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The global tuberculosis (TB) control plan has historically emphasized
passive case finding (PCF) as the most practical approach for
identifying TB suspects in high burden settings. The success of this
approach in controlling TB depends on infectious individuals recog-
nizing their symptoms and voluntarily seeking diagnosis rapidly
enough to reduce onward transmission. It now appears, at least in
some settings, that more intensified case-finding (ICF) approaches
may be needed to control TB transmission; these more aggressive
approaches for detecting as-yet undiagnosed cases obviously require
additional resources to implement. Given that TB control programs
are resource constrained and that the incremental yield of ICF is
expected to wane over time as the pool of undiagnosed cases is
depleted, a tool that can help policymakers to identify when to
implement or suspend an ICF interventionwould be valuable. In this
article, we propose dynamic case-finding policies that allow policy-
makers to use existing observations about the epidemic and resource
availability to determine when to switch between PCF and ICF to
efficiently use resources to optimize population health. Using
mathematical models of TB/HIV coepidemics, we show that dynamic
policies strictly dominate static policies that prespecify a frequency
anddurationof roundsof ICF.Wealsofind that theuseof adiagnostic
tool with better sensitivity for detecting smear-negative cases (e.g.,
Xpert MTB/RIF) further improves the incremental benefit of these
dynamic case-finding policies.
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The global tuberculosis (TB) control plan, codified by the
World Health Organization (WHO) and the Stop TB Part-

nership as the Directly Observed Treatment, Short course
(DOTS) strategy in the mid-1990s (1), emphasizes passive case
finding (PCF) as a central tactic for identifying infectious cases
requiring treatment. PCF approaches depend on individuals with
symptomatic TB to seek out treatment on their own, a practice
that is supported by studies indicating that the most infectious
patients are aware of their symptoms and seek care (2, 3).
Adoption of PCF strategies has been motivated by practical
considerations as well. In most high TB incidence settings,
resources are limited and PCF allows diagnostic efforts to be
focused within existing health facilities and concentrated among
suspects at highest risk of TB.
The DOTS strategy has significantly improved treatment suc-

cess rates for individual patients (4) and, where studies have been
attempted, has been associated with reduced TB-relatedmortality
in populations (5, 6). Despite clear successes of DOTS programs,
there are inherent shortcomings of PCF since this approach may
result in either delayed or missed opportunities for diagnosis.
These limitations may be especially important in settings where
HIV has emerged and triggered large and rapid increases in TB
incidence (7).
There are many different types of interventions that could be

used to increase the vigorousness of TB case detection efforts
beyond PCF; in this article, we broadly refer to these alternative
approaches as intensified case finding (ICF). ICF approaches are
often subclassified as either “enhanced” or “active” case finding

and are differentiated by whether emphasis is placed on increasing
the probability of symptomatic patients seeking care or on asking
providers to proactively seek out undiagnosed cases within the
community. In either case, the central goals of ICF are to decrease
delays to diagnosis and to increase the overall proportion of cases
that are diagnosed. In theory, the direct benefits of ICF would
include reduced morbidity and better treatment results for those
detected earlier in the course of disease; indirect benefits would
accrue to the community if detecting cases more rapidly led to
reductions in the incidence of new TB infections.
To date, evidence for these indirect benefits of ICF approaches

for TB control remains limited (8, 9). Nonetheless, previous
modeling work demonstrating the importance of improved case
finding for interrupting epidemic TB (10–13), coupled with
growing consensus that PCF will not be sufficient to control TB in
some settings, highlights the need for further efforts to understand
how ICF might best be used (14, 15). Regardless of the specific
ICF approach used, interventions to increase the aggressiveness
of case findingwill impose additional stresses onTBprograms that
are already resource-constrained. Since the pool of undiagnosed
TB will be depleted during ICF, these approaches will produce
diminishing returns over time (16). Accordingly, the optimal use
of alternative case-finding practices will require intermittent
implementation of more aggressive case-finding efforts. This will
ensure that resources are diverted to ICF only at times when the
yield will be high enough to justify its use.
Previous efforts to identify efficient use of ICF have focused on

