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Diabetesmellitus and themetabolic syndrome are becoming leading causes of death in theworld. Identifying the etiology of diabetes
is key to prevention. Despite the similarity in their structures, fructose and glucose are metabolized in different ways. Uric acid, a
byproduct of uncontrolled fructose metabolism is known risk factor for hypertension. In the liver, fructose bypasses the two highly
regulated steps in glycolysis, glucokinase and phosphofructokinase, both of which are inhibited by increasing concentrations of
their byproducts. Fructose is metabolized by fructokinase (KHK). KHK has no negative feedback system, and ATP is used for
phosphorylation. This results in intracellular phosphate depletion and the rapid generation of uric acid due to activation of AMP
deaminase. Uric acid, a byproduct of this reaction, has been linked to endothelial dysfunction, insulin resistance, and hypertension.
We present possible mechanisms by which fructose causes insulin resistance and suggest actions based on this association that have
therapeutic implications.

1. Background

Type 2 diabetes mellitus is characterized by hyperglycemia,
insulin resistance, and an impairment in insulin secretion.
In the late nineteenth century, William Osler described
diabetes as a rare disorder more likely to develop in obese
people and patients with gout. He estimated its prevalence
as approximately two to nine cases per 100,000 population
in the USA and Europe being more common in the latter
[1]. Diabetes, one of the leading causes of death in the
United States, affects over 200 million people worldwide.The
estimated prevalence of diabetes among adults in the United
States ranges from 4.4 to 17.9 percent [2]. The community-
based Framingham Heart Study, in a predominantly non-
Hispanic white population, found a doubling in the incidence
of type 2 diabetes over the last 30 years [3]. Identifying
the etiology of type 2 diabetes is a key to its prevention.
Obesity and intra-abdominal fat accumulation induce insulin
resistance [4]. Studies have documented high rates of type 2
diabetes in the absence of classic obesity [5]. This suggests

that other risk factors besides obesity might play a role in the
epidemic of type 2 diabetes.

2. Fructose: Sources and Metabolism

Fructose is a simple sugar present in fruits and honey and is
responsible for their sweet taste. However, the major source
of fructose worldwide is sucrose or table sugar, which is
derived from sugar cane and sugar beets. It is man-made,
first developed in New Guinea and in the Indian subcon-
tinent and was a rare and expensive commodity that was
introduced into Europe via Venice, Italy, and other trading
ports during the Middle Ages. Sucrose is a disaccharide
that is comprised of fructose and glucose. After ingestion,
sucrose is degraded in the gut by sucrase, releasing fructose
and glucose that are then absorbed. In addition to sucrose,
the other major source of fructose is high fructose corn
syrup (HFCS), which was introduced in the early 1970s as an
additional sweetener. HFCS consists of fructose and glucose
mixed in a variety of concentrations, but most commonly as
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55% fructose and 45% glucose. In the United States, HFCS
and sucrose are the major sources of fructose in the diet,
and HFCS is a major ingredient in soft drinks, pastries,
desserts, and various processed foods [6, 7]. Despite the
similarity in their chemical structures, fructose and glucose
are metabolized in completely different ways and utilize dif-
ferent GLUT transporters [8]. In the liver, fructose bypasses
the two highly regulated steps of glycolysis, catalyzed by
glucokinase/hexokinase and phosphofructokinase both of
which are inhibited by increasing concentrations of their
byproducts. Instead, fructose enters the pathway at a level that
is not regulated and is metabolized to fructose-1-phosphate
primarily by fructokinase or ketohexokinase (KHK) (Figures
1 and 2). Fructose may also be metabolized by hexokinase;
however, the Km for fructose is much higher than glucose,
and hence minimal amounts of fructose are metabolized
via this pathway [6]. Fructokinase has no negative feedback
system, andATP is used for the phosphorylation process. As a
result, continued fructose metabolism results in intracellular
phosphate depletion, activation of AMP deaminase, and uric
acid generationwhich is harmful at the cellular level [6, 9, 10].

