by Dofetilide.We wanted to understand how differences in
the underlying ionic properties of rabbit Purkinje cells from
different individual rabbits could affect their AP response to IKr
block. To investigate this, we used partial correlation coefficients
(PCCs) to quantify correlations between the parameter values
and ΔAPD values of each model in the population, as shown in
Fig. 8A. We found that at all pacing frequencies there was a
strong positive correlation between GKr and ΔAPD. This
GKr/ΔAPD correlation obtained with our experimentally cali-
brated model population is consistent with results shown in the
study by Sarkar and Sobie (12). Rabbit Purkinje cells with a
larger GKr are more dependent on the IKr current for repolariza-
tion and so will have a greater increase in APD90 following IKr
block than cells with a smaller GKr. Other parameters with a
significant level of correlation with ΔAPD caused by dofetilide
include the sustained transient outward potassium conductance
GToSust and the inward rectifier potassium conductance GK1. The
L-type calcium conductance GCaL and late sodium time constant
τNaL are correlated with ΔAPD at the two higher pacing fre-
quencies (2 and 1 Hz), whereas GKs shows significant correlation
at 0.2 Hz only. We find that GCaL is positively correlated with
APD90 but negatively correlated with ΔAPD, whereas GKr is
negatively correlated with APD90 but positively correlated with
ΔAPD, which is consistent with the study by Sarkar and Sobie
(12). There is also no observed correlation between control
values of APD90 and the amount of APD prolongation following

block, as demonstrated in Fig. 8B, in agreement with previous
clinical and computational studies (12, 13).

Discussion
In this study, we have built a population of cardiac cell models
that reproduces and predicts the variability exhibited in AP mea-
surements from rabbit Purkinje fibers under physiological con-
ditions and following potassium channel block. We calibrated a
large number of models derived from randomly generated pa-
rameter sets against the range of variability observed in experi-
mental AP recordings and discarded those models with AP
behavior outside of the experimental range. This produced a
population of models with a wide range of underlying ionic current
properties that all produced realistic electrophysiological output in
simulated physiological conditions. We analyzed the variation
in underlying parameters and established links between variation
in the underlying ionic currents and variation in properties of the
AP. We have demonstrated that our model population quanti-
tatively predicts the range of variability in APD prolongation
measured experimentally following block of IKr by four concen-
trations of dofetilide.
Previous modeling studies of variability in cardiac cellular elec-

trophysiology have focused on variability in a single current (2),
sensitivity analyses that finely sample the local parameter space

Fig. 4. Scatter plots illustrating the distribution of ionic properties for ac-
cepted models in the population. Each panel shows results for a pair of ionic
properties (including GNaF, GNaL, GCaL, GKr, GKs, GK1, GToFast, GToSust, τCaL, τNaF,
and τNaL). The scale in all graphs includes ±100% variation with respect to
the original value. A representative sample of possible pairings is shown.

Fig. 5. Correlation plots showing significant PCCs between each parameter
that was varied in the population and each biomarker. Coefficient values are
represented using the included color bar. For each parameter–biomarker
pair, the effects on the biomarker attributable to the unselected parameters
are removed as part of the partial correlation method. PCCs are shown
for each frequency used in our simulations (2, 1, and 0.2 Hz). Parameter–
biomarker pairs with higher coefficient values displayed stronger partial
correlation with each other, whereas pairs with a coefficient of 0 did not
show statistically significant partial correlation (P < 10−5). þ and − , positive
and negative correlation, respectively.

Britton et al. PNAS | Published online May 20, 2013 | E2101

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S



close to the original parameter set of the model (3), and repli-
cating AP traces from individual cells (4). In contrast, we have
developed an efficient methodology that can be used to simulate
the range of AP variability seen in a dataset, while varying the un-
derlying parameter sets across a wide range of values, compara-
tively far from the model’s original parameter set. In neuroscience,
modeling studies have been carried out that use a similar meth-
odology as ours to capture the full variability of a dataset in a
population of models (5, 14–16). However, to our knowledge,
these populations have not been used to predict the behavior of
an independent dataset and link that behavior to underlying
ionic mechanisms. Grashow et al. have performed experimental
studies of the effects of variability on two-cell neuronal circuits to
investigate how variability affects the way these circuits behave
(17, 18). By controlling the values of two conductances, the
authors show that similar circuit behavior can be produced in
circuits with different intrinsic membrane properties. They found
that the responses of two-cell circuits to two neuromodulatory
drugs were generally reliable across a wide range of controllable
parameter values, despite variability in the underlying circuits.
However, for some circuits, certain parameter sets within their
sampled parameter space behaved qualitatively differently to the
majority. This is similar to our findings that a wide range of pa-
rameter combinations can produce very similar types of behavior.
Our methodology aims to incorporate the variability between