identifying policies that specify (1) a frequency of and (2) a du-
ration for which more aggressive forms of case detection should
be used (10, 11, 16, 17). These static policies (i.e., the frequency
and duration of ICF remain fixed) are relatively easy to evaluate
using mathematical or simulation models, and thus, the best
choices for the frequency and duration of ICF can be readily
identified for different epidemiological scenarios. However, it is
reasonable to assume that a policymaker responsible for deciding
when to implement ICF (and when to switch back to PCF) will
want to use information about the current state of the epidemic
and information about local resource availability to decide when
more aggressive case-finding practices should be used. For ex-
ample, a rising trend in case notifications or TB-related mortality
during a period where PCF policies are in place might indicate
that switching to ICF may be cost-effective and affordable,
depending on resource constraints.
Our objective in this article is to identify dynamic policies that

make recommendations about when to switch between PCF and
ICF based on observed (but likely imperfect) measures of the TB
epidemic (e.g., TB case notifications) and information about
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resource availability (e.g., annual budget). These policies depend
on using recent observations to inform decision-making and thus are
distinct from previously described policies that specify a fixed
periodicity and duration of ICF efforts. In identifying these dy-
namic ICF policies, we seek to optimize a measure of population’s
health (e.g., cumulative TB cases or TB deaths) while satisfying
resource constraints (e.g., budget limitations).
Characterizing optimal dynamic policies is generally compu-

tationally prohibitive. However, the recent advent of more pow-
erful optimization techniques allows for (approximately) optimal
dynamic health policies to be characterized through computa-
tionally efficient methods (SI Appendix). Given that infectious
diseases spread stochastically, it can also be mathematically
proven that the optimal decision rule for implementation of ICF
will be a function of the current state or the trajectory of the
epidemic (18, 19), and thus, dynamic policies are expected to be
more efficient than static policies.
In this article, we consider TB epidemics in settings that differ

by (i) the level of HIV prevalence and (ii) the type of TB di-
agnostic tests in use (i.e., sputum microscopy versus a more sen-
sitive and more expensive rapid diagnostic test). For each scenario,
we identify approximately optimal dynamic policies that minimize
the expected number of TB cases during the epidemic while sat-
isfying the policymaker’s annual budget. For the TB/HIV epi-
demics considered here, we also compare the performance of
dynamic case-finding policies to static policies that specify fixed
periodicity and duration of ICF.

Methods
Model for Examining ICF in the Context of TB/HIV Coepidemics. We develop
a dynamic compartmental model of TB/HIV epidemic based on earlier models
(20–22) with additions necessary to accommodate the evaluation of differ-
ent case-finding strategies (Fig. 1).

Following previous TB modeling conventions, we allow that individuals
enter the model susceptible to infection and that newly infected individuals
enter into one of two asymptomatic latent states differentiated by slow or
fast progression to disease. Individuals with slowly progressing latent infec-
tions may transition to the fast latent compartment after reinfection or
through natural progression of their initial infection. Individuals in any state
maybe coinfected byHIV; coinfection alters the natural history of TB in several
ways: a higher probability of rapidly progressive TB after initial infection (23,
24), a higher probability of progression from latency to active TB (25), a lower
probability of sputum smear-positive disease among infectious individuals
(26–28), and higher mortality rates (26, 29, 30). To capture the impact of HIV
infection, each compartment in Fig. 1 represents two subcompartments
indexed by HIV status (11).

Weexplicitly includemodel classes for (i) newly infectious individualswhoare
asymptomatic or whose symptoms are currently too new or are too minimal to
trigger self-presentation or to be picked up by symptom screens (31–34) or (ii)
infectious patients with more advanced, symptomatic disease. Those with
symptomatic disease are either sputum smear-positive or smear-negative and
may or may not self-refer for care. Symptomatic individuals who do not
self-refer may currently lack access, knowledge, or willingness to present
to diagnostic or treatment facilities. We assume that as disease progresses,
individuals are more likely to be smear-positive and also more likely to self-
refer for diagnosis, but some individuals may never access diagnosis on their
own volition. We assume that those with symptoms are tested upon arrival to
a diagnostic center and, if diagnosed with TB, referred for TB treatment.

Modeling Case-Finding Interventions. In our model, we assume that only
symptomatic, self-referring individuals will seek TB diagnosis and receive care
when the PCF policy is in place. In comparison with PCF, implementation of
the ICF policy increases the effective rate at which symptomatic cases seek and
receive care. The degree to which the ICF intervention improves the speed of
detection of symptomatic cases and captures cases that would have gone
undetected under PCF depends on the operating characteristics of the di-
agnostic test used as well as the population coverage of ICF.