Fructose-1-phosphate is subsequently converted to
dihydroxyacetone-phosphate and D-glyceraldehyde by the
action of the aldolase B. D-glyceraldehyde is phosphorylated
and continued downstream in the glycolysis pathway to
form pyruvate. Two of the most energetic reactions of all
organophosphates are in the pathway of fructosemetabolism,
catalyzed by phosphoglycerate and pyruvate kinases. Two
ATP molecules as well as free energy, approximately
12 kcal/mole, are released [12]. Fructose controls the activity
of glucokinase, the principle enzyme of glucose metabolism
in the liver. Fructose is a potent and acute regulator of
liver glucose uptake and glycogen synthesis. Inclusion
of catalytic quantities of fructose in a carbohydrate meal
improves glucose tolerance. This improvement is primarily
mediated by the activation of hepatic glucokinase resulting
in improved liver glucose uptake [13].

Uric acid, a byproduct of fructose degradation, stimulates
KHK expression through the activation of the transcription
factor ChREBP, which in turn results in the transcriptional
activation of KHK by the binding to a specific sequence
within its promoter [14]. Uric acid inhibits endothelial NO
both in vivo and in vitro, [15] and directly induces adipocyte
dysfunction [16]. Serum uric acid increases rapidly after
ingestion of fructose, resulting in increases as high as 2mg/dL
within 1 hour [17–19]. Uncontrolled fructose metabolism
leads to postprandial hypertriglyceridemia, which increases
visceral adipose deposition. Visceral adiposity contributes to
hepatic triglyceride accumulation, protein kinase C activa-
tion, and hepatic insulin resistance by increasing the portal
delivery of free fatty acids to the liver [20].

A number of other furanose sugars can also act as
KHK substrates [21]. KHK is expressed as two isoforms,
KHK-C and KHK-A. KHK-C is primarily expressed in
the liver, kidney, pancreas, and duodenum, while KHK-A
is expressed more widely including adipose tissue, heart,
and the adrenal gland [22]. The exact biologic function of
KHK-A is unknown. KHK-A has a higher Km for fructose
(7mmol/L) than does KHK-C (0.8mmol/L) suggesting that

it phosphorylates fructose poorly at physiological concen-
trations [23]. Recently, it was found that adiposity and
metabolic syndrome were prevented in mice lacking both
KHK isoforms but exacerbated in mice lacking KHK-A
[24]. It was also demonstrated that neither KHK isoform is
required for normal growth and development in rats [25].
Serum leptin, triglycerides, and fasting blood glucose levels
are higher in humans placed on a high fructose diet for four
weeks compared with those on a starch-based diet [26].

Deficiency of KHK-C, an autosomal recessive inborn
error of metabolism, results in essential fructosuria with an
estimated incidence of 1 : 130,000 [27]. This condition was
first recognized in 1876 [23]. It is an anomaly rather than
a disease, since it does not lead to any outward signs or
symptoms. Most cases of fructosuria have been described
in Jewish families [28]. It has no metabolic or morbid
manifestations other than having transient fructosuria after
meals containing either sucrose or fructose. This condition
used to be detected during routine medical examination
when tests based on reducing properties of glucose like
Benedict’s solution and Clini test were used to diagnose
diabetes. These tests have since been replaced by the more
specific glucose oxidase method which does not react with
fructose; therefore, patients with essential fructosuria are no
longer being identified [28]. Moreover, the lack of treatment
consideration and counseling for affected individuals and
their family members, the absence of screening recommen-
dations, and the lack of serum KHK assay makes it difficult
to identify subjects with this anomaly. This is in contrast to
hereditary fructose intolerance, a disease characterized by
the deficiency of fructose-1-phosphate aldolase which has
significant metabolic and developmental complications that
manifest themselves as early as in the neonatal period. In
a well-characterized family, in which three of eight siblings
have fructosuria, all affected individuals are compound het-
erozygotes for the mutations Gly40Arg and Ala43Thr [29].

3. Epidemiological Evidence

Since 1970, the total availability of sugars has dramatically
increased. Comparison of the 1977–1978 NFCS analysis with
the analyses of NHANES for the period 1999–2004 indicated
that, over the intervening period, mean individual intake of
total fructose increased by ∼32% [30]. HFCS now represents
nearly 50% of caloric sweeteners use in the United States [30,
31]. Increased total fructose consumption has been implicated
in the development of the obesity epidemic in the United
States with the consumption of HFCS increased >1000%
between 1970 and 1990, far exceeding the changes in intake
of any other food or food group [32].