individuals of the same species into traditional models of bio-
logical systems, such as the electrophysiological activity of a car-
diac cell. We do not look at properties of isolated models in the
population or attempt to classify single models as models of
particular individuals. Instead, we look at the behavior of the
whole population, particularly how variation in underlying param-
eters is related to variation in biomarkers, in this case the AP.
All of the models in our population have been tested and shown
to be within the observed range of AP variability. However,
different combinations of ionic parameters produce different
behaviors within that range and also determine the response to
nonphysiological conditions such as drug-induced block of
ionic currents. The ability of the population of models to link

underlying mechanisms with variation in both physiological and
pathological conditions is a powerful feature of the methodology
that we hope can be further exploited in future studies.
We have found that a wide range of different combinations of

ionic parameter values can produce model behaviors that are
within the bounds of experimental variability. One question that
arises from this result is whether the size of this range is attrib-
utable to the relatively limited set of conditions that we use to
calibrate the population of models, compared with the number
of possible conditions that a real cardiac cell could experience.
Other studies (4, 19–21) suggest that in cases where a specific set
of model outputs are required, the allowed parameter range for
producing them can be highly constrained, as long as enough
nonredundant outputs are considered. Examples of these out-
puts could be the mean values of different electrophysiological
properties or of the same property under a range of experimental
conditions, such as different pacing frequencies, with each value
derived from averaging over many experiments. Our work, along
with that of Marder et al. (e.g., ref. 15), suggests that in situations
where a model must reproduce a class of behavior (such as a
realistic rabbit Purkinje AP in control conditions at 1-Hz pacing)
with flexibility on the exact values of the measured outputs, a
wide range of parameter sets can produce behavior within the
required range. This is consistent with the idea that underlying
conductances can vary considerably and still produce a viable
AP but that the exact values of those conductances determine
the exact properties of the AP.
However, although the wide range of allowed parameter val-

ues could be a characteristic of the biological system [as in the
work of Grashow et al. (17, 18)], part of this effect could be
attributable to other factors. To better represent physiological
variation in ionic properties, the population may require addi-
tional constraints, such as using a wider variety of experimental

Fig. 6. Simulated AP traces obtained for three representative models
accepted in the population in control conditions (blue) and follow-
ing application of 0.01 μM concentration of dofetilide (red) at 2-, 1-, and
0.2-Hz pacing frequencies. This is the concentration closest to the experi-
mentally determined IC50 (therapeutic dose) for dofetilide (0.0124 μM). Plots
extend to 500 ms for 2 and 1 Hz and 1,000 ms for 0.2 Hz. Line style
indicates which of the control and dofetilide traces correspond to
each model.

Fig. 7. (A) Ranges of APD90 prolongation (ΔAPD) caused by four concen-
trations of dofetilide using the models in the calibrated population. Dots
indicate values of ΔAPD independently obtained in five experiments using
rabbit Purkinje fiber preparations. (B) Histograms of dofetilide-induced
ΔAPD range across sets of 5 models randomly sampled from the calibrated
population. A total of 100,000 different sets of five models were used. The
range of ΔAPD was calculated as maximum value of ΔAPD − minimum value
of ΔAPD, for each set of five models. For each dofetilide concentration, the
mean value of the ΔAPD range across the 100,000 samples of five models is
shown by a solid blue line, and the ΔAPD range from our experimental data
is shown by the dashed red line.
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conditions for the calibration process (e.g., including drug-block
experiments), and additional biomarkers that probe other impor-
tant electrophysiological properties beyond the steady-state
AP, such as intracellular calcium behavior or repolarization
dynamics (21).
A further important benefit of modeling the effects of vari-