In most high TB burden settings, TB diagnosis is made based primarily on
sputum smear microscopy, which is inexpensive but has limited sensitivity,
especially in HIV-infected patients (26–28). Recently, nucleic acid amplifica-
tion tests, such as the Xpert MTB/RIF assay, have been introduced. While
more expensive, these new diagnostics can detect a substantial fraction of

sputum smear-negative TB; a single Xpert MTB/RIF test may identify >98%
of patients with smear-positive and >70% of patients with smear-negative
TB (35–37). In our simulations, we examine how the performance of case-
finding policies is influenced by the choice of diagnostic tool.

In the base case, we assume that on average 15% of the population will
have access to diagnosis through ICF while ICF is used. We have not attempted
to do a sophisticated costing of ICF interventions in this analysis, but to dem-
onstrate the ability of the model framework to identify the cost-effectiveness
of such policies, we have used a crude costing estimate (SI Appendix). Based
on a previous study in Harare (38), we assume that implementation of ICF at
this coverage level would cost US$31,500 per day in Zimbabwe and $9,600
per day in the Central African Republic.

Model Calibration. Tomodel TB/HIV epidemics, we use themodeling framework
proposed in ref. 39 to find the probability distribution of events that may occur
(e.g., birth, transmission of infection, or recovery) and then use Monte Carlo
simulation to generate epidemic trajectories. We calibrated the model to TB/
HIV epidemics in Zimbabwe and Central African Republic. Zimbabwe has
a relatively high HIV prevalence (14.3% in year 2009), while Central African
Republic has a lower HIV prevalence (4.7% in year 2009) (40) (SI Appendix).

Decision Model. Let at ∈A denote the intervention in effect during the de-
cision period ½t; t + 1�; t ∈ f1; 2; 3; . . .g, where A= fPCF; ICFg. Let the random
variable ξt denote the set of events during the decision period ½t; t + 1� that
may trigger an observation, incur costs, or lead to change in the population
health status or resource availability. Examples of such events include a new
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Fig. 1. TB/HIV model structure. The model states depict stages in the nat-
ural history of tuberculosis; individuals in any of the tuberculosis states may
also be infected with HIV. States of infectious tuberculosis are shown within
the dotted box. Under PCF, only self-referring cases will be eligible for de-
tection (light gray boxes), whereas when ICF is implemented, all sufficiently
symptomatic cases can be detected (both light and dark gray boxes). Note
that not all model transitions are shown here (additional details and pa-
rameter values are provided in the SI Appendix).
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infection, hospitalization, or death of an infective. Clearly, the decisions in
effect during period ½t; t + 1� will influence the set of events that may occur
over this period. While the evolution of the random variable ξt over time is
not fully observable by the decision maker, we can use mathematical or
simulation models to sample from the stochastic process X = fξt ; t ≥ 1g.

Our goal is to find a decision rule that for each decision index
t ∈ f1; 2; 3; . . .g specifies which action to take to minimize the expected total
discounted loss in the population’s net monetary benefit (NMB) (41):

E

"XT
t = 1

γtrðat ; ξtÞ
#
; [1]

where γ ∈ ð0; 1� is the discount rate and rðat ; ξtÞ is the loss in the population’s
NMB if action at ∈A is in effect and the random events ξt occur during the
decision period ½t; t + 1�. The decision horizon T can be a constant pre-
determined by the decision maker (e.g., 10 y) or can be a random variable
governed by the stochastic process X = fξt ; t ≥ 1g (e.g., time when the disease
is eradicated).

Our objective is to guide the selection of the intervention to use during the
next decision period using statistics that are defined by observable past or
currentmeasures from the epidemic (e.g., the TB case notifications during the
past month). We refer to these statistics as features, and we use
ðf̂ t1; f̂ t2; . . . ; f̂ tFÞ to denote the vector of selected features observed at time
index t. Let the function ~Qað·Þ approximate the optimal expected loss in the
population’s NMB if the policymaker observes the features ðf̂ t1; f̂ t2; . . . ; f̂ tFÞ
at time t and implements the intervention a∈A during the period ½t; t + 1�.
Given the approximation functions ~Qað·Þ and the observed feature vector
ðf̂ t1; f̂ t2; . . . ; f̂ tFÞ, the approximately optimal decision at time index t can be
found according to:

a*
t = arg min

a∈A
~Qa

�
f̂ t1; f̂ t2; . . . ; f̂ tF

�
: [2]

See SI Appendix for the detailed description of the decision model and the
method to characterize the approximation functions ~Qað·Þ.