Several reviews have concluded that intake of both fruc-
tose and HFCS by children and adults was associated with
an increased risk of obesity and metabolic syndrome [33–
37]. However, not all published meta-analyses have reported
a statistically significant link [38–41]. Recently, Sievenpiper
and colleagues concluded in a meta-analysis of controlled
feeding trials that fructose does not cause weight gain when
substituted for other carbohydrates in isocaloric trials [42].
This was criticized on the basis of fructose causing weight
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Figure 1: Fructosemetabolism. Fructose is primarilymetabolized to fructose-1-phosphate by KHKdue to its lower Km for fructose compared
with hexokinase. Uncontrolled consumption of ATP leads to intracellular phosphate depletion and activation of AMP deaminase leading
to the increased production of uric acid. Fructose-1-phosphate is further metabolized by aldolase B and triokinase to glyceraldehyde-3-
phosphate.
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Figure 2: Role of fructose in lipogenesis. Glyceraldehyde-3-P continues downstream in the glycolysis pathway forming pyruvate which enters
the mitochondria and is further metabolized to acetyl-CoA by pyruvate dehydrogenase. Acetyl-CoA enters the citric acid cycle by combining
with oxaloacetate to form citrate. In the well fed state, citrate can be transported to the cytosol, providing CoA necessary for lipogenesis.

gain by altering appetite resulting in increased food intake, by
inducing leptin resistance and by a direct effect on the brain
indicating that isocaloric trials do not show a difference in
weight gain between groups.Moreover, the use of weight gain
as a marker is subject to debate, since other fructose effects,
beyond body weight as central fat accumulation and insulin
resistance, can be more important [43].

In children, intake of artificially sweetened beverages
was found to be positively associated with adiposity [44].
A prospective cohort analyses conducted from 1991 to 1999

among nondiabetic women in the Nurses’ Health Study II
concluded that higher consumption of sugar-sweetened bev-
erages was associated with greater magnitude of weight gain
and an increased risk for the development of type 2 diabetes
[45]. On the other hand, a recent analysis of NHANES
1999–2006 databases comparing data from >25,000 subjects
showed no relation between daily fructose intake and the
indicators of metabolic syndrome, uric acid, and BMI [46].
This study was based on a snapshot of one- or two-days
recalls.Thus, the intake data may not truly represent the long
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term, consistent consumption of food. Moreover, due to no
fructose intake data being available in NHANES databases
and a lack of fructose content data for many food items in the
USDA National Nutrient Database for Standard Reference,
the fructose intake of individuals was indirectly estimated
using several databases.

Interpretation of cross-sectional studies examining the
relationship of sugar intake to obesity can be misleading due
to the fact that subjects who become obese may well reduce
their sugar intake, since sugar is widely recognized to cause
weight gain. Therefore, examining the relationship of sugar
to obesity is best performed with well controlled, long-term
longitudinal studies. It is also important to recall that leptin
resistance leading to liporegulatory failure, and, subsequently,
insulin resistance can be perpetuated once obesity and
intracellular lipid accumulation are manifest, especially in
sites other than adipose tissue including pancreatic B cells
and cardiomyocytes. Thus, reducing fructose intake may not
fully reverse insulin resistance and diabetes. This further
adds to the complexity and clouds the interpretation of these
epidemiological data [6, 47, 48].