ability is that we are able to make quantitative predictions of the
effect of an intervention such as drug application, based on the
range of responses that we observe across the population of
models. Our study of dofetilide-induced APD prolongation is an
example of this, which can be extended to other pharmacological
interventions or disease conditions. We found that the range of
APD prolongation across the population of models is consistent
with experimental data at multiple drug concentrations that were
not used to calibrate the population of models. Traditional cell
models using a single parameter set can only make qualitative
predictions in such cases (e.g., predicting that APD prolongation
would increase as drug concentration increased). Using a pop-
ulation of models allows quantitative prediction of the range of
responses to an intervention to be made, and these predictions
can be tested experimentally as shown here.
Another potential application for the population of models

approach is to generate typical models to summarize the be-

havior of an experimental dataset. In this study, all models in
the population of models are viewed as equal. However, for some
applications, it may be useful to determine which models in the
population best represent typical or averaged experimental be-
havior. This could be achieved by classifying or ranking the
models to determine which produce behavior close to mean
experimental behavior and which better represent the behavior
of outlier experiments. Determining which model(s) in the popu-
lation would be best used for these purposes is another possible
way the population of models methodology could be exploited
in the future.
The results in this study are based on a dataset from a rela-

tively small number of individuals, as is often the case in cardiac
electrophysiology, and a single drug-block experiment. This small
sample size and lack of multiple noncontrol condition experiments
limits our ability to draw statistical conclusions from our work
and to test the predictive power of our population of models in
multiple scenarios. Further studies should focus on applying the
methodology to ensure the predictive capacity of the population
of models for a range of drug-block and disease conditions (22).
The flexibility of the approach that we propose ensures its ap-
plication in other areas of biology to improve our understanding
of variability in biological systems.

Materials and Methods
Experimental Dataset. Our dataset consisted of microelectrode recordings of
isolated Purkinje fiber preparations obtained as described previously [Lu et al.
(23)], from 12 different Purkinje fibers paced at three pacing frequencies
(2, 1, and 0.2 Hz). In the experiments, preparations were paced at 1 Hz for
60 min to stabilize them and then paced at 1 Hz over four intervals of 15 min
each. At the beginning of all intervals except the first (control) interval, in-
creasing concentrations of either an active testing compound (dofetilide, at
concentrations of 0.001, 0.01, 0.05, and 0.1 μM; n = 6 Purkinje fibers) or
vehicle (H2O) were added. Following these intervals, the preparations were
paced for 5 min at 0.2 Hz, followed by pacing for 5 min at 2 Hz, while still
perfused at the last concentration. All biomarker values used for the cali-
bration process were determined from vehicle studies (only H2O applied
to preparation during pacing).

Rabbit Purkinje Cell Model. The model used in this study is a modified version
of the CGR model (9), adapted to use the more detailed intracellular calcium-
handling system from the Pan-Rudy Dynamic (PRd) cell model (24). Fig. 9
shows a schematic of the model. The modified CGR model contains the
following major currents: INaF and INaL, the fast and late components of the
sodium current; ICaL and ICaT, the L-type and T-type calcium currents; IK1, the
inward rectifier potassium current; IToFast and IToSust, the fast and sustained
components of the transient outward potassium current; IKr and IKs, the
rapid and slow components of the delayed rectifier potassium current; If,
the funny current; INaCa, the sodium-calcium exchange current; and INaK, the
sodium-potassium pump current. An additional current, the stimulus cur-
rent Istim is included and represents external electrical stimulus of the cell to
trigger excitation. This current can be applied at different rates to simulate

Fig. 8. (A) PCCs for APD prolongation (ΔAPD) caused by IKr block from
a 0.01 μM dofetilide concentration, at each of the three pacing frequencies.
ΔAPD was correlated against each of the 12 parameters that were varied to
create the population of models, each time controlling for the other 11
parameters as part of the partial correlation process. Three models with
outlying values of ΔAPD at 0.2 Hz (ΔAPD = 318, 364, and 395 ms, compared
with the rest of the model population’s sample mean of 69 ms ± 26 ms)
were excluded from the analysis as they dominate the other models
when calculating the PCCs at that frequency. Solid bars denote signifi-
cant correlations with P < 10−5, and empty bars indicate correlations
with P > 10−5. (B) Scatter plot of control APD90 values of each accepted
model at 1 Hz against ΔAPD attributable to IKr block from 0.01 μM
concentration of dofetilide.