During an epidemic, TB case notifications and TB-related mortality are
potentially observable, and hence statistics defined by these data can be used
as features. Our experiments with the TB model depicted in Fig. 1 show that
TB deaths and TB case notifications are highly correlated under both PCF and
ICF, and so including both in approximation functions ~Qað·Þ produces un-
stable regression models. Similarly, our experiments show that distinguish-
ing TB case notifications by the HIV status of patients also leads to correlated
regressors in approximation functions ~Qað·Þ. Although this property restricts
options for features, it can be advantageous for generating policies that are
convenient to implement since the policymaker needs only to gather data
on TB case notifications. We chose the following two features to use to
guide decision-making: (i) TB case notifications over the past decision period
and (ii) the case finding strategy that was used during this period. This
collection of features produces policies that are straightforward to visualize

and communicate. If there is a delay in the availability of surveillance data
(e.g., significant time lag between when cases are diagnosed and reported),
we redefine these features accordingly (SI Appendix, §S5).

We characterize dynamic case-finding policies implemented within four
epidemiological scenarios: scenarios 1 and 2 reflect a TB epidemic where the
current HIV burden is relatively high (Zimbabwe) while scenarios 3 and 4
reflect a TB epidemic where the current HIV burden is lower (Central African
Republic). For scenarios 1 and 3 we assume that smear microscopy is the sole
diagnostic TB test used, while for scenarios 2 and 4 we assume that 50% of TB
suspects will be screened with Xpert MTB/RIF and the rest will be screened
with smear microscopy.

To define the loss function rð·Þ, we use the number of incident TB cases as
a measure of health. Therefore, the willingness-to-pay (WTP) is defined as
the amount of money a policymaker is willing to spend to avert one addi-
tional incident TB case. The loss function rð·Þ also includes the TB diagnosis
and treatment costs as well as the costs incurred during courses of ICF. To
characterize dynamic case-finding policies, we used the algorithm proposed
in the SI Appendix to find the approximation function ~Qað·Þ such that
decisions made according to Eq. 2 minimize the expected total discounted
NMB loss defined in Eq. 1. Here we assume that decision periods are of
length 1 mo and the annual interest rate is 3%.

Results
Identifying an (approximately) optimal dynamic case-finding
policy for a particular setting requires specifying two figures: an
affordability curve and a decision rule. The affordability curve
(Fig. 2A) returns the expected annual costs as a function of WTP
for health and the decision rule (Fig. 2B) specifies which in-
tervention to use during the next decision period given the value
of selected features. In this illustration, we use the number of
TB case notifications over the past month and the case finding
strategy in effect during this period as the relevant set of features
(see SI Appendix for a detailed discussion of feature selection).
To use the policy depicted in Fig. 2, the policymaker must first

select a level of WTP for health that satisfies the annual budget
constraints. For example, for an annual budget of US$6.5 million
under scenario 1, the policymaker may choose the WTP $100 per
TB case averted from Fig. 2A. The policymaker can then consult
the graph in Fig. 2B to make real-time decisions given this se-
lected WTP value. For example, at the WTP threshold of $50 per
TB case averted, the policymaker should use PCF while the TB
case notification during the past month is below 3,561 cases; if
the TB case notification exceeds this threshold while PCF is in
place, the case-finding policy should be switched to ICF. ICF
should be sustained if the TB case notification during the past