The relationship between fructose intake and hyperten-
sion was also examined in several clinical studies. In a ran-
domized controlled trial, high dose fructose (200 gm/24 h)
increased ambulatory blood pressure and elevated fasting
insulin levels. In this study, allopurinol prevented the increase
in mean arterial blood pressure [49]. In an analysis of the
NHANES 2003–2006 data, fructose intake, in the form of
added sugar, was independently associated with higher blood
pressure levels [50]. Fructose consumption in the form of
sugar-sweetened beverages was associated with hypertension
and elevated uric acid level in USA adolescents [51] but not
in adults [52]. Uric acid may raise systemic blood pressure
by increasing inflammation, activating the renin-angiotensin
system, and decreasing nitric oxide production contributing
to renal vasoconstriction that results in salt insensitive hyper-
tension [53]. Persistent vasoconstriction may contribute to
arteriosclerosis and the subsequent development of salt-
sensitive hypertension, even if the hyperuricemia is corrected
[54]. This may explain the different results in the preceding
two studies that looked at two different age groups. A
recent meta-analysis of controlled feeding trials found that
isocaloric substitution of fructose with other carbohydrates
did not adversely affect blood pressure in humans suggesting
that there is a need for long-term and large trials to clarify
these findings [40].

Few studies have examined the role of naturally occurring
sugars, for example, 100% fruit juice, in the origin of obesity
and related end points. It is believed that fructose from
natural sources can be less harmful because the presence of
additional nutrients and antioxidants. On the other hand,
crystalline fructose, as in table sugar, and HFCS are regarded
as less safe, since glucose present in these sugars can acceler-
ate fructose absorption. 100% fruit juice consumption among
USA adults is associated with lower insulin resistance [55]
and lower odds of obesity and metabolic syndrome. Obesity
remained an independent factor after adjusting to other
lifestyle factors. What is interesting in this study is that 100%
juice consumers had significantly higher white milk intake
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Figure 3: Overview of stages of adipocyte differentiation and the
impact of angiotensin II inhibitors and elevated fructose levels.

which, on its own and among other dairy products, has been
shown to enhance weight loss [43, 56, 57].

There is mounting evidence from studies looking at
the association between fructose and obesity and metabolic
syndrome that primary fructose malabsorption in children
was negatively associated with obesity [58]. In obese African-
Americans, high rates of fructose malabsorption were asso-
ciated with reduced liver fat thought to be protective against
fatty liver disease [59].

In conclusion, it is evident that there is a need for clinical
trials with variable amounts of fructose intake to determine
effects on metabolic outcomes rather than depending on
meta-analyses of existing studies of mixed design and dura-
tion.

4. Effect of Fructose on Adipocyte
Differentiation

Adipocyte development in mice and humans follows a well-
defined pathway that begins with a common stem cell medi-
ated adipocyte regeneration and is referred to as adipogenesis
[60]. The first step of adipogenesis is the generation and
commitment ofmesenchymal stem cells (MSCs) to adipocyte
lineage. The effect of fructose-mediated renin-Ang II activa-
tion is on the stages of cell differentiation (“commitment”)
and involves local and systemic effects.

Figure 3 shows the mechanism of Ang II inhibition
during adipogenesis. MSCs or preadipocytes differentiate
into lipid-laden and insulin-sensitive adipocytes [61].

Briefly, the stages of adipocyte differentiation are affected
by increases in the levels of fructose and Ang II which cause
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MSC-derived adipocyte growth arrest, clonal expansion, and
early differentiation. Ang II blockade can prevent terminal
differentiation leading to the development of the mature
adipocyte phenotype [62, 63].

Normal diets result in the activation of PPAR𝛾 fol-
lowed by adipose expansion through adipocyte hyperplasia,
resulting in an increased number of new preadipocytes.
The resulting adipocytes are small in size and effectively
store lipids, thereby reducing lipotoxicity in the liver and
adipose tissue and release adiponectin [64, 65]. Activation
of these genes leads to repartitioning of lipids resulting in
an increased triglyceride content of adipose tissue, a lowered
free fatty acid content in circulation and availability for
liver and muscle use, thereby improving insulin sensitiv-
ity. Methylisobutylxanthine (MIX), an phosphodiesterases
inhibitor, increases intracellular cAMP, activating adipocyte
differentiation in a PKA-independent manner [66]. MIX
also increased the expression of C/EBP-𝛽, required for the
subsequent expression of PPAR-𝛾 [62].

Although, the mechanisms by which fructose controls
adipogenesis in vivo are largely unknown, there are a number
of candidates thatmediate adipocyte differentiation in culture
and are thought to control adipocyte accumulation and
function in vivo. Two main factors fit this criterion: (1)
high fructose diets, (2) increases in ROS. They have been
implicated as the link between adipogenesis and metabolic
diseases including T2DM.