Fig. 9. Schematic for the rabbit Purkinje cell model used in our study. Ionic
currents included in themodel and the calciumhandling subsystemare shown.
Arrows within the cell represent calcium transport between compartments.
PMCA, plasma membrane Ca2+-ATPase; SERCA, sarco/endoplasmic reticulum
Ca2+-ATPase.
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different rates of pacing and investigate rate-dependent behavior. Different
pacing rates elicit different behaviors from the model because of the dy-
namics of the time- and voltage-dependent activation and inactivation gates
that are modeled for appropriate ionic currents. The modified intracellular
calcium subsystem tracks intracellular calcium concentrations in six separate
compartments: the bulk cytoplasm, which represents the interior of the cell
and the majority of its volume; the subsarcolemma (SSL), which represents
the majority of the peripheral volume of the cell where the majority of
noncalcium channels are located; the peripheral coupling subspace (PCS),
which represents the remainder of the cell periphery where the majority of
calcium carrying channels are located and where calcium emission from the
sarcoplasmic reticulum (SR) occurs; and the junctional (JSR), network (NSR),
and corbular (CSR) compartments of the SR, where calcium is stored. The
network SR is where calcium is taken up into the SR by the sarco/endoplasmic
reticulum Ca2+-ATPase, the junctional SR can release calcium into the cell
periphery and the corbular SR can release calcium into the bulk volume of
the cell.

We adopted the calcium subsystem and INaCa formulations used in the PRd
model (all other ionic membrane currents used the CGR model formulation).
The equations for the relevant processes incorporated into our model are
given in the data supplement of ref. 24. Specifically, the equations from the
sections on the sodium–calcium exchanger and SR Ca2þ fluxes, as well as the
equations describing the ionic concentrations for [Ca2+]PCS, [Ca2+]SSL,
[Ca2+]i, [Ca2+]JSR, [Ca

2+]NSR, and [Ca2+]CSR, and the calcium/calmodulin-
dependent protein kinase from the PRd model were used. Additionally,
we used the PRd model’s parameter values for the fractions of the cell
volume taken up by each compartment, although the total volume of the
cell was taken to be the published value in the CGR model. Two other
changes were made to the CGR model to make its baseline results better
match experimental data. First, the extracellular potassium concentration [K+]o
was altered from 5.4 to 4.0 mM to reflect experimental conditions. Second,
the formulation of the inactivation gate time constant for the fast
sodium current was changed from a constant 2.0 ms to the voltage-
sensitive equation:

τNaFinact ¼ 0:08þ 2
1þ eðVmþ30Þ=10

to obtain a peak voltage within experimental range. C++ code for the model
is available for download at https://chaste.cs.ox.ac.uk/trac/wiki/PaperTutorials/
PNAS_PopulationOfModels.

Construction of the Population of Rabbit Purkinje Models. Tobeginconstructing
the population of models we generated 10,000 parameter sets using Latin hy-
percube sampling (LHS) (25) as described below. Each parameter set initially
contained 11 parameters: eight channel conductances for the currents fast so-
dium, late sodium, L-type calcium, rapid delayed rectifierpotassium, slowdelayed
rectifier potassium, inward rectifier potassium, and the fast and sustained com-
ponents of the transient outward potassium current; and three channel time
constants for fast sodium, late sodium,andL-type calcium.Theseparameterswere
chosen because they have the strongest influence on biomarker values, based on
a sensitivity analysis conducted on the CGR model, in line with results shown by
Corrias et al. (9). Theparameter sets generatedby LHSwereused to replace the11
relevant parameter values in thebasemodel to create 10,000different versionsof
the model with the same equations but varied parameter values. Because of its
importance in AP-rate dependence, we varied the sodium–potassium pump
conductance at five values from 1/10th to twice its initial value.

Sampling Method. Building populations of models requires the generation
of a large numbers of parameter sets for the initial population, sampled from
a high-dimensional parameter space. Sampling every possible combination
of parameter values in the space, for all but the lowest resolutions, is
computationally infeasible given the complexity of most cardiac cell models.
Therefore, we use the Latin hypercube sampling method (25), which gen-
erates parameter sets over a large number of parameters efficiently and
without bias. To use the LHS method, we specify an upper and lower bound
on the range of values to sample each parameter from and subdivide that
range into N intervals. N parameter sets are then chosen randomly but with
the constraint that each parameter set can only contain parameter values
from intervals that have not been used in any other parameter set. The
number of samples taken (N) is specified by the user and so does not scale
with the number of parameters sampled. Therefore, a large number of
parameters can be varied in total, allowing a more complex parameter
space to be explored. Parameters that are varied are sampled over a range
from just above 0 to twice the published value of that parameter in the

original CGR model. The published values of parameters in the CGR model
represent mean values taken from the literature. These values typically have
a reported SE on the mean of much less than the actual mean value, and this
has been incorporated into previous studies of variability (2, 3). However,
this error represents uncertainty in the mean value, not the total range of
variation observed in experiments. Therefore, we vary parameters over a
larger range than has been used previously, and this range is large enough
to represent observed variability.