Affordability curve Decision rule

A B

Fig. 2. Approximately optimal dynamic case-finding policies for scenario 1 reflecting the TB/HIV epidemic in Zimbabwe where the available TB diagnosis test
is assumed to be sputum microscopy. For each value of WTP, A returns the expected annual cost (with 95% confidence interval) that would be incurred by
following the corresponding dynamic health policy. A policymaker would use A to first select a level of WTP for health that satisfies the annual budget
constraints, and then would consult B to make real-time decisions given this selected WTP value.
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month is greater than 5,706 cases; if the TB case notification falls
below this level, ICF should be suspended and replaced by PCF.
The existence of two distinct thresholds for switching (PCF to ICF
and ICF to PCF) reflects the fact that the fraction of TB cases that
is detected and notified is dependent on the case-finding strategy
being used. We present the approximately optimal dynamic case-
finding policies for scenarios 2–4 in SI Appendix. Policies based on
different thresholds for WTP produce different health outcomes.
A higher WTP is expected to result in fewer TB case notifications
and deaths throughout the epidemic. The expected cumulative
TB case notifications and expected deaths over a 10-y horizon for
the four scenarios considered here are provided in the SI Ap-
pendix, Fig. S11.
Using cost-effectiveness planes (41) (Fig. 3), we compare the

performance of dynamic case-finding strategies with that of static
policies that only specify the frequency of ICF. In these figures,
the incremental costs (displayed on horizontal axes) and addi-
tional TB cases averted (displayed on vertical axes) are calculated
with respect to the baseline scenario where TB cases are passively
identified. Fig. 3 reveals that the cost-effectiveness frontiers
corresponding to dynamic case-finding policies strictly dominate
the cost-effectiveness frontiers corresponding to static policies for
all scenarios. This implies that for any given budget, following the
appropriate dynamic case-finding policy results in statistically
superior health outcomes in comparison with the static policy that
satisfies the same budget limit.
We also note that in the two settings we examine, the relative

benefit of dynamic policies compared with static policies is

amplified when Xpert MTB/RIF is used as the TB diagnostic test
(compare the gap between the dynamic and static frontiers in
Fig. 3 A and B or the similar gap in Fig. 3 C and D). Further-
more, we observe that line “OA” has a steeper slope than line
“Oa” in both Fig. 3 B and D; this implies that when sufficient
resources are available to implement Xpert MTB/RIF, the pol-
icymaker can choose a dynamic health policy (e.g., the policies
associated to point “A” in Fig. 3 B and D) to reach a significantly
higher level of health gain with only a small increase in spending.
Finally, we note that ICF results in more cost-effective outcomes
in settings of higher HIV prevalence. The greater gains associ-
ated with ICF are seen in both dynamic and static policies and
regardless of which type of diagnostic tool is used (compare Fig.
3A with Fig. 3C and Fig. 3B with Fig. 3D).
Our sensitivity analysis shows that the comparative benefit of

dynamic policies are maintained even when we assume different
levels of coverage of the ICF intervention and when there is
a significant delay between when cases are diagnosed and when
they are reported (SI Appendix, §S5). Furthermore, for the sce-
narios considered here, for any level of additional health that the
decision maker intends to achieve, dynamic policies require
fewer switches than static policies (SI Appendix, §S7).

Discussion
Previous empirical and theoretical studies (12, 42–45) demon-
strate that ICF can be a useful strategy to mitigate TB epidemics.
However, continuous ICF may not be sustainable, especially in
settings with high TB burdens and limited resources. Faced with
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c: ICF Every 12 Weeks
d: ICF Every 8 Weeks
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B: Dynamic – WTP $50
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a: ICF Every 52 Weeks
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Fig. 3. Cost-effectiveness planes comparing the performance of static versus dynamic ICF policies. A–D show the cost-effectiveness planes for scenarios 1–4,
respectively. The cost-effectiveness frontiers corresponding to dynamic case-finding policies strictly dominate the cost-effectiveness frontiers corresponding to
static policies for all scenarios. A resembles the TB/HIV epidemic in Zimbabwe and sputum microscopy is assumed to be the only available TB diagnosis test.
B resembles the TB/HIV epidemic in Zimbabwe and sputum microscopy and Xpert MTB/RIF each have 50% coverage as TB diagnosis test. C resembles the TB/
HIV epidemic in Central African Republic and sputum microscopy is assumed to be the only available TB diagnosis test. D resembles the TB/HIV epidemic in
Central African Republic and sputum microscopy and Xpert MTB/RIF each have 50% coverage as TB diagnosis test.
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limited budgets, policymakers would benefit from access to tools
that can help them to identify when they should use or to remove
ICF during a TB epidemic.
In this article, we proposed a different type of case finding