Recent studies demonstrated that the induction of oxida-
tive stress by high fructose or glucose increased NAD(P)H
oxidase and the mitochondrial respiratory chain which is
associated with diabetic complications [67]. Therefore, fruc-
tose diets may lead to adipocyte differentiation associated
with adipocyte dysfunction and formation of adipocytes
external to normal adipocyte depots, that is,muscle, liver, and
pancreas leading to advanced diabetic complications.

The fructose-mediated increase in ROS via activation of
the adipocyte renin-Ang II system may lead to adipocyte
dysfunction and insulin resistance. Adipose tissue is a key
endocrine organ, the function of which, via interaction with
the vascular endothelium system, regulates lipid uptake,
storage, synthesis, and secretion of paracrine and autocrine
factors that regulate insulin sensitivity. However, fructose-
mediated vascular dysfunction may have a negative effect on
adipocyte function and the secretion of anti-inflammatory
molecules such as adiponectin, IL-1, and IL-10. The glucose
or fructose-mediated decrease in vascular function increases
adipocyte size resulting in decreased levels of adiponectin,
but increased levels of MCP-1, IL-6, and TNF-𝛼 that have
systemic effects on 𝛽 cells (Figure 4).

The adipocyte-mediated increase in adipokine release
plays a critical role in the regulation of blood pressure
(angiotensinogen), vascular haemostasis, and angiogene-
sis. The release of these cytokines by adipocytes suggest
that fructose-mediated diabetes may be related to systemic
effects which include altered adiposity and insulin resis-
tance. Adipocyte dysfunction occurs as a consequence of
chronic overfeeding of fructose leading to adipocyte enlarge-
ment and inflammation and mitochondrial dysfunction
(Figure 5).
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Figure 4: Enlargement of adipocytes causes alterations in secretion
of adipokines. Under normal conditions, adipocyte is a site of
lipid synthesis, uptake, and storage. Secreted adipokines function as
endocrine, paracrine, or autocrine mediators. Increased adipocyte
size can lead to deleterious alterations in insulin sensitivity caused
by a decrease in adiponectin secretion and the induction of inflam-
matory mediators. Modified from [11].

Mitochondria play an important role in adipocyte dif-
ferentiation and function [68]. During the early stages of
preadipocyte development, an increased number of mito-
chondria are required, resulting in small mature adipocytes,
highly sensitive to insulin, and secreting high levels of
adiponectin [69]. By contrast, mitochondrial dysfunction
has also been linked to T2DM complications in fructose
diets.The results of impairedmitochondrial function include
increased FFA levels resulting in the accumulation of mito-
chondrial products including fatty acyl coenzyme A (CoA)
and reduced insulin sensitivity [69].

In summary, fructose diets, inactivity, and gluttony results
in adipocyte expansionwith the resultant detrimental pertur-
bations in the renin-Ang II system and inmitochondria, both
of which undergo cellular changes that result in the increased
generation of ROS and TNF-𝛼, IL-1, and IL-6 and a decrease
in adiponectin levels. Adiponectin is synthesized and released
only by the adipocyte and has an essential role in vascular and
renal function.

Increases in adipocyte release of adiponectin inhibits
both the expression of hepatic gluconeogenic enzymes and
the rate of endogenous glucose production in diabetic mice
[70]. In adiponectin transgenic mice, adiponectin reduced
the expression of phosphoenolpyruvate carboxylase and
glucose-6-phosphatase, which are associated with elevated
phosphorylation of hepatic AMPK and decreased glucose
production [70, 71].