Biomarkers. We used six biomarkers to quantify the major features of the
rabbit Purkinje AP. Four of these were biomarkers commonly used in cardiac
electrophysiology: dV/dt Max, Vm Peak, APD90, and RMP. Because of the
characteristic spike and dome configuration of the rabbit Purkinje AP,
we introduced two additional biomarkers: dome peak, which measures the
Vm Peak of the dome of the AP; and plateau duration, which measures the
duration of the AP up to the end of the plateau phase. The plateau duration
biomarker is calculated from where the voltage/time gradient during the
repolarization phase falls below a threshold value. We used −350 mV/s be-
cause we found this gave us a good estimation of the duration of the AP up
to and including the plateau phase but excluding the majority of repo-
larization. We used this biomarker as traditional methods of measuring this
period (e.g., APD40 or APD50) can be affected by the dome part of the AP
and underestimate the true duration. Fig. 10 illustrates the calculation
of each biomarker using an example AP, from one of the models in the
calibrated population.

Model Calibration Process.Ourmodel-calibration process determines whether
a model should be added to the population or not based on comparison with
experimental data. The choice of comparison method for this process is
constrained by the availability of experimental data. Marder et al. used
a confidence interval of twice the SD around mean values to determine
the bounds on allowed output variability (15). However, the limited number
of preparations typically used in cardiac electrophysiology and safety phar-
macology assays prevents an appropriate characterization of biomarker
variability in this statistical sense. We, therefore, chose to use the upper
and lower values of each biomarker as observed in our experimental data to
guarantee our estimates of variability were within biological range for each
of the three pacing frequencies. At each frequency and for each prepara-
tion, biomarker values were calculated by taking their median from a con-
tinuous train of at least 100 APs at steady-state conditions. For each
biomarker, at each frequency, the maximum and minimum values of that
biomarker found across all preparations were used to set the range of
acceptable biomarker values for model calibration.

Simulation Protocols. Simulations were carried out using CVODE, an adaptive
time step ordinary differential equation (ODE) solver, implemented
within CHASTE (26), an open source software framework for modeling in
computational biology. Each model was initially left in quiescent state

Fig. 10. Representation of each biomarker measured in this study, calcu-
lated from a simulation at 1 Hz using a model from the population of models.
The maximum upstroke velocity was calculated as the maximum value of the
gradient of the membrane potential against time recorded before the point
where the Vm Peak occurs.
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for 1,000 s to allow relaxation from initial conditions (because these were
the same for every model), and then paced for 1,000 s at 2, 1, or 0.2 Hz at
2×diastolic threshold, to mimic experimental protocols. The final AP was
recorded at a time resolution of 0.01 ms and was used to calculate bio-
marker values for that model at that frequency. We modeled the action
of dofetilide as a single-pore IKr inhibitor (27) with a Hill coefficient of 1
and an IC50 of 0.0124 μM, as obtained experimentally from dose–
response curves.

Statistical Methods. To determine correlations between the properties of
individual ionic currents and properties of the whole AP, we used partial
correlation. We chose to use partial correlation over other correlation
measures because partial correlation controls for the effects of one or more
additional variables when looking for correlations between two quantities,
which is important given that our models are generated by varying multiple
parameters simultaneously. Partial correlation is a method to find correla-
tions between two variables, after accounting for the linear effects of one or
more additional variables (10). The PCC between variables x and y, given the

set of N additional variables zi , is found by first calculating linear regression
models of x and y against zi :

x̂ ¼ c0 þ ∑
N

i¼1
cizi  and   ŷ ¼ b0 þ ∑

N

i¼1
bizi :

The PCC between x and y is then defined as the correlation coefficient
between the residuals rx ¼ x − x̂ and ry ¼ y − ŷ:

PCCðx; y; ziÞ ¼
Cov

�
rx ; ry

�

VarðrxÞVar
�
ry
�:
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