approaches, referred to as dynamic case-finding policies, which
recommend when to implement ICF using available data on TB
case notifications and the current case-finding approach. The
results we present have several key implications for health poli-
cymakers. First, while previous studies of case-finding strategies
have identified static policies for the frequency of ICF inter-
ventions that are likely to be cost-effective, our dynamic policies
strictly dominate these types of static policies. This implies that
for a given fixed budget, following a dynamic case-finding policy
would produce significantly better health outcomes in comparison
with following a static policy. While both dynamic and static ICF
policies appear more cost-effective in higher prevalence HIV
settings, it is possible that more aggressive case-finding approaches
may also meet acceptable cost-effectiveness thresholds in lower
prevalence HIV settings.
We also found that for the two settings considered here, a di-

agnostic tool with better sensitivity for smear-negative cases
improves the incremental benefit of using dynamic case-finding
policies. This is due to the fact that while static policies only
specify the frequency and duration of ICF (which are assumed to
be fixed during the epidemic), dynamic case-finding policies adjust
recommendations based on the accumulated observations. Hence,
dynamic case-finding policies incorporate additional flexibility that
allow for adjustment of recommendations based on both epidemic
(e.g., trends in case notifications) and health care system charac-
teristics (e.g., the diagnostic tool in use) to produce superior out-
comes (SI Appendix, §S4). Our results suggest that when sufficient
resources are available to implement Xpert MTB/RIF, a policy-
makermay achieve substantial health gains for a very small increase
in spending by choosing a dynamic case-finding policy instead of
a static policy. We also found that our dynamic policies require
fewer switches than static policies, which can be advantageous if
switching is costly, but this requires the policymaker to be more
flexible about the timing of switching (SI Appendix, §S7).
The simple TB/HIV model we describe has important limi-

tations. We have made simplifying assumptions about the natural
history and transmission of TB and HIV; these choices have
allowed us to maintain focus on how more aggressive case-finding
policies can impact onward transmission of disease. Most im-
portantly, we have assumed that early case finding will reduce the
expected duration of infectiousness of TB cases and thus reduce
onward transmission of disease. While studies (46, 47) and in-
tuition support the idea that early case finding should identify
those with less severe forms of disease who would have otherwise

progressed and infected additional contacts, there are yet few
data that demonstrate that aggressive case finding reduces the
incidence of TB. Our model does not differentiate between TB
cases detected passively or through ICF. If TB cases detected
through ICF were more likely to default from treatment (46), the
cost-effectiveness of ICF policies would be eroded. Furthermore,
our model does not differentiate between infected children and
adults, nor does it distinguish HIV cases receiving antiretroviral
therapy; yet relaxing these assumption is not expected to signifi-
cantly affect the comparative evaluation of static versus dynamic
policies (Fig. 3).
We also have made crude assumptions about the costs of

interventions and have not incorporated any HIV-related costs.
Accordingly, we do not intend for the actual costs of the inter-
ventions to reflect reality, but instead have elected to report these
estimates to facilitate comparison of the relative cost and cost-
effectiveness across interventions (i.e., static versus dynamic ICF
policies) and settings (i.e., higher versus lower HIV prevalence).
While the case-finding policies presented here are generated
using models calibrated to publicly available data describing the
TB/HIV epidemics in Zimbabwe and Central African Republic,
to use these policies in practice, one would need to develop and
calibrate models that adequately capture additional details of the
dynamics of TB/HIV epidemics and local costs. Also, if an ob-
served change in TB case notifications is believed to be associated
with a change in surveillance (i.e., use of new diagnostic tools/
algorithms or fluctuating performance of existing approaches),
dynamic case-finding policies should be regenerated using an
updated model that accurately captures the new programmatic
situation.
In summary, we demonstrate that dynamic ICF policies may be

an efficient approach for implementing more aggressive case
finding in the context of TB/HIV coepidemics. These dynamic
policies, in addition to averting more incident TB cases than static
ICF policies for similar costs, are easy to visualize and commu-
nicate and allow policymakers to update their decisions about
which intervention to use based on recent and current data about
the epidemic, the diagnostic tools available, and budget con-
straints.We believe this type of dynamic decision support toolmay
be more useful to a policymaker than a tool that requires a com-
mitment to implement multiple rounds of ICF at a prespecified
periodicity.
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