5. Prohypertensive Effects of Fructose and
Putative Mechanisms

Hypertension, diabetes, and obesity were originally docu-
mented in England and France where sugar first became
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Figure 5: Molecular mechanisms by which fructose diets, inactivity, and gluttony increase preadipocyte number and enlargement via
increases in ROS generated by the renin-AngII system and mitochondrial dysfunction leading to obesity, insulin resistance, and diabetes.
Hyperglycemia results in increased ROS production within the mitochondria via a number of mechanisms including a reduction in the
glutathione/glutathione disulfide ratio. ROS generation mediates a proinflammatory cascade resulting in increase of adipogenesis, release of
inflammatory cytokines, and decrease in adiponectin leading to insulin resistance.
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Figure 6: Changing prevalence of hypertension over 100 years in the USA (a). Increasing prevalence of obesity in the USA over 100 years.
Obesity defined as body mass index (BMI Kg/m2) >30 (b).

available to the public. The rise in sugar intake in the United
Kingdom and the United States also correlated with the
rise in obesity rates observed in these countries [7]. In the
early 1900s, blood pressure in over 140,000 healthy adults
who applied for life insurance in the New York region
suggested that a blood pressure of 140 (systolic)/90 (diastolic)
mmHg was abnormal because it reflected only 5-6% of the
population in the United States [7]. Subsequent studies over
the past century showed a significant and dramatic rise in

the prevalence of hypertension in the United States [72–74]
(Figure 6(a)). This was paralleled by an increase in the rates
of obesity anddiabetes. Bodymass index (BMI; in kg/m2)>30
was observed in only 3.4% of 50- to 59-year-oldmale veterans
in 1890, compared with 30.4% in 1999–2002 [7] (Figure 6(b)).
This is paralleled by the epidemic of sugar consumption that
has worsened over the past 300 years.

During the last decade, emerging data have altered our
perspective on the link between fructose, uric acid, and
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hypertension. Epidemiologic data, in the form of large,
longitudinal studies strengthened the link between elevated
uric acid and hypertension [50, 75–79]. In animals, mild
hyperuricemia induced by the uricase inhibitor oxonic acid,
mimicking levels in humans, increased blood pressure by
crystal-independent mechanism resulting in stimulation of
the renin-angiotensin system and inhibition of nitric oxide
synthase [80]. Two-thirds of adolescents with newly diag-
nosed essential hypertension and elevated uric acid normal-
ized their blood pressure when treated with the xanthine
oxidase inhibitor allopurinol [81]. This study could not
exclude the possibility that some or all of the observed effect
could have been mediated by a reduction in superoxide
production, a byproduct of xanthine oxidase function. A
more recent study done by the same group confirmed
these results by using two differently acting urate lowering
drugs, allopurinol, and probenecid [82]. This study clearly
implicated uric acid as the biochemical mediator of increased
blood pressure. Animal data suggested that uric acid induced
hypertension has two phases. The first is salt insensitive
which is likely to be managed by urate lowering drugs,
while the second phase is salt sensitive. Due to a paucity of
outcome data, recommendations on how to treat uric acid
associate hypertension cannot be made at this time although
the mechanism appears clear, especially in the early stages
before the development of salt sensitivity. Future clinical trials
are required to include different levels of hypertension and
different age groups before recommending urate lowering
agents especially as they have an inferior efficacy profile
when compared with antihypertensive medications presently
in clinical use.

Consumption of high-fructose chow by mice produced
nocturnal hypertension and autonomic imbalance which
may be related to activation of the sympathetic and RAS
systems [83]. Subsequent data suggested that changes in auto-
nomic modulation may be an initiating mechanism underly-
ing the cluster of symptoms associated with cardiometabolic
disease [84]. The addition of clonidine to drinking water
inhibited fructose-induced hypertension in rats [85].

6. Effect of Fructose on Dyslipidemia and
Insulin Resistance

The earliest recorded metabolic perturbation resulting from
fructose consumption is postprandial hypertriglyceridemia,
which increased visceral adipose deposition. Visceral adipos-
ity contributes to hepatic triglyceride accumulation, protein
kinase C activation, and hepatic insulin resistance by increas-
ing the portal delivery of free fatty acids to the liver. With
insulin resistance, VLDL production is upregulated and this,
along with systemic free fatty acids, increase lipid delivery to
muscle. It is also possible that fructose initiates hepatic insulin
resistance independently of visceral adiposity and free fatty
acid delivery [20]. Splanchnic perfusion studies have shown
that hepatic production of triglycerides is much greater with
fructose compared with equimolar concentrations of glucose
[86]. Unlike glucose, fructose does not stimulate insulin
secretion, due to its hepatic metabolism and the low level of

expression of the fructose transporter GLUT5 in pancreatic
𝛽-cells [87]. Consumption of fructose-sweetened beverages
with meals produced a rapid and prolonged elevation of
plasma triglycerides compared with glucose-sweetened bev-
erages. Because insulin, leptin, and possibly ghrelin function
as key signals to the central nervous system in the long-term
regulation of energy balance, decreases of circulating insulin
and leptin and increased ghrelin concentrations could lead to
increased caloric intake and ultimately contribute to weight
gain and obesity during chronic consumption of diets high in
fructose [88]. Apolipoprotein B levels were found to be higher
following fructose consumption compared with isocaloric
amount of glucose [89].

Fructose increases the incidence of hypertension, NAFL,
and diabetes [90]. In fact, countries electing to use HFCS in
their food supply have a 20% higher prevalence of diabetes
compared to countries that did not use HFCS independent
of obesity [91]. Uric acid stimulates fructokinase and the
development of NAFL [14] via an increase in fructose
metabolism thereby increasing the development of type 2
diabetes in children. This may be related to an increase
in SREBP-1c and reduced acyl-CoA oxidase during preg-
nancy [92]. Body size at birth is related to food intake and
the content of fructose [93] or an elevation of estrogen
during pregnancy in women with a family history of type
2 diabetes [94, 95]. Genetic morphism in the glucokinase
regulatory protein, which binds to glucokinase and inhibits
its activity in the presence of fructose-6-phosphate (F6P)
is associated with ethnicity and may be responsible for
different response rates to obesity and diabetes in different
populations [96]. An increase of fructose-1,6-biophosphatase
[97], or in angiotensin 1–7 [98] decreases fructose-mediated
diabetes by an increase in pancreatic islet metabolism
[99].

7. Prospective and Therapeutic Implications

Based on the present knowledge of fructose and its detrimen-
tal metabolic effects when in excess and the unique nature of
KHK, it is clear that fructose is, at least, partially responsible
for the pandemic of diabetes and themetabolic syndrome that
is presently occurring. A number of therapeutic approaches
appear viable as a result of the data outlined previously.

(1) Assessing KHK activity in human blood samples
opens a new approach to the diagnosis as well as the
treatment of type 2 diabetes. We hypothesize that individuals
either completely or partially deficient in KHK activity are
immune at variable levels from developing type 2 diabetes
mellitus. In order to test this hypothesis, the following
require clarification: (a) KHK-C is primarily expressed in
the liver and kidney. Thus, the in vivo handling of fruc-
tose to assess enzyme expression and efficiency would be
difficult to monitor. We propose that PMN expression will
parallel hepatic expression, a series of pilot clinical studies
in individuals selected across populations at varying risk
for type 2 diabetes mellitus is required. (b) Once this
association has been demonstrated, measurement of KHK-
C activity in PMN’s in young adults with type 2 diabetes
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and age/sex matched controls is required. If results support
the hypothesis, new approach to the prediction as well as a
therapeutic approach to treat type 2 diabetes mellitus is at
hand.

(2) Interference with fructose transport at the GLUT
transporter level diminishes the availability of fructose. Due
to their hydrophilic nature, sugars must first traverse lipid
bilayer membranes via carrier-mediated transport mecha-
nisms. Several transporters have been identified, and these
include the facilitative glucose transporter (GLUT) which
primarily regulates the clearance of blood glucose along
a concentration gradient and the sodium-coupled glucose
cotransporter (SGLT) family members that are distinct at
both the primary and secondary structural levels from the
GLUT proteins. Expression of SGLT proteins is restricted
to the gut and kidney, where their role is energy-dependent
reabsorption of glucose from lumen. The GLUT transporter
family comprises 13 members that exhibit tissue distribution,
substrate specificity, and transport kinetics that reflect their
physiologic role. These have not been fully defined for all
13 isoforms [100]. Fructose gains access to the circulation
and hepatocytes via GLUT 5, GLUT 7, and GLUT 11 [8].
Interference with fructose transport at the level of these
transporters represents a therapeutic approach to prevent
fructose-induced adiposity and insulin resistance.

(3) Interference at the level of KHK is an attractive
approach to modify the metabolism of fructose and, pos-
sibly, alleviating adiposity and vascular dysfunction. This
can be implemented in two ways. (a) An inhibitor is cur-
rently being developed (Richard Johnson, patent number
WO/2012/019188, public knowledge). It remains unclear how
effective this approach will be, and if this intervention
will be dependent on an individual’s KHK activity profile
as suggested previously. (b) The use of certain furanose
sugars, which can also be substrates for KHK and compete
with fructose for its metabolism to hexose-1-phosphate [21].
D-Tagatose, a furanose sugar metabolized by KHK, when
compared with fructose, caused markedly higher levels of
serum uric acid and lower of Pi [101]. This highlights the
importance of the poorly regulated KHK in this pathway and
necessitates further study.

(4) Therapeutic agents that decrease the effect of high
fructose diets on diabetes and insulin resistance include
statins [102], metformin [103], and renin inhibitor attenuated
diabetes and insulin resistance [104]. The latter is due to a
decrease in lipid peroxidation. In support of these obser-
vations, candesartan cilexetil [105] and losartan improve
renal hemodynamic and insulin resistance [106] and lower
blood pressure in diabetic rodents fed a high fructose diet
[107] presumably by the activation of AMP-activated protein
kinase [108]. Infusion of Ang II decreased adiponectin and
potentiated fructose-mediated insulin resistance in fructose-
fed rats [109]. The presence of renin-angiotensin aldosterone
in adipose tissue has been described [110–112] in which Ang
II increased NADPH oxidase activity and WAT mediated
inflammation and blocked RAAS thereby preventing the
onset of diabetes. Blocking ROS via the inhibition of Ang
II converting enzyme reduced obesity in rats [113] and dys-
regulation of inflammatory cytokines released by adipocytes

[114, 115]. Plasma Ang II is associated with markers of insulin
resistance and obesity [116]. Renin angiotensin expression
regulates mouse and human adipocyte differentiation [117,
118].

(5) Uric acid can be a byproduct of uncontrolled fructose
metabolism due to the rapid consumption of ATP as noted
previously. Uric acid has been linked to endothelial and
adipocytes dysfunction. In contrast, uric acid also functions
as an antioxidant [119]. Treating hyperuricemia in the absence
of gout is not recommended at this time due to the lack of
sufficient data.

(6) The ideal and logical, but most difficult, approach
would be to modify fructose content in food. The reason
that KHK is a poorly regulated enzyme may be due to the
high levels of physical activity and limited fructose intake that
was prevalent in humans before the introduction of refined
cane sugar and high fructose corn syrup (HFCS). Negative
feedback was unnecessary due to the limited supply of
fructose. This does not exist today where calorie sweeteners,
including HFCS, are part of the normal diet. Moreover, and
of grave concern, is the increased consumption of sugar-
sweetened beverages, and fresh and processed juices which
provide an easy vehicle for excessive sugar intake, over very
a short period of time and have been directly linked to
obesity [35, 120] and type 2 diabetes [45, 121]. At the end
of the day, we might conclude that “only drinking “milk
and water” can prevent diabetes.” The present choice is
either to continue with the currently high rates of fructose
consumptionwhich lead to adipocyte expansion, obesity, and
hypertension or to minimize fructose intake and alleviate
health care cost and the cost of managing hypertension and
its complications, thereby improving the lots of health care
professional, patients, and their families and the well-being
of millions of individuals.

8. Conclusion

Fructose metabolism is very unique in a sense that it is
not regulated. The consequences of uncontrolled fructose
metabolism can be harmful at the cellular level resulting in
intracellular ATP depletion, increased uric acid production,
endothelial dysfunction, oxidative stress, and increased lipo-
genesis. High fructose consumption induces insulin resis-
tance and other manifestations of metabolic syndrome in a
series of animal models. These effects are not seen in animals
fed either glucose or starch. Human epidemiological data are
generally of poor quality due to the lack of consistency in
study design, methodology, and length. It remains unclear
if targeting fructose by interfering with its transport or
metabolism can be of any clinical benefit.